![]() |
Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2 | Structured version Visualization version GIF version |
Description: Practice problem 2. Clues: oveq12i 7432 adddiri 11257 add4i 11468 mulcli 11251 recni 11258 2re 12316 3eqtri 2760 10re 12726 5re 12329 1re 11244 4re 12326 eqcomi 2737 5p4e9 12400 oveq1i 7430 df-3 12306. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
problem2 | ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12316 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1 | recni 11258 | . . . 4 ⊢ 2 ∈ ℂ |
3 | 10re 12726 | . . . . 5 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 11258 | . . . 4 ⊢ ;10 ∈ ℂ |
5 | 2, 4 | mulcli 11251 | . . 3 ⊢ (2 · ;10) ∈ ℂ |
6 | 5re 12329 | . . . 4 ⊢ 5 ∈ ℝ | |
7 | 6 | recni 11258 | . . 3 ⊢ 5 ∈ ℂ |
8 | 1re 11244 | . . . . 5 ⊢ 1 ∈ ℝ | |
9 | 8 | recni 11258 | . . . 4 ⊢ 1 ∈ ℂ |
10 | 9, 4 | mulcli 11251 | . . 3 ⊢ (1 · ;10) ∈ ℂ |
11 | 4re 12326 | . . . 4 ⊢ 4 ∈ ℝ | |
12 | 11 | recni 11258 | . . 3 ⊢ 4 ∈ ℂ |
13 | 5, 7, 10, 12 | add4i 11468 | . 2 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = (((2 · ;10) + (1 · ;10)) + (5 + 4)) |
14 | 2, 9, 4 | adddiri 11257 | . . . 4 ⊢ ((2 + 1) · ;10) = ((2 · ;10) + (1 · ;10)) |
15 | 14 | eqcomi 2737 | . . 3 ⊢ ((2 · ;10) + (1 · ;10)) = ((2 + 1) · ;10) |
16 | 5p4e9 12400 | . . 3 ⊢ (5 + 4) = 9 | |
17 | 15, 16 | oveq12i 7432 | . 2 ⊢ (((2 · ;10) + (1 · ;10)) + (5 + 4)) = (((2 + 1) · ;10) + 9) |
18 | df-3 12306 | . . . . 5 ⊢ 3 = (2 + 1) | |
19 | 18 | eqcomi 2737 | . . . 4 ⊢ (2 + 1) = 3 |
20 | 19 | oveq1i 7430 | . . 3 ⊢ ((2 + 1) · ;10) = (3 · ;10) |
21 | 20 | oveq1i 7430 | . 2 ⊢ (((2 + 1) · ;10) + 9) = ((3 · ;10) + 9) |
22 | 13, 17, 21 | 3eqtri 2760 | 1 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 (class class class)co 7420 0cc0 11138 1c1 11139 + caddc 11141 · cmul 11143 2c2 12297 3c3 12298 4c4 12299 5c5 12300 9c9 12304 ;cdc 12707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-ltxr 11283 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-dec 12708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |