![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version |
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p2e5 | ⊢ (3 + 2) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12356 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7459 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
3 | 3cn 12374 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | ax-1cn 11242 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 11300 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2771 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
7 | df-4 12358 | . . . 4 ⊢ 4 = (3 + 1) | |
8 | 7 | oveq1i 7458 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
9 | 6, 8 | eqtr4i 2771 | . 2 ⊢ (3 + 2) = (4 + 1) |
10 | df-5 12359 | . 2 ⊢ 5 = (4 + 1) | |
11 | 9, 10 | eqtr4i 2771 | 1 ⊢ (3 + 2) = 5 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 2c2 12348 3c3 12349 4c4 12350 5c5 12351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addcl 11244 ax-addass 11249 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 |
This theorem is referenced by: 3p3e6 12445 fz0to5un2tp 13688 2exp5 17133 2exp16 17138 prmlem1a 17154 5prm 17156 prmlem2 17167 1259lem1 17178 1259lem4 17181 1259prm 17183 4001lem1 17188 4001lem4 17191 birthday 27015 ppiub 27266 bposlem6 27351 bposlem9 27354 2lgsoddprmlem3d 27475 ex-mod 30481 cyc3conja 33150 fib5 34370 hgt750lem2 34629 kur14lem8 35181 problem1 35633 235t711 42293 3cubeslem3l 42642 3cubeslem3r 42643 fmtnorec2 47417 fmtno5lem4 47430 257prm 47435 fmtno4nprmfac193 47448 41prothprmlem2 47492 linevalexample 48124 ackval2012 48425 ackval3012 48426 |
Copyright terms: Public domain | W3C validator |