Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem19 Structured version   Visualization version   GIF version

Theorem prtlem19 36892
Description: Lemma for prter2 36895. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem19 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐴   𝑣, ,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem19
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 prtlem18.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
21prtlem18 36891 . . . . 5 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → (𝑤𝑣𝑧 𝑤)))
32imp 407 . . . 4 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑧 𝑤))
4 vex 3436 . . . . 5 𝑤 ∈ V
5 vex 3436 . . . . 5 𝑧 ∈ V
64, 5elec 8542 . . . 4 (𝑤 ∈ [𝑧] 𝑧 𝑤)
73, 6bitr4di 289 . . 3 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑤 ∈ [𝑧] ))
87eqrdv 2736 . 2 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 = [𝑧] )
98ex 413 1 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  {copab 5136  [cec 8496  Prt wprt 36885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-prt 36886
This theorem is referenced by:  prter2  36895
  Copyright terms: Public domain W3C validator