Step | Hyp | Ref
| Expression |
1 | | 0elpw 5273 |
. . 3
⊢ ∅
∈ 𝒫 𝑂 |
2 | | pwidg 4552 |
. . 3
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂) |
3 | | prssi 4751 |
. . 3
⊢ ((∅
∈ 𝒫 𝑂 ∧
𝑂 ∈ 𝒫 𝑂) → {∅, 𝑂} ⊆ 𝒫 𝑂) |
4 | 1, 2, 3 | sylancr 586 |
. 2
⊢ (𝑂 ∈ 𝑉 → {∅, 𝑂} ⊆ 𝒫 𝑂) |
5 | | prid2g 4694 |
. . 3
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ {∅, 𝑂}) |
6 | | dif0 4303 |
. . . . 5
⊢ (𝑂 ∖ ∅) = 𝑂 |
7 | 6, 5 | eqeltrid 2843 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → (𝑂 ∖ ∅) ∈ {∅, 𝑂}) |
8 | | difid 4301 |
. . . . 5
⊢ (𝑂 ∖ 𝑂) = ∅ |
9 | | 0ex 5226 |
. . . . . . 7
⊢ ∅
∈ V |
10 | 9 | prid1 4695 |
. . . . . 6
⊢ ∅
∈ {∅, 𝑂} |
11 | 10 | a1i 11 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → ∅ ∈ {∅, 𝑂}) |
12 | 8, 11 | eqeltrid 2843 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → (𝑂 ∖ 𝑂) ∈ {∅, 𝑂}) |
13 | | difeq2 4047 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑂 ∖ 𝑥) = (𝑂 ∖ ∅)) |
14 | 13 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ↔ (𝑂 ∖ ∅) ∈ {∅, 𝑂})) |
15 | | difeq2 4047 |
. . . . . . 7
⊢ (𝑥 = 𝑂 → (𝑂 ∖ 𝑥) = (𝑂 ∖ 𝑂)) |
16 | 15 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = 𝑂 → ((𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ↔ (𝑂 ∖ 𝑂) ∈ {∅, 𝑂})) |
17 | 14, 16 | ralprg 4627 |
. . . . 5
⊢ ((∅
∈ V ∧ 𝑂 ∈
𝑉) → (∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ↔ ((𝑂 ∖ ∅) ∈ {∅, 𝑂} ∧ (𝑂 ∖ 𝑂) ∈ {∅, 𝑂}))) |
18 | 9, 17 | mpan 686 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → (∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ↔ ((𝑂 ∖ ∅) ∈ {∅, 𝑂} ∧ (𝑂 ∖ 𝑂) ∈ {∅, 𝑂}))) |
19 | 7, 12, 18 | mpbir2and 709 |
. . 3
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂}) |
20 | | uni0 4866 |
. . . . . . . . 9
⊢ ∪ ∅ = ∅ |
21 | 20, 10 | eqeltri 2835 |
. . . . . . . 8
⊢ ∪ ∅ ∈ {∅, 𝑂} |
22 | 9 | unisn 4858 |
. . . . . . . . 9
⊢ ∪ {∅} = ∅ |
23 | 22, 10 | eqeltri 2835 |
. . . . . . . 8
⊢ ∪ {∅} ∈ {∅, 𝑂} |
24 | 21, 23 | pm3.2i 470 |
. . . . . . 7
⊢ (∪ ∅ ∈ {∅, 𝑂} ∧ ∪
{∅} ∈ {∅, 𝑂}) |
25 | | snex 5349 |
. . . . . . . . 9
⊢ {∅}
∈ V |
26 | 9, 25 | pm3.2i 470 |
. . . . . . . 8
⊢ (∅
∈ V ∧ {∅} ∈ V) |
27 | | unieq 4847 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∪ ∅) |
28 | 27 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (∪ 𝑥
∈ {∅, 𝑂} ↔
∪ ∅ ∈ {∅, 𝑂})) |
29 | | unieq 4847 |
. . . . . . . . . 10
⊢ (𝑥 = {∅} → ∪ 𝑥 =
∪ {∅}) |
30 | 29 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = {∅} → (∪ 𝑥
∈ {∅, 𝑂} ↔
∪ {∅} ∈ {∅, 𝑂})) |
31 | 28, 30 | ralprg 4627 |
. . . . . . . 8
⊢ ((∅
∈ V ∧ {∅} ∈ V) → (∀𝑥 ∈ {∅, {∅}}∪ 𝑥
∈ {∅, 𝑂} ↔
(∪ ∅ ∈ {∅, 𝑂} ∧ ∪
{∅} ∈ {∅, 𝑂}))) |
32 | 26, 31 | mp1i 13 |
. . . . . . 7
⊢ (𝑂 ∈ 𝑉 → (∀𝑥 ∈ {∅, {∅}}∪ 𝑥
∈ {∅, 𝑂} ↔
(∪ ∅ ∈ {∅, 𝑂} ∧ ∪
{∅} ∈ {∅, 𝑂}))) |
33 | 24, 32 | mpbiri 257 |
. . . . . 6
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ {∅, {∅}}∪ 𝑥
∈ {∅, 𝑂}) |
34 | | unisng 4857 |
. . . . . . . 8
⊢ (𝑂 ∈ 𝑉 → ∪ {𝑂} = 𝑂) |
35 | 34, 5 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝑂 ∈ 𝑉 → ∪ {𝑂} ∈ {∅, 𝑂}) |
36 | | uniprg 4853 |
. . . . . . . . . 10
⊢ ((∅
∈ V ∧ 𝑂 ∈
𝑉) → ∪ {∅, 𝑂} = (∅ ∪ 𝑂)) |
37 | 9, 36 | mpan 686 |
. . . . . . . . 9
⊢ (𝑂 ∈ 𝑉 → ∪
{∅, 𝑂} = (∅
∪ 𝑂)) |
38 | | uncom 4083 |
. . . . . . . . . 10
⊢ (∅
∪ 𝑂) = (𝑂 ∪ ∅) |
39 | | un0 4321 |
. . . . . . . . . 10
⊢ (𝑂 ∪ ∅) = 𝑂 |
40 | 38, 39 | eqtri 2766 |
. . . . . . . . 9
⊢ (∅
∪ 𝑂) = 𝑂 |
41 | 37, 40 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑂 ∈ 𝑉 → ∪
{∅, 𝑂} = 𝑂) |
42 | 41, 5 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝑂 ∈ 𝑉 → ∪
{∅, 𝑂} ∈
{∅, 𝑂}) |
43 | | snex 5349 |
. . . . . . . . 9
⊢ {𝑂} ∈ V