Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsiga Structured version   Visualization version   GIF version

Theorem prsiga 32099
Description: The smallest possible sigma-algebra containing 𝑂. (Contributed by Thierry Arnoux, 13-Sep-2016.)
Assertion
Ref Expression
prsiga (𝑂𝑉 → {∅, 𝑂} ∈ (sigAlgebra‘𝑂))

Proof of Theorem prsiga
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elpw 5278 . . 3 ∅ ∈ 𝒫 𝑂
2 pwidg 4555 . . 3 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
3 prssi 4754 . . 3 ((∅ ∈ 𝒫 𝑂𝑂 ∈ 𝒫 𝑂) → {∅, 𝑂} ⊆ 𝒫 𝑂)
41, 2, 3sylancr 587 . 2 (𝑂𝑉 → {∅, 𝑂} ⊆ 𝒫 𝑂)
5 prid2g 4697 . . 3 (𝑂𝑉𝑂 ∈ {∅, 𝑂})
6 dif0 4306 . . . . 5 (𝑂 ∖ ∅) = 𝑂
76, 5eqeltrid 2843 . . . 4 (𝑂𝑉 → (𝑂 ∖ ∅) ∈ {∅, 𝑂})
8 difid 4304 . . . . 5 (𝑂𝑂) = ∅
9 0ex 5231 . . . . . . 7 ∅ ∈ V
109prid1 4698 . . . . . 6 ∅ ∈ {∅, 𝑂}
1110a1i 11 . . . . 5 (𝑂𝑉 → ∅ ∈ {∅, 𝑂})
128, 11eqeltrid 2843 . . . 4 (𝑂𝑉 → (𝑂𝑂) ∈ {∅, 𝑂})
13 difeq2 4051 . . . . . . 7 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ∖ ∅))
1413eleq1d 2823 . . . . . 6 (𝑥 = ∅ → ((𝑂𝑥) ∈ {∅, 𝑂} ↔ (𝑂 ∖ ∅) ∈ {∅, 𝑂}))
15 difeq2 4051 . . . . . . 7 (𝑥 = 𝑂 → (𝑂𝑥) = (𝑂𝑂))
1615eleq1d 2823 . . . . . 6 (𝑥 = 𝑂 → ((𝑂𝑥) ∈ {∅, 𝑂} ↔ (𝑂𝑂) ∈ {∅, 𝑂}))
1714, 16ralprg 4630 . . . . 5 ((∅ ∈ V ∧ 𝑂𝑉) → (∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ↔ ((𝑂 ∖ ∅) ∈ {∅, 𝑂} ∧ (𝑂𝑂) ∈ {∅, 𝑂})))
189, 17mpan 687 . . . 4 (𝑂𝑉 → (∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ↔ ((𝑂 ∖ ∅) ∈ {∅, 𝑂} ∧ (𝑂𝑂) ∈ {∅, 𝑂})))
197, 12, 18mpbir2and 710 . . 3 (𝑂𝑉 → ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂})
20 uni0 4869 . . . . . . . . 9 ∅ = ∅
2120, 10eqeltri 2835 . . . . . . . 8 ∅ ∈ {∅, 𝑂}
229unisn 4861 . . . . . . . . 9 {∅} = ∅
2322, 10eqeltri 2835 . . . . . . . 8 {∅} ∈ {∅, 𝑂}
2421, 23pm3.2i 471 . . . . . . 7 ( ∅ ∈ {∅, 𝑂} ∧ {∅} ∈ {∅, 𝑂})
25 snex 5354 . . . . . . . . 9 {∅} ∈ V
269, 25pm3.2i 471 . . . . . . . 8 (∅ ∈ V ∧ {∅} ∈ V)
27 unieq 4850 . . . . . . . . . 10 (𝑥 = ∅ → 𝑥 = ∅)
2827eleq1d 2823 . . . . . . . . 9 (𝑥 = ∅ → ( 𝑥 ∈ {∅, 𝑂} ↔ ∅ ∈ {∅, 𝑂}))
29 unieq 4850 . . . . . . . . . 10 (𝑥 = {∅} → 𝑥 = {∅})
3029eleq1d 2823 . . . . . . . . 9 (𝑥 = {∅} → ( 𝑥 ∈ {∅, 𝑂} ↔ {∅} ∈ {∅, 𝑂}))
3128, 30ralprg 4630 . . . . . . . 8 ((∅ ∈ V ∧ {∅} ∈ V) → (∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂} ↔ ( ∅ ∈ {∅, 𝑂} ∧ {∅} ∈ {∅, 𝑂})))
3226, 31mp1i 13 . . . . . . 7 (𝑂𝑉 → (∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂} ↔ ( ∅ ∈ {∅, 𝑂} ∧ {∅} ∈ {∅, 𝑂})))
3324, 32mpbiri 257 . . . . . 6 (𝑂𝑉 → ∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂})
34 unisng 4860 . . . . . . . 8 (𝑂𝑉 {𝑂} = 𝑂)
3534, 5eqeltrd 2839 . . . . . . 7 (𝑂𝑉 {𝑂} ∈ {∅, 𝑂})
36 uniprg 4856 . . . . . . . . . 10 ((∅ ∈ V ∧ 𝑂𝑉) → {∅, 𝑂} = (∅ ∪ 𝑂))
379, 36mpan 687 . . . . . . . . 9 (𝑂𝑉 {∅, 𝑂} = (∅ ∪ 𝑂))
