Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2 | Structured version Visualization version GIF version |
Description: Practice problem 2. Clues: oveq12i 7287 adddiri 10988 add4i 11199 mulcli 10982 recni 10989 2re 12047 3eqtri 2770 10re 12456 5re 12060 1re 10975 4re 12057 eqcomi 2747 5p4e9 12131 oveq1i 7285 df-3 12037. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
problem2 | ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12047 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1 | recni 10989 | . . . 4 ⊢ 2 ∈ ℂ |
3 | 10re 12456 | . . . . 5 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 10989 | . . . 4 ⊢ ;10 ∈ ℂ |
5 | 2, 4 | mulcli 10982 | . . 3 ⊢ (2 · ;10) ∈ ℂ |
6 | 5re 12060 | . . . 4 ⊢ 5 ∈ ℝ | |
7 | 6 | recni 10989 | . . 3 ⊢ 5 ∈ ℂ |
8 | 1re 10975 | . . . . 5 ⊢ 1 ∈ ℝ | |
9 | 8 | recni 10989 | . . . 4 ⊢ 1 ∈ ℂ |
10 | 9, 4 | mulcli 10982 | . . 3 ⊢ (1 · ;10) ∈ ℂ |
11 | 4re 12057 | . . . 4 ⊢ 4 ∈ ℝ | |
12 | 11 | recni 10989 | . . 3 ⊢ 4 ∈ ℂ |
13 | 5, 7, 10, 12 | add4i 11199 | . 2 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = (((2 · ;10) + (1 · ;10)) + (5 + 4)) |
14 | 2, 9, 4 | adddiri 10988 | . . . 4 ⊢ ((2 + 1) · ;10) = ((2 · ;10) + (1 · ;10)) |
15 | 14 | eqcomi 2747 | . . 3 ⊢ ((2 · ;10) + (1 · ;10)) = ((2 + 1) · ;10) |
16 | 5p4e9 12131 | . . 3 ⊢ (5 + 4) = 9 | |
17 | 15, 16 | oveq12i 7287 | . 2 ⊢ (((2 · ;10) + (1 · ;10)) + (5 + 4)) = (((2 + 1) · ;10) + 9) |
18 | df-3 12037 | . . . . 5 ⊢ 3 = (2 + 1) | |
19 | 18 | eqcomi 2747 | . . . 4 ⊢ (2 + 1) = 3 |
20 | 19 | oveq1i 7285 | . . 3 ⊢ ((2 + 1) · ;10) = (3 · ;10) |
21 | 20 | oveq1i 7285 | . 2 ⊢ (((2 + 1) · ;10) + 9) = ((3 · ;10) + 9) |
22 | 13, 17, 21 | 3eqtri 2770 | 1 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 2c2 12028 3c3 12029 4c4 12030 5c5 12031 9c9 12035 ;cdc 12437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-dec 12438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |