| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version | ||
| Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p2e5 | ⊢ (3 + 2) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12256 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7401 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
| 3 | 3cn 12274 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | ax-1cn 11133 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 11191 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2756 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
| 7 | df-4 12258 | . . . 4 ⊢ 4 = (3 + 1) | |
| 8 | 7 | oveq1i 7400 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2756 | . 2 ⊢ (3 + 2) = (4 + 1) |
| 10 | df-5 12259 | . 2 ⊢ 5 = (4 + 1) | |
| 11 | 9, 10 | eqtr4i 2756 | 1 ⊢ (3 + 2) = 5 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 2c2 12248 3c3 12249 4c4 12250 5c5 12251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 ax-addass 11140 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 |
| This theorem is referenced by: 3p3e6 12340 fz0to5un2tp 13599 2exp5 17063 2exp16 17068 prmlem1a 17084 5prm 17086 prmlem2 17097 1259lem1 17108 1259lem4 17111 1259prm 17113 4001lem1 17118 4001lem4 17121 birthday 26871 ppiub 27122 bposlem6 27207 bposlem9 27210 2lgsoddprmlem3d 27331 ex-mod 30385 cyc3conja 33121 fib5 34403 hgt750lem2 34650 kur14lem8 35207 problem1 35659 235t711 42300 3cubeslem3l 42681 3cubeslem3r 42682 fmtnorec2 47548 fmtno5lem4 47561 257prm 47566 fmtno4nprmfac193 47579 41prothprmlem2 47623 linevalexample 48388 ackval2012 48684 ackval3012 48685 |
| Copyright terms: Public domain | W3C validator |