| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p4e9 | Structured version Visualization version GIF version | ||
| Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p4e9 | ⊢ (5 + 4) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12310 | . . . 4 ⊢ 4 = (3 + 1) | |
| 2 | 1 | oveq2i 7421 | . . 3 ⊢ (5 + 4) = (5 + (3 + 1)) |
| 3 | 5cn 12333 | . . . 4 ⊢ 5 ∈ ℂ | |
| 4 | 3cn 12326 | . . . 4 ⊢ 3 ∈ ℂ | |
| 5 | ax-1cn 11192 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11250 | . . 3 ⊢ ((5 + 3) + 1) = (5 + (3 + 1)) |
| 7 | 2, 6 | eqtr4i 2762 | . 2 ⊢ (5 + 4) = ((5 + 3) + 1) |
| 8 | df-9 12315 | . . 3 ⊢ 9 = (8 + 1) | |
| 9 | 5p3e8 12402 | . . . 4 ⊢ (5 + 3) = 8 | |
| 10 | 9 | oveq1i 7420 | . . 3 ⊢ ((5 + 3) + 1) = (8 + 1) |
| 11 | 8, 10 | eqtr4i 2762 | . 2 ⊢ 9 = ((5 + 3) + 1) |
| 12 | 7, 11 | eqtr4i 2762 | 1 ⊢ (5 + 4) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7410 1c1 11135 + caddc 11137 3c3 12301 4c4 12302 5c5 12303 8c8 12306 9c9 12307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-1cn 11192 ax-addcl 11194 ax-addass 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 |
| This theorem is referenced by: 5p5e10 12784 139prm 17148 1259lem3 17157 1259lem4 17158 2503lem2 17162 4001lem1 17165 4001lem2 17166 hgt750lem2 34689 problem1 35692 problem2 35693 resqrtvalex 43636 imsqrtvalex 43637 inductionexd 44146 139prmALT 47577 |
| Copyright terms: Public domain | W3C validator |