| Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2 | Structured version Visualization version GIF version | ||
| Description: Practice problem 2. Clues: oveq12i 7361 adddiri 11128 add4i 11341 mulcli 11122 recni 11129 2re 12202 3eqtri 2756 10re 12610 5re 12215 1re 11115 4re 12212 eqcomi 2738 5p4e9 12281 oveq1i 7359 df-3 12192. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| problem2 | ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12202 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 11129 | . . . 4 ⊢ 2 ∈ ℂ |
| 3 | 10re 12610 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 4 | 3 | recni 11129 | . . . 4 ⊢ ;10 ∈ ℂ |
| 5 | 2, 4 | mulcli 11122 | . . 3 ⊢ (2 · ;10) ∈ ℂ |
| 6 | 5re 12215 | . . . 4 ⊢ 5 ∈ ℝ | |
| 7 | 6 | recni 11129 | . . 3 ⊢ 5 ∈ ℂ |
| 8 | 1re 11115 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 9 | 8 | recni 11129 | . . . 4 ⊢ 1 ∈ ℂ |
| 10 | 9, 4 | mulcli 11122 | . . 3 ⊢ (1 · ;10) ∈ ℂ |
| 11 | 4re 12212 | . . . 4 ⊢ 4 ∈ ℝ | |
| 12 | 11 | recni 11129 | . . 3 ⊢ 4 ∈ ℂ |
| 13 | 5, 7, 10, 12 | add4i 11341 | . 2 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = (((2 · ;10) + (1 · ;10)) + (5 + 4)) |
| 14 | 2, 9, 4 | adddiri 11128 | . . . 4 ⊢ ((2 + 1) · ;10) = ((2 · ;10) + (1 · ;10)) |
| 15 | 14 | eqcomi 2738 | . . 3 ⊢ ((2 · ;10) + (1 · ;10)) = ((2 + 1) · ;10) |
| 16 | 5p4e9 12281 | . . 3 ⊢ (5 + 4) = 9 | |
| 17 | 15, 16 | oveq12i 7361 | . 2 ⊢ (((2 · ;10) + (1 · ;10)) + (5 + 4)) = (((2 + 1) · ;10) + 9) |
| 18 | df-3 12192 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 19 | 18 | eqcomi 2738 | . . . 4 ⊢ (2 + 1) = 3 |
| 20 | 19 | oveq1i 7359 | . . 3 ⊢ ((2 + 1) · ;10) = (3 · ;10) |
| 21 | 20 | oveq1i 7359 | . 2 ⊢ (((2 + 1) · ;10) + 9) = ((3 · ;10) + 9) |
| 22 | 13, 17, 21 | 3eqtri 2756 | 1 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 2c2 12183 3c3 12184 4c4 12185 5c5 12186 9c9 12190 ;cdc 12591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-dec 12592 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |