![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5p4e9 | Structured version Visualization version GIF version |
Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p4e9 | ⊢ (5 + 4) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 12358 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 7459 | . . 3 ⊢ (5 + 4) = (5 + (3 + 1)) |
3 | 5cn 12381 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 3cn 12374 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 11242 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 11300 | . . 3 ⊢ ((5 + 3) + 1) = (5 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2771 | . 2 ⊢ (5 + 4) = ((5 + 3) + 1) |
8 | df-9 12363 | . . 3 ⊢ 9 = (8 + 1) | |
9 | 5p3e8 12450 | . . . 4 ⊢ (5 + 3) = 8 | |
10 | 9 | oveq1i 7458 | . . 3 ⊢ ((5 + 3) + 1) = (8 + 1) |
11 | 8, 10 | eqtr4i 2771 | . 2 ⊢ 9 = ((5 + 3) + 1) |
12 | 7, 11 | eqtr4i 2771 | 1 ⊢ (5 + 4) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 3c3 12349 4c4 12350 5c5 12351 8c8 12354 9c9 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addcl 11244 ax-addass 11249 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 |
This theorem is referenced by: 5p5e10 12829 139prm 17171 1259lem3 17180 1259lem4 17181 2503lem2 17185 4001lem1 17188 4001lem2 17189 hgt750lem2 34629 problem1 35633 problem2 35634 resqrtvalex 43607 imsqrtvalex 43608 inductionexd 44117 139prmALT 47470 |
Copyright terms: Public domain | W3C validator |