![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem19 | Structured version Visualization version GIF version |
Description: Lemma for prter2 38579. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem18.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem19 | ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑣 = [𝑧] ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prtlem18.1 | . . . . . 6 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
2 | 1 | prtlem18 38575 | . . . . 5 ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → (𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤))) |
3 | 2 | imp 405 | . . . 4 ⊢ ((Prt 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → (𝑤 ∈ 𝑣 ↔ 𝑧 ∼ 𝑤)) |
4 | vex 3466 | . . . . 5 ⊢ 𝑤 ∈ V | |
5 | vex 3466 | . . . . 5 ⊢ 𝑧 ∈ V | |
6 | 4, 5 | elec 8780 | . . . 4 ⊢ (𝑤 ∈ [𝑧] ∼ ↔ 𝑧 ∼ 𝑤) |
7 | 3, 6 | bitr4di 288 | . . 3 ⊢ ((Prt 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → (𝑤 ∈ 𝑣 ↔ 𝑤 ∈ [𝑧] ∼ )) |
8 | 7 | eqrdv 2724 | . 2 ⊢ ((Prt 𝐴 ∧ (𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣)) → 𝑣 = [𝑧] ∼ ) |
9 | 8 | ex 411 | 1 ⊢ (Prt 𝐴 → ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑣 = [𝑧] ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 class class class wbr 5153 {copab 5215 [cec 8732 Prt wprt 38569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-xp 5688 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ec 8736 df-prt 38570 |
This theorem is referenced by: prter2 38579 |
Copyright terms: Public domain | W3C validator |