| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version | ||
| Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p2e5 | ⊢ (3 + 2) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12249 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7398 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
| 3 | 3cn 12267 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11184 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2755 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
| 7 | df-4 12251 | . . . 4 ⊢ 4 = (3 + 1) | |
| 8 | 7 | oveq1i 7397 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2755 | . 2 ⊢ (3 + 2) = (4 + 1) |
| 10 | df-5 12252 | . 2 ⊢ 5 = (4 + 1) | |
| 11 | 9, 10 | eqtr4i 2755 | 1 ⊢ (3 + 2) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 2c2 12241 3c3 12242 4c4 12243 5c5 12244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 ax-addass 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 |
| This theorem is referenced by: 3p3e6 12333 fz0to5un2tp 13592 2exp5 17056 2exp16 17061 prmlem1a 17077 5prm 17079 prmlem2 17090 1259lem1 17101 1259lem4 17104 1259prm 17106 4001lem1 17111 4001lem4 17114 birthday 26864 ppiub 27115 bposlem6 27200 bposlem9 27203 2lgsoddprmlem3d 27324 ex-mod 30378 cyc3conja 33114 fib5 34396 hgt750lem2 34643 kur14lem8 35200 problem1 35652 235t711 42293 3cubeslem3l 42674 3cubeslem3r 42675 fmtnorec2 47544 fmtno5lem4 47557 257prm 47562 fmtno4nprmfac193 47575 41prothprmlem2 47619 linevalexample 48384 ackval2012 48680 ackval3012 48681 |
| Copyright terms: Public domain | W3C validator |