| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p4e9 | Structured version Visualization version GIF version | ||
| Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p4e9 | ⊢ (5 + 4) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 12190 | . . . 4 ⊢ 4 = (3 + 1) | |
| 2 | 1 | oveq2i 7357 | . . 3 ⊢ (5 + 4) = (5 + (3 + 1)) |
| 3 | 5cn 12213 | . . . 4 ⊢ 5 ∈ ℂ | |
| 4 | 3cn 12206 | . . . 4 ⊢ 3 ∈ ℂ | |
| 5 | ax-1cn 11064 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 11122 | . . 3 ⊢ ((5 + 3) + 1) = (5 + (3 + 1)) |
| 7 | 2, 6 | eqtr4i 2757 | . 2 ⊢ (5 + 4) = ((5 + 3) + 1) |
| 8 | df-9 12195 | . . 3 ⊢ 9 = (8 + 1) | |
| 9 | 5p3e8 12277 | . . . 4 ⊢ (5 + 3) = 8 | |
| 10 | 9 | oveq1i 7356 | . . 3 ⊢ ((5 + 3) + 1) = (8 + 1) |
| 11 | 8, 10 | eqtr4i 2757 | . 2 ⊢ 9 = ((5 + 3) + 1) |
| 12 | 7, 11 | eqtr4i 2757 | 1 ⊢ (5 + 4) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 3c3 12181 4c4 12182 5c5 12183 8c8 12186 9c9 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addcl 11066 ax-addass 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 |
| This theorem is referenced by: 5p5e10 12659 139prm 17035 1259lem3 17044 1259lem4 17045 2503lem2 17049 4001lem1 17052 4001lem2 17053 hgt750lem2 34665 problem1 35709 problem2 35710 resqrtvalex 43748 imsqrtvalex 43749 inductionexd 44258 139prmALT 47706 |
| Copyright terms: Public domain | W3C validator |