![]() |
Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2 | Structured version Visualization version GIF version |
Description: Practice problem 2. Clues: oveq12i 7414 adddiri 11226 add4i 11437 mulcli 11220 recni 11227 2re 12285 3eqtri 2756 10re 12695 5re 12298 1re 11213 4re 12295 eqcomi 2733 5p4e9 12369 oveq1i 7412 df-3 12275. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
problem2 | ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12285 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1 | recni 11227 | . . . 4 ⊢ 2 ∈ ℂ |
3 | 10re 12695 | . . . . 5 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 11227 | . . . 4 ⊢ ;10 ∈ ℂ |
5 | 2, 4 | mulcli 11220 | . . 3 ⊢ (2 · ;10) ∈ ℂ |
6 | 5re 12298 | . . . 4 ⊢ 5 ∈ ℝ | |
7 | 6 | recni 11227 | . . 3 ⊢ 5 ∈ ℂ |
8 | 1re 11213 | . . . . 5 ⊢ 1 ∈ ℝ | |
9 | 8 | recni 11227 | . . . 4 ⊢ 1 ∈ ℂ |
10 | 9, 4 | mulcli 11220 | . . 3 ⊢ (1 · ;10) ∈ ℂ |
11 | 4re 12295 | . . . 4 ⊢ 4 ∈ ℝ | |
12 | 11 | recni 11227 | . . 3 ⊢ 4 ∈ ℂ |
13 | 5, 7, 10, 12 | add4i 11437 | . 2 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = (((2 · ;10) + (1 · ;10)) + (5 + 4)) |
14 | 2, 9, 4 | adddiri 11226 | . . . 4 ⊢ ((2 + 1) · ;10) = ((2 · ;10) + (1 · ;10)) |
15 | 14 | eqcomi 2733 | . . 3 ⊢ ((2 · ;10) + (1 · ;10)) = ((2 + 1) · ;10) |
16 | 5p4e9 12369 | . . 3 ⊢ (5 + 4) = 9 | |
17 | 15, 16 | oveq12i 7414 | . 2 ⊢ (((2 · ;10) + (1 · ;10)) + (5 + 4)) = (((2 + 1) · ;10) + 9) |
18 | df-3 12275 | . . . . 5 ⊢ 3 = (2 + 1) | |
19 | 18 | eqcomi 2733 | . . . 4 ⊢ (2 + 1) = 3 |
20 | 19 | oveq1i 7412 | . . 3 ⊢ ((2 + 1) · ;10) = (3 · ;10) |
21 | 20 | oveq1i 7412 | . 2 ⊢ (((2 + 1) · ;10) + 9) = ((3 · ;10) + 9) |
22 | 13, 17, 21 | 3eqtri 2756 | 1 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7402 0cc0 11107 1c1 11108 + caddc 11110 · cmul 11112 2c2 12266 3c3 12267 4c4 12268 5c5 12269 9c9 12273 ;cdc 12676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-dec 12677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |