![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version |
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p2e5 | ⊢ (3 + 2) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12326 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7441 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
3 | 3cn 12344 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | ax-1cn 11210 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 11268 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2765 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
7 | df-4 12328 | . . . 4 ⊢ 4 = (3 + 1) | |
8 | 7 | oveq1i 7440 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
9 | 6, 8 | eqtr4i 2765 | . 2 ⊢ (3 + 2) = (4 + 1) |
10 | df-5 12329 | . 2 ⊢ 5 = (4 + 1) | |
11 | 9, 10 | eqtr4i 2765 | 1 ⊢ (3 + 2) = 5 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 (class class class)co 7430 1c1 11153 + caddc 11155 2c2 12318 3c3 12319 4c4 12320 5c5 12321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-1cn 11210 ax-addcl 11212 ax-addass 11217 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-2 12326 df-3 12327 df-4 12328 df-5 12329 |
This theorem is referenced by: 3p3e6 12415 fz0to5un2tp 13667 2exp5 17119 2exp16 17124 prmlem1a 17140 5prm 17142 prmlem2 17153 1259lem1 17164 1259lem4 17167 1259prm 17169 4001lem1 17174 4001lem4 17177 birthday 27011 ppiub 27262 bposlem6 27347 bposlem9 27350 2lgsoddprmlem3d 27471 ex-mod 30477 cyc3conja 33159 fib5 34386 hgt750lem2 34645 kur14lem8 35197 problem1 35649 235t711 42317 3cubeslem3l 42673 3cubeslem3r 42674 fmtnorec2 47467 fmtno5lem4 47480 257prm 47485 fmtno4nprmfac193 47498 41prothprmlem2 47542 linevalexample 48240 ackval2012 48540 ackval3012 48541 |
Copyright terms: Public domain | W3C validator |