| Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2 | Structured version Visualization version GIF version | ||
| Description: Practice problem 2. Clues: oveq12i 7422 adddiri 11253 add4i 11465 mulcli 11247 recni 11254 2re 12319 3eqtri 2763 10re 12732 5re 12332 1re 11240 4re 12329 eqcomi 2745 5p4e9 12403 oveq1i 7420 df-3 12309. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| problem2 | ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12319 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 11254 | . . . 4 ⊢ 2 ∈ ℂ |
| 3 | 10re 12732 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 4 | 3 | recni 11254 | . . . 4 ⊢ ;10 ∈ ℂ |
| 5 | 2, 4 | mulcli 11247 | . . 3 ⊢ (2 · ;10) ∈ ℂ |
| 6 | 5re 12332 | . . . 4 ⊢ 5 ∈ ℝ | |
| 7 | 6 | recni 11254 | . . 3 ⊢ 5 ∈ ℂ |
| 8 | 1re 11240 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 9 | 8 | recni 11254 | . . . 4 ⊢ 1 ∈ ℂ |
| 10 | 9, 4 | mulcli 11247 | . . 3 ⊢ (1 · ;10) ∈ ℂ |
| 11 | 4re 12329 | . . . 4 ⊢ 4 ∈ ℝ | |
| 12 | 11 | recni 11254 | . . 3 ⊢ 4 ∈ ℂ |
| 13 | 5, 7, 10, 12 | add4i 11465 | . 2 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = (((2 · ;10) + (1 · ;10)) + (5 + 4)) |
| 14 | 2, 9, 4 | adddiri 11253 | . . . 4 ⊢ ((2 + 1) · ;10) = ((2 · ;10) + (1 · ;10)) |
| 15 | 14 | eqcomi 2745 | . . 3 ⊢ ((2 · ;10) + (1 · ;10)) = ((2 + 1) · ;10) |
| 16 | 5p4e9 12403 | . . 3 ⊢ (5 + 4) = 9 | |
| 17 | 15, 16 | oveq12i 7422 | . 2 ⊢ (((2 · ;10) + (1 · ;10)) + (5 + 4)) = (((2 + 1) · ;10) + 9) |
| 18 | df-3 12309 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 19 | 18 | eqcomi 2745 | . . . 4 ⊢ (2 + 1) = 3 |
| 20 | 19 | oveq1i 7420 | . . 3 ⊢ ((2 + 1) · ;10) = (3 · ;10) |
| 21 | 20 | oveq1i 7420 | . 2 ⊢ (((2 + 1) · ;10) + 9) = ((3 · ;10) + 9) |
| 22 | 13, 17, 21 | 3eqtri 2763 | 1 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 2c2 12300 3c3 12301 4c4 12302 5c5 12303 9c9 12307 ;cdc 12713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-dec 12714 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |