![]() |
Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2 | Structured version Visualization version GIF version |
Description: Practice problem 2. Clues: oveq12i 7457 adddiri 11299 add4i 11510 mulcli 11293 recni 11300 2re 12363 3eqtri 2766 10re 12773 5re 12376 1re 11286 4re 12373 eqcomi 2743 5p4e9 12447 oveq1i 7455 df-3 12353. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
problem2 | ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12363 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1 | recni 11300 | . . . 4 ⊢ 2 ∈ ℂ |
3 | 10re 12773 | . . . . 5 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 11300 | . . . 4 ⊢ ;10 ∈ ℂ |
5 | 2, 4 | mulcli 11293 | . . 3 ⊢ (2 · ;10) ∈ ℂ |
6 | 5re 12376 | . . . 4 ⊢ 5 ∈ ℝ | |
7 | 6 | recni 11300 | . . 3 ⊢ 5 ∈ ℂ |
8 | 1re 11286 | . . . . 5 ⊢ 1 ∈ ℝ | |
9 | 8 | recni 11300 | . . . 4 ⊢ 1 ∈ ℂ |
10 | 9, 4 | mulcli 11293 | . . 3 ⊢ (1 · ;10) ∈ ℂ |
11 | 4re 12373 | . . . 4 ⊢ 4 ∈ ℝ | |
12 | 11 | recni 11300 | . . 3 ⊢ 4 ∈ ℂ |
13 | 5, 7, 10, 12 | add4i 11510 | . 2 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = (((2 · ;10) + (1 · ;10)) + (5 + 4)) |
14 | 2, 9, 4 | adddiri 11299 | . . . 4 ⊢ ((2 + 1) · ;10) = ((2 · ;10) + (1 · ;10)) |
15 | 14 | eqcomi 2743 | . . 3 ⊢ ((2 · ;10) + (1 · ;10)) = ((2 + 1) · ;10) |
16 | 5p4e9 12447 | . . 3 ⊢ (5 + 4) = 9 | |
17 | 15, 16 | oveq12i 7457 | . 2 ⊢ (((2 · ;10) + (1 · ;10)) + (5 + 4)) = (((2 + 1) · ;10) + 9) |
18 | df-3 12353 | . . . . 5 ⊢ 3 = (2 + 1) | |
19 | 18 | eqcomi 2743 | . . . 4 ⊢ (2 + 1) = 3 |
20 | 19 | oveq1i 7455 | . . 3 ⊢ ((2 + 1) · ;10) = (3 · ;10) |
21 | 20 | oveq1i 7455 | . 2 ⊢ (((2 + 1) · ;10) + 9) = ((3 · ;10) + 9) |
22 | 13, 17, 21 | 3eqtri 2766 | 1 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7445 0cc0 11180 1c1 11181 + caddc 11183 · cmul 11185 2c2 12344 3c3 12345 4c4 12346 5c5 12347 9c9 12351 ;cdc 12754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-po 5611 df-so 5612 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-ov 7448 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-pnf 11322 df-mnf 11323 df-ltxr 11325 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-6 12356 df-7 12357 df-8 12358 df-9 12359 df-dec 12755 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |