Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3p2e5 | Structured version Visualization version GIF version |
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p2e5 | ⊢ (3 + 2) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 11966 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7266 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
3 | 3cn 11984 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 10916 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2769 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
7 | df-4 11968 | . . . 4 ⊢ 4 = (3 + 1) | |
8 | 7 | oveq1i 7265 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
9 | 6, 8 | eqtr4i 2769 | . 2 ⊢ (3 + 2) = (4 + 1) |
10 | df-5 11969 | . 2 ⊢ 5 = (4 + 1) | |
11 | 9, 10 | eqtr4i 2769 | 1 ⊢ (3 + 2) = 5 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 1c1 10803 + caddc 10805 2c2 11958 3c3 11959 4c4 11960 5c5 11961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-addcl 10862 ax-addass 10867 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 |
This theorem is referenced by: 3p3e6 12055 2exp5 16715 2exp16 16720 prmlem1a 16736 5prm 16738 prmlem2 16749 1259lem1 16760 1259lem4 16763 1259prm 16765 4001lem1 16770 4001lem4 16773 birthday 26009 ppiub 26257 bposlem6 26342 bposlem9 26345 2lgsoddprmlem3d 26466 ex-mod 28714 cyc3conja 31326 fib5 32272 hgt750lem2 32532 kur14lem8 33075 problem1 33523 235t711 40240 3cubeslem3l 40424 3cubeslem3r 40425 fmtnorec2 44883 fmtno5lem4 44896 257prm 44901 fmtno4nprmfac193 44914 41prothprmlem2 44958 linevalexample 45624 ackval2012 45925 ackval3012 45926 |
Copyright terms: Public domain | W3C validator |