Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5p4e9 | Structured version Visualization version GIF version |
Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p4e9 | ⊢ (5 + 4) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12038 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 7286 | . . 3 ⊢ (5 + 4) = (5 + (3 + 1)) |
3 | 5cn 12061 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 3cn 12054 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 10929 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10985 | . . 3 ⊢ ((5 + 3) + 1) = (5 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2769 | . 2 ⊢ (5 + 4) = ((5 + 3) + 1) |
8 | df-9 12043 | . . 3 ⊢ 9 = (8 + 1) | |
9 | 5p3e8 12130 | . . . 4 ⊢ (5 + 3) = 8 | |
10 | 9 | oveq1i 7285 | . . 3 ⊢ ((5 + 3) + 1) = (8 + 1) |
11 | 8, 10 | eqtr4i 2769 | . 2 ⊢ 9 = ((5 + 3) + 1) |
12 | 7, 11 | eqtr4i 2769 | 1 ⊢ (5 + 4) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 1c1 10872 + caddc 10874 3c3 12029 4c4 12030 5c5 12031 8c8 12034 9c9 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-addcl 10931 ax-addass 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 |
This theorem is referenced by: 5p5e10 12508 139prm 16825 1259lem3 16834 1259lem4 16835 2503lem2 16839 4001lem1 16842 4001lem2 16843 hgt750lem2 32632 problem1 33623 problem2 33624 resqrtvalex 41253 imsqrtvalex 41254 inductionexd 41765 139prmALT 45048 |
Copyright terms: Public domain | W3C validator |