![]() |
Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2 | Structured version Visualization version GIF version |
Description: Practice problem 2. Clues: oveq12i 7460 adddiri 11303 add4i 11514 mulcli 11297 recni 11304 2re 12367 3eqtri 2772 10re 12777 5re 12380 1re 11290 4re 12377 eqcomi 2749 5p4e9 12451 oveq1i 7458 df-3 12357. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
problem2 | ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12367 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1 | recni 11304 | . . . 4 ⊢ 2 ∈ ℂ |
3 | 10re 12777 | . . . . 5 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 11304 | . . . 4 ⊢ ;10 ∈ ℂ |
5 | 2, 4 | mulcli 11297 | . . 3 ⊢ (2 · ;10) ∈ ℂ |
6 | 5re 12380 | . . . 4 ⊢ 5 ∈ ℝ | |
7 | 6 | recni 11304 | . . 3 ⊢ 5 ∈ ℂ |
8 | 1re 11290 | . . . . 5 ⊢ 1 ∈ ℝ | |
9 | 8 | recni 11304 | . . . 4 ⊢ 1 ∈ ℂ |
10 | 9, 4 | mulcli 11297 | . . 3 ⊢ (1 · ;10) ∈ ℂ |
11 | 4re 12377 | . . . 4 ⊢ 4 ∈ ℝ | |
12 | 11 | recni 11304 | . . 3 ⊢ 4 ∈ ℂ |
13 | 5, 7, 10, 12 | add4i 11514 | . 2 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = (((2 · ;10) + (1 · ;10)) + (5 + 4)) |
14 | 2, 9, 4 | adddiri 11303 | . . . 4 ⊢ ((2 + 1) · ;10) = ((2 · ;10) + (1 · ;10)) |
15 | 14 | eqcomi 2749 | . . 3 ⊢ ((2 · ;10) + (1 · ;10)) = ((2 + 1) · ;10) |
16 | 5p4e9 12451 | . . 3 ⊢ (5 + 4) = 9 | |
17 | 15, 16 | oveq12i 7460 | . 2 ⊢ (((2 · ;10) + (1 · ;10)) + (5 + 4)) = (((2 + 1) · ;10) + 9) |
18 | df-3 12357 | . . . . 5 ⊢ 3 = (2 + 1) | |
19 | 18 | eqcomi 2749 | . . . 4 ⊢ (2 + 1) = 3 |
20 | 19 | oveq1i 7458 | . . 3 ⊢ ((2 + 1) · ;10) = (3 · ;10) |
21 | 20 | oveq1i 7458 | . 2 ⊢ (((2 + 1) · ;10) + 9) = ((3 · ;10) + 9) |
22 | 13, 17, 21 | 3eqtri 2772 | 1 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 2c2 12348 3c3 12349 4c4 12350 5c5 12351 9c9 12355 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-dec 12759 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |