| Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2 | Structured version Visualization version GIF version | ||
| Description: Practice problem 2. Clues: oveq12i 7358 adddiri 11125 add4i 11338 mulcli 11119 recni 11126 2re 12199 3eqtri 2758 10re 12607 5re 12212 1re 11112 4re 12209 eqcomi 2740 5p4e9 12278 oveq1i 7356 df-3 12189. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| problem2 | ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12199 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 11126 | . . . 4 ⊢ 2 ∈ ℂ |
| 3 | 10re 12607 | . . . . 5 ⊢ ;10 ∈ ℝ | |
| 4 | 3 | recni 11126 | . . . 4 ⊢ ;10 ∈ ℂ |
| 5 | 2, 4 | mulcli 11119 | . . 3 ⊢ (2 · ;10) ∈ ℂ |
| 6 | 5re 12212 | . . . 4 ⊢ 5 ∈ ℝ | |
| 7 | 6 | recni 11126 | . . 3 ⊢ 5 ∈ ℂ |
| 8 | 1re 11112 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 9 | 8 | recni 11126 | . . . 4 ⊢ 1 ∈ ℂ |
| 10 | 9, 4 | mulcli 11119 | . . 3 ⊢ (1 · ;10) ∈ ℂ |
| 11 | 4re 12209 | . . . 4 ⊢ 4 ∈ ℝ | |
| 12 | 11 | recni 11126 | . . 3 ⊢ 4 ∈ ℂ |
| 13 | 5, 7, 10, 12 | add4i 11338 | . 2 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = (((2 · ;10) + (1 · ;10)) + (5 + 4)) |
| 14 | 2, 9, 4 | adddiri 11125 | . . . 4 ⊢ ((2 + 1) · ;10) = ((2 · ;10) + (1 · ;10)) |
| 15 | 14 | eqcomi 2740 | . . 3 ⊢ ((2 · ;10) + (1 · ;10)) = ((2 + 1) · ;10) |
| 16 | 5p4e9 12278 | . . 3 ⊢ (5 + 4) = 9 | |
| 17 | 15, 16 | oveq12i 7358 | . 2 ⊢ (((2 · ;10) + (1 · ;10)) + (5 + 4)) = (((2 + 1) · ;10) + 9) |
| 18 | df-3 12189 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 19 | 18 | eqcomi 2740 | . . . 4 ⊢ (2 + 1) = 3 |
| 20 | 19 | oveq1i 7356 | . . 3 ⊢ ((2 + 1) · ;10) = (3 · ;10) |
| 21 | 20 | oveq1i 7356 | . 2 ⊢ (((2 + 1) · ;10) + 9) = ((3 · ;10) + 9) |
| 22 | 13, 17, 21 | 3eqtri 2758 | 1 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 2c2 12180 3c3 12181 4c4 12182 5c5 12183 9c9 12187 ;cdc 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-dec 12589 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |