| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version | ||
| Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p2e5 | ⊢ (3 + 2) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12183 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7352 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
| 3 | 3cn 12201 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | ax-1cn 11059 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11117 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2757 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
| 7 | df-4 12185 | . . . 4 ⊢ 4 = (3 + 1) | |
| 8 | 7 | oveq1i 7351 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2757 | . 2 ⊢ (3 + 2) = (4 + 1) |
| 10 | df-5 12186 | . 2 ⊢ 5 = (4 + 1) | |
| 11 | 9, 10 | eqtr4i 2757 | 1 ⊢ (3 + 2) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 1c1 11002 + caddc 11004 2c2 12175 3c3 12176 4c4 12177 5c5 12178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11059 ax-addcl 11061 ax-addass 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-2 12183 df-3 12184 df-4 12185 df-5 12186 |
| This theorem is referenced by: 3p3e6 12267 fz0to5un2tp 13526 2exp5 16992 2exp16 16997 prmlem1a 17013 5prm 17015 prmlem2 17026 1259lem1 17037 1259lem4 17040 1259prm 17042 4001lem1 17047 4001lem4 17050 birthday 26886 ppiub 27137 bposlem6 27222 bposlem9 27225 2lgsoddprmlem3d 27346 ex-mod 30421 cyc3conja 33118 fib5 34410 hgt750lem2 34657 kur14lem8 35249 problem1 35701 235t711 42338 3cubeslem3l 42719 3cubeslem3r 42720 fmtnorec2 47574 fmtno5lem4 47587 257prm 47592 fmtno4nprmfac193 47605 41prothprmlem2 47649 linevalexample 48427 ackval2012 48723 ackval3012 48724 |
| Copyright terms: Public domain | W3C validator |