38 uncom 4087 . . . . . . . . . 10 (∅ ∪ 𝑂) = (𝑂 ∪ ∅)
39 un0 4324 . . . . . . . . . 10 (𝑂 ∪ ∅) = 𝑂
4038, 39eqtri 2766 . . . . . . . . 9 (∅ ∪ 𝑂) = 𝑂
4137, 40eqtrdi 2794 . . . . . . . 8 (𝑂𝑉 {∅, 𝑂} = 𝑂)
4241, 5eqeltrd 2839 . . . . . . 7 (𝑂𝑉 {∅, 𝑂} ∈ {∅, 𝑂})
43 snex 5354 . . . . . . . . 9 {𝑂} ∈ V
44 prex 5355 . . . . . . . . 9 {∅, 𝑂} ∈ V
4543, 44pm3.2i 471 . . . . . . . 8 ({𝑂} ∈ V ∧ {∅, 𝑂} ∈ V)
46 unieq 4850 . . . . . . . . . 10 (𝑥 = {𝑂} → 𝑥 = {𝑂})
4746eleq1d 2823 . . . . . . . . 9 (𝑥 = {𝑂} → ( 𝑥 ∈ {∅, 𝑂} ↔ {𝑂} ∈ {∅, 𝑂}))
48 unieq 4850 . . . . . . . . . 10 (𝑥 = {∅, 𝑂} → 𝑥 = {∅, 𝑂})
4948eleq1d 2823 . . . . . . . . 9 (𝑥 = {∅, 𝑂} → ( 𝑥 ∈ {∅, 𝑂} ↔ {∅, 𝑂} ∈ {∅, 𝑂}))
5047, 49ralprg 4630 . . . . . . . 8 (({𝑂} ∈ V ∧ {∅, 𝑂} ∈ V) → (∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂} ↔ ( {𝑂} ∈ {∅, 𝑂} ∧ {∅, 𝑂} ∈ {∅, 𝑂})))
5145, 50mp1i 13 . . . . . . 7 (𝑂𝑉 → (∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂} ↔ ( {𝑂} ∈ {∅, 𝑂} ∧ {∅, 𝑂} ∈ {∅, 𝑂})))
5235, 42, 51mpbir2and 710 . . . . . 6 (𝑂𝑉 → ∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂})
53 ralun 4126 . . . . . 6 ((∀𝑥 ∈ {∅, {∅}} 𝑥 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {{𝑂}, {∅, 𝑂}} 𝑥 ∈ {∅, 𝑂}) → ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}}) 𝑥 ∈ {∅, 𝑂})
5433, 52, 53syl2anc 584 . . . . 5 (𝑂𝑉 → ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}}) 𝑥 ∈ {∅, 𝑂})
55 pwpr 4833 . . . . . 6 𝒫 {∅, 𝑂} = ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}})
5655raleqi 3346 . . . . 5 (∀𝑥 ∈ 𝒫 {∅, 𝑂} 𝑥 ∈ {∅, 𝑂} ↔ ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}}) 𝑥 ∈ {∅, 𝑂})
5754, 56sylibr 233 . . . 4 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 {∅, 𝑂} 𝑥 ∈ {∅, 𝑂})
58 ax-1 6 . . . . 5 ( 𝑥 ∈ {∅, 𝑂} → (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))
5958ralimi 3087 . . . 4 (∀𝑥 ∈ 𝒫 {∅, 𝑂} 𝑥 ∈ {∅, 𝑂} → ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))
6057, 59syl 17 . . 3 (𝑂𝑉 → ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))
615, 19, 603jca 1127 . 2 (𝑂𝑉 → (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂})))
62 issiga 32080 . . 3 ({∅, 𝑂} ∈ V → ({∅, 𝑂} ∈ (sigAlgebra‘𝑂) ↔ ({∅, 𝑂} ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂})))))
6344, 62ax-mp 5 . 2 ({∅, 𝑂} ∈ (sigAlgebra‘𝑂) ↔ ({∅, 𝑂} ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → 𝑥 ∈ {∅, 𝑂}))))
644, 61, 63sylanbrc 583 1 (𝑂𝑉 → {∅, 𝑂} ∈ (sigAlgebra‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cdif 3884  cun 3885  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  {cpr 4563   cuni 4839   class class class wbr 5074  cfv 6433  ωcom 7712  cdom 8731  sigAlgebracsiga 32076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-siga 32077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator