| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version | ||
| Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p2e5 | ⊢ (3 + 2) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12209 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7364 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
| 3 | 3cn 12227 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | ax-1cn 11086 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11144 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2755 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
| 7 | df-4 12211 | . . . 4 ⊢ 4 = (3 + 1) | |
| 8 | 7 | oveq1i 7363 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2755 | . 2 ⊢ (3 + 2) = (4 + 1) |
| 10 | df-5 12212 | . 2 ⊢ 5 = (4 + 1) | |
| 11 | 9, 10 | eqtr4i 2755 | 1 ⊢ (3 + 2) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7353 1c1 11029 + caddc 11031 2c2 12201 3c3 12202 4c4 12203 5c5 12204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11086 ax-addcl 11088 ax-addass 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-2 12209 df-3 12210 df-4 12211 df-5 12212 |
| This theorem is referenced by: 3p3e6 12293 fz0to5un2tp 13552 2exp5 17015 2exp16 17020 prmlem1a 17036 5prm 17038 prmlem2 17049 1259lem1 17060 1259lem4 17063 1259prm 17065 4001lem1 17070 4001lem4 17073 birthday 26880 ppiub 27131 bposlem6 27216 bposlem9 27219 2lgsoddprmlem3d 27340 ex-mod 30411 cyc3conja 33112 fib5 34375 hgt750lem2 34622 kur14lem8 35188 problem1 35640 235t711 42281 3cubeslem3l 42662 3cubeslem3r 42663 fmtnorec2 47531 fmtno5lem4 47544 257prm 47549 fmtno4nprmfac193 47562 41prothprmlem2 47606 linevalexample 48384 ackval2012 48680 ackval3012 48681 |
| Copyright terms: Public domain | W3C validator |