Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem19 Structured version   Visualization version   GIF version

Theorem prtlem19 37200
Description: Lemma for prter2 37203. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem19 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐴   𝑣, ,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem19
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 prtlem18.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
21prtlem18 37199 . . . . 5 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → (𝑤𝑣𝑧 𝑤)))
32imp 408 . . . 4 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑧 𝑤))
4 vex 3447 . . . . 5 𝑤 ∈ V
5 vex 3447 . . . . 5 𝑧 ∈ V
64, 5elec 8625 . . . 4 (𝑤 ∈ [𝑧] 𝑧 𝑤)
73, 6bitr4di 289 . . 3 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑤 ∈ [𝑧] ))
87eqrdv 2735 . 2 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 = [𝑧] )
98ex 414 1 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wrex 3071   class class class wbr 5103  {copab 5165  [cec 8579  Prt wprt 37193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-br 5104  df-opab 5166  df-xp 5636  df-cnv 5638  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-ec 8583  df-prt 37194
This theorem is referenced by:  prter2  37203
  Copyright terms: Public domain W3C validator