| Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2 | Structured version Visualization version GIF version | ||
| Description: Practice problem 2. Clues: oveq12i 7381 adddiri 11163 add4i 11375 mulcli 11157 recni 11164 2re 12236 3eqtri 2756 10re 12644 5re 12249 1re 11150 4re 12246 eqcomi 2738 5p4e9 12315 oveq1i 7379 df-3 12226. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| problem2 | ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12236 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 11164 | . . . 4 ⊢ 2 ∈ ℂ |
| 3 | 10re 12644 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 4 | 3 | recni 11164 | . . . 4 ⊢ ;10 ∈ ℂ |
| 5 | 2, 4 | mulcli 11157 | . . 3 ⊢ (2 · ;10) ∈ ℂ |
| 6 | 5re 12249 | . . . 4 ⊢ 5 ∈ ℝ | |
| 7 | 6 | recni 11164 | . . 3 ⊢ 5 ∈ ℂ |
| 8 | 1re 11150 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 9 | 8 | recni 11164 | . . . 4 ⊢ 1 ∈ ℂ |
| 10 | 9, 4 | mulcli 11157 | . . 3 ⊢ (1 · ;10) ∈ ℂ |
| 11 | 4re 12246 | . . . 4 ⊢ 4 ∈ ℝ | |
| 12 | 11 | recni 11164 | . . 3 ⊢ 4 ∈ ℂ |
| 13 | 5, 7, 10, 12 | add4i 11375 | . 2 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = (((2 · ;10) + (1 · ;10)) + (5 + 4)) |
| 14 | 2, 9, 4 | adddiri 11163 | . . . 4 ⊢ ((2 + 1) · ;10) = ((2 · ;10) + (1 · ;10)) |
| 15 | 14 | eqcomi 2738 | . . 3 ⊢ ((2 · ;10) + (1 · ;10)) = ((2 + 1) · ;10) |
| 16 | 5p4e9 12315 | . . 3 ⊢ (5 + 4) = 9 | |
| 17 | 15, 16 | oveq12i 7381 | . 2 ⊢ (((2 · ;10) + (1 · ;10)) + (5 + 4)) = (((2 + 1) · ;10) + 9) |
| 18 | df-3 12226 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 19 | 18 | eqcomi 2738 | . . . 4 ⊢ (2 + 1) = 3 |
| 20 | 19 | oveq1i 7379 | . . 3 ⊢ ((2 + 1) · ;10) = (3 · ;10) |
| 21 | 20 | oveq1i 7379 | . 2 ⊢ (((2 + 1) · ;10) + 9) = ((3 · ;10) + 9) |
| 22 | 13, 17, 21 | 3eqtri 2756 | 1 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 2c2 12217 3c3 12218 4c4 12219 5c5 12220 9c9 12224 ;cdc 12625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-dec 12626 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |