Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem19 Structured version   Visualization version   GIF version

Theorem prtlem19 38834
Description: Lemma for prter2 38837. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem18.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem19 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐴   𝑣, ,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem19
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 prtlem18.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
21prtlem18 38833 . . . . 5 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → (𝑤𝑣𝑧 𝑤)))
32imp 406 . . . 4 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑧 𝑤))
4 vex 3492 . . . . 5 𝑤 ∈ V
5 vex 3492 . . . . 5 𝑧 ∈ V
64, 5elec 8809 . . . 4 (𝑤 ∈ [𝑧] 𝑧 𝑤)
73, 6bitr4di 289 . . 3 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → (𝑤𝑣𝑤 ∈ [𝑧] ))
87eqrdv 2738 . 2 ((Prt 𝐴 ∧ (𝑣𝐴𝑧𝑣)) → 𝑣 = [𝑧] )
98ex 412 1 (Prt 𝐴 → ((𝑣𝐴𝑧𝑣) → 𝑣 = [𝑧] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  {copab 5228  [cec 8761  Prt wprt 38827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-prt 38828
This theorem is referenced by:  prter2  38837
  Copyright terms: Public domain W3C validator