Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5p4e9 | Structured version Visualization version GIF version |
Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p4e9 | ⊢ (5 + 4) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 11968 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 7266 | . . 3 ⊢ (5 + 4) = (5 + (3 + 1)) |
3 | 5cn 11991 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 3cn 11984 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 10860 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 10916 | . . 3 ⊢ ((5 + 3) + 1) = (5 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2769 | . 2 ⊢ (5 + 4) = ((5 + 3) + 1) |
8 | df-9 11973 | . . 3 ⊢ 9 = (8 + 1) | |
9 | 5p3e8 12060 | . . . 4 ⊢ (5 + 3) = 8 | |
10 | 9 | oveq1i 7265 | . . 3 ⊢ ((5 + 3) + 1) = (8 + 1) |
11 | 8, 10 | eqtr4i 2769 | . 2 ⊢ 9 = ((5 + 3) + 1) |
12 | 7, 11 | eqtr4i 2769 | 1 ⊢ (5 + 4) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 1c1 10803 + caddc 10805 3c3 11959 4c4 11960 5c5 11961 8c8 11964 9c9 11965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-addcl 10862 ax-addass 10867 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 |
This theorem is referenced by: 5p5e10 12437 139prm 16753 1259lem3 16762 1259lem4 16763 2503lem2 16767 4001lem1 16770 4001lem2 16771 hgt750lem2 32532 problem1 33523 problem2 33524 resqrtvalex 41142 imsqrtvalex 41143 inductionexd 41654 139prmALT 44936 |
Copyright terms: Public domain | W3C validator |