| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version | ||
| Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p2e5 | ⊢ (3 + 2) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12225 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7380 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
| 3 | 3cn 12243 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | ax-1cn 11102 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11160 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2755 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
| 7 | df-4 12227 | . . . 4 ⊢ 4 = (3 + 1) | |
| 8 | 7 | oveq1i 7379 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2755 | . 2 ⊢ (3 + 2) = (4 + 1) |
| 10 | df-5 12228 | . 2 ⊢ 5 = (4 + 1) | |
| 11 | 9, 10 | eqtr4i 2755 | 1 ⊢ (3 + 2) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 2c2 12217 3c3 12218 4c4 12219 5c5 12220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 ax-addass 11109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 |
| This theorem is referenced by: 3p3e6 12309 fz0to5un2tp 13568 2exp5 17032 2exp16 17037 prmlem1a 17053 5prm 17055 prmlem2 17066 1259lem1 17077 1259lem4 17080 1259prm 17082 4001lem1 17087 4001lem4 17090 birthday 26840 ppiub 27091 bposlem6 27176 bposlem9 27179 2lgsoddprmlem3d 27300 ex-mod 30351 cyc3conja 33087 fib5 34369 hgt750lem2 34616 kur14lem8 35173 problem1 35625 235t711 42266 3cubeslem3l 42647 3cubeslem3r 42648 fmtnorec2 47517 fmtno5lem4 47530 257prm 47535 fmtno4nprmfac193 47548 41prothprmlem2 47592 linevalexample 48357 ackval2012 48653 ackval3012 48654 |
| Copyright terms: Public domain | W3C validator |