Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem19 Structured version   Visualization version   GIF version

Theorem prtlem19 38917
Description: Lemma for prter2 38920. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem19 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐴   𝑣, ,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem19
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 prtlem18.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
21prtlem18 38916 . . . . 5 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → (𝑤𝑣𝑧 𝑤)))
32imp 406 . . . 4 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑧 𝑤))
4 vex 3440 . . . . 5 𝑤 ∈ V
5 vex 3440 . . . . 5 𝑧 ∈ V
64, 5elec 8663 . . . 4 (𝑤 ∈ [𝑧] 𝑧 𝑤)
73, 6bitr4di 289 . . 3 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑤 ∈ [𝑧] ))
87eqrdv 2729 . 2 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 = [𝑧] )
98ex 412 1 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5086  {copab 5148  [cec 8615  Prt wprt 38910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ec 8619  df-prt 38911
This theorem is referenced by:  prter2  38920
  Copyright terms: Public domain W3C validator