| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version | ||
| Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p2e5 | ⊢ (3 + 2) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12303 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7416 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
| 3 | 3cn 12321 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | ax-1cn 11187 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11245 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2761 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
| 7 | df-4 12305 | . . . 4 ⊢ 4 = (3 + 1) | |
| 8 | 7 | oveq1i 7415 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2761 | . 2 ⊢ (3 + 2) = (4 + 1) |
| 10 | df-5 12306 | . 2 ⊢ 5 = (4 + 1) | |
| 11 | 9, 10 | eqtr4i 2761 | 1 ⊢ (3 + 2) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 1c1 11130 + caddc 11132 2c2 12295 3c3 12296 4c4 12297 5c5 12298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11187 ax-addcl 11189 ax-addass 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-2 12303 df-3 12304 df-4 12305 df-5 12306 |
| This theorem is referenced by: 3p3e6 12392 fz0to5un2tp 13648 2exp5 17105 2exp16 17110 prmlem1a 17126 5prm 17128 prmlem2 17139 1259lem1 17150 1259lem4 17153 1259prm 17155 4001lem1 17160 4001lem4 17163 birthday 26916 ppiub 27167 bposlem6 27252 bposlem9 27255 2lgsoddprmlem3d 27376 ex-mod 30430 cyc3conja 33168 fib5 34437 hgt750lem2 34684 kur14lem8 35235 problem1 35687 235t711 42354 3cubeslem3l 42709 3cubeslem3r 42710 fmtnorec2 47557 fmtno5lem4 47570 257prm 47575 fmtno4nprmfac193 47588 41prothprmlem2 47632 linevalexample 48371 ackval2012 48671 ackval3012 48672 |
| Copyright terms: Public domain | W3C validator |