![]() |
Mathbox for Filip Cernatescu |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > problem2 | Structured version Visualization version GIF version |
Description: Practice problem 2. Clues: oveq12i 7421 adddiri 11227 add4i 11438 mulcli 11221 recni 11228 2re 12286 3eqtri 2765 10re 12696 5re 12299 1re 11214 4re 12296 eqcomi 2742 5p4e9 12370 oveq1i 7419 df-3 12276. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
problem2 | ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12286 | . . . . 5 ⊢ 2 ∈ ℝ | |
2 | 1 | recni 11228 | . . . 4 ⊢ 2 ∈ ℂ |
3 | 10re 12696 | . . . . 5 ⊢ ;10 ∈ ℝ | |
4 | 3 | recni 11228 | . . . 4 ⊢ ;10 ∈ ℂ |
5 | 2, 4 | mulcli 11221 | . . 3 ⊢ (2 · ;10) ∈ ℂ |
6 | 5re 12299 | . . . 4 ⊢ 5 ∈ ℝ | |
7 | 6 | recni 11228 | . . 3 ⊢ 5 ∈ ℂ |
8 | 1re 11214 | . . . . 5 ⊢ 1 ∈ ℝ | |
9 | 8 | recni 11228 | . . . 4 ⊢ 1 ∈ ℂ |
10 | 9, 4 | mulcli 11221 | . . 3 ⊢ (1 · ;10) ∈ ℂ |
11 | 4re 12296 | . . . 4 ⊢ 4 ∈ ℝ | |
12 | 11 | recni 11228 | . . 3 ⊢ 4 ∈ ℂ |
13 | 5, 7, 10, 12 | add4i 11438 | . 2 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = (((2 · ;10) + (1 · ;10)) + (5 + 4)) |
14 | 2, 9, 4 | adddiri 11227 | . . . 4 ⊢ ((2 + 1) · ;10) = ((2 · ;10) + (1 · ;10)) |
15 | 14 | eqcomi 2742 | . . 3 ⊢ ((2 · ;10) + (1 · ;10)) = ((2 + 1) · ;10) |
16 | 5p4e9 12370 | . . 3 ⊢ (5 + 4) = 9 | |
17 | 15, 16 | oveq12i 7421 | . 2 ⊢ (((2 · ;10) + (1 · ;10)) + (5 + 4)) = (((2 + 1) · ;10) + 9) |
18 | df-3 12276 | . . . . 5 ⊢ 3 = (2 + 1) | |
19 | 18 | eqcomi 2742 | . . . 4 ⊢ (2 + 1) = 3 |
20 | 19 | oveq1i 7419 | . . 3 ⊢ ((2 + 1) · ;10) = (3 · ;10) |
21 | 20 | oveq1i 7419 | . 2 ⊢ (((2 + 1) · ;10) + 9) = ((3 · ;10) + 9) |
22 | 13, 17, 21 | 3eqtri 2765 | 1 ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 · cmul 11115 2c2 12267 3c3 12268 4c4 12269 5c5 12270 9c9 12274 ;cdc 12677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-dec 12678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |