| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version | ||
| Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p2e5 | ⊢ (3 + 2) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12199 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7366 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
| 3 | 3cn 12217 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | ax-1cn 11075 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11133 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2759 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
| 7 | df-4 12201 | . . . 4 ⊢ 4 = (3 + 1) | |
| 8 | 7 | oveq1i 7365 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2759 | . 2 ⊢ (3 + 2) = (4 + 1) |
| 10 | df-5 12202 | . 2 ⊢ 5 = (4 + 1) | |
| 11 | 9, 10 | eqtr4i 2759 | 1 ⊢ (3 + 2) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7355 1c1 11018 + caddc 11020 2c2 12191 3c3 12192 4c4 12193 5c5 12194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-1cn 11075 ax-addcl 11077 ax-addass 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-2 12199 df-3 12200 df-4 12201 df-5 12202 |
| This theorem is referenced by: 3p3e6 12283 fz0to5un2tp 13538 2exp5 17004 2exp16 17009 prmlem1a 17025 5prm 17027 prmlem2 17038 1259lem1 17049 1259lem4 17052 1259prm 17054 4001lem1 17059 4001lem4 17062 birthday 26911 ppiub 27162 bposlem6 27247 bposlem9 27250 2lgsoddprmlem3d 27371 ex-mod 30450 cyc3conja 33167 fib5 34490 hgt750lem2 34737 kur14lem8 35329 problem1 35781 235t711 42475 3cubeslem3l 42843 3cubeslem3r 42844 fmtnorec2 47705 fmtno5lem4 47718 257prm 47723 fmtno4nprmfac193 47736 41prothprmlem2 47780 linevalexample 48557 ackval2012 48853 ackval3012 48854 |
| Copyright terms: Public domain | W3C validator |