![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem19 | Structured version Visualization version GIF version |
Description: Lemma for prter2 38055. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem18.1 | ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem19 | ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑣 = [𝑧] ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prtlem18.1 | . . . . . 6 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
2 | 1 | prtlem18 38051 | . . . . 5 ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤))) |
3 | 2 | imp 406 | . . . 4 ⊢ ((Prt 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → (𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤)) |
4 | vex 3477 | . . . . 5 ⊢ 𝑤 ∈ V | |
5 | vex 3477 | . . . . 5 ⊢ 𝑧 ∈ V | |
6 | 4, 5 | elec 8751 | . . . 4 ⊢ (𝑤 ∈ [𝑧] ∼ ↔ 𝑧 ∼ 𝑤) |
7 | 3, 6 | bitr4di 289 | . . 3 ⊢ ((Prt 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → (𝑤 ∈ 𝑣 ↔ 𝑤 ∈ [𝑧] ∼ )) |
8 | 7 | eqrdv 2729 | . 2 ⊢ ((Prt 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → 𝑣 = [𝑧] ∼ ) |
9 | 8 | ex 412 | 1 ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑣 = [𝑧] ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 class class class wbr 5148 {copab 5210 [cec 8705 Prt wprt 38045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8709 df-prt 38046 |
This theorem is referenced by: prter2 38055 |
Copyright terms: Public domain | W3C validator |