| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem19 | Structured version Visualization version GIF version | ||
| Description: Lemma for prter2 38882. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| prtlem18.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
| Ref | Expression |
|---|---|
| prtlem19 | ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑣 = [𝑧] ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem18.1 | . . . . . 6 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
| 2 | 1 | prtlem18 38878 | . . . . 5 ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤))) |
| 3 | 2 | imp 406 | . . . 4 ⊢ ((Prt 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → (𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤)) |
| 4 | vex 3484 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 5 | vex 3484 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 6 | 4, 5 | elec 8791 | . . . 4 ⊢ (𝑤 ∈ [𝑧] ∼ ↔ 𝑧 ∼ 𝑤) |
| 7 | 3, 6 | bitr4di 289 | . . 3 ⊢ ((Prt 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → (𝑤 ∈ 𝑣 ↔ 𝑤 ∈ [𝑧] ∼ )) |
| 8 | 7 | eqrdv 2735 | . 2 ⊢ ((Prt 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → 𝑣 = [𝑧] ∼ ) |
| 9 | 8 | ex 412 | 1 ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑣 = [𝑧] ∼ )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 {copab 5205 [cec 8743 Prt wprt 38872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ec 8747 df-prt 38873 |
| This theorem is referenced by: prter2 38882 |
| Copyright terms: Public domain | W3C validator |