MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5p4e9 Structured version   Visualization version   GIF version

Theorem 5p4e9 12278
Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p4e9 (5 + 4) = 9

Proof of Theorem 5p4e9
StepHypRef Expression
1 df-4 12190 . . . 4 4 = (3 + 1)
21oveq2i 7357 . . 3 (5 + 4) = (5 + (3 + 1))
3 5cn 12213 . . . 4 5 ∈ ℂ
4 3cn 12206 . . . 4 3 ∈ ℂ
5 ax-1cn 11064 . . . 4 1 ∈ ℂ
63, 4, 5addassi 11122 . . 3 ((5 + 3) + 1) = (5 + (3 + 1))
72, 6eqtr4i 2757 . 2 (5 + 4) = ((5 + 3) + 1)
8 df-9 12195 . . 3 9 = (8 + 1)
9 5p3e8 12277 . . . 4 (5 + 3) = 8
109oveq1i 7356 . . 3 ((5 + 3) + 1) = (8 + 1)
118, 10eqtr4i 2757 . 2 9 = ((5 + 3) + 1)
127, 11eqtr4i 2757 1 (5 + 4) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7346  1c1 11007   + caddc 11009  3c3 12181  4c4 12182  5c5 12183  8c8 12186  9c9 12187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-1cn 11064  ax-addcl 11066  ax-addass 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195
This theorem is referenced by:  5p5e10  12659  139prm  17035  1259lem3  17044  1259lem4  17045  2503lem2  17049  4001lem1  17052  4001lem2  17053  hgt750lem2  34665  problem1  35709  problem2  35710  resqrtvalex  43748  imsqrtvalex  43749  inductionexd  44258  139prmALT  47706
  Copyright terms: Public domain W3C validator