Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5p4e9 | Structured version Visualization version GIF version |
Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p4e9 | ⊢ (5 + 4) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12118 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 7328 | . . 3 ⊢ (5 + 4) = (5 + (3 + 1)) |
3 | 5cn 12141 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 3cn 12134 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 11009 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11065 | . . 3 ⊢ ((5 + 3) + 1) = (5 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2768 | . 2 ⊢ (5 + 4) = ((5 + 3) + 1) |
8 | df-9 12123 | . . 3 ⊢ 9 = (8 + 1) | |
9 | 5p3e8 12210 | . . . 4 ⊢ (5 + 3) = 8 | |
10 | 9 | oveq1i 7327 | . . 3 ⊢ ((5 + 3) + 1) = (8 + 1) |
11 | 8, 10 | eqtr4i 2768 | . 2 ⊢ 9 = ((5 + 3) + 1) |
12 | 7, 11 | eqtr4i 2768 | 1 ⊢ (5 + 4) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 (class class class)co 7317 1c1 10952 + caddc 10954 3c3 12109 4c4 12110 5c5 12111 8c8 12114 9c9 12115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-1cn 11009 ax-addcl 11011 ax-addass 11016 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-iota 6418 df-fv 6474 df-ov 7320 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 |
This theorem is referenced by: 5p5e10 12588 139prm 16902 1259lem3 16911 1259lem4 16912 2503lem2 16916 4001lem1 16919 4001lem2 16920 hgt750lem2 32772 problem1 33762 problem2 33763 resqrtvalex 41487 imsqrtvalex 41488 inductionexd 41999 139prmALT 45313 |
Copyright terms: Public domain | W3C validator |