Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version |
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p2e5 | ⊢ (3 + 2) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12036 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7286 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
3 | 3cn 12054 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | ax-1cn 10929 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10985 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2769 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
7 | df-4 12038 | . . . 4 ⊢ 4 = (3 + 1) | |
8 | 7 | oveq1i 7285 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
9 | 6, 8 | eqtr4i 2769 | . 2 ⊢ (3 + 2) = (4 + 1) |
10 | df-5 12039 | . 2 ⊢ 5 = (4 + 1) | |
11 | 9, 10 | eqtr4i 2769 | 1 ⊢ (3 + 2) = 5 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 1c1 10872 + caddc 10874 2c2 12028 3c3 12029 4c4 12030 5c5 12031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-addcl 10931 ax-addass 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 |
This theorem is referenced by: 3p3e6 12125 2exp5 16787 2exp16 16792 prmlem1a 16808 5prm 16810 prmlem2 16821 1259lem1 16832 1259lem4 16835 1259prm 16837 4001lem1 16842 4001lem4 16845 birthday 26104 ppiub 26352 bposlem6 26437 bposlem9 26440 2lgsoddprmlem3d 26561 ex-mod 28813 cyc3conja 31424 fib5 32372 hgt750lem2 32632 kur14lem8 33175 problem1 33623 235t711 40319 3cubeslem3l 40508 3cubeslem3r 40509 fmtnorec2 44995 fmtno5lem4 45008 257prm 45013 fmtno4nprmfac193 45026 41prothprmlem2 45070 linevalexample 45736 ackval2012 46037 ackval3012 46038 |
Copyright terms: Public domain | W3C validator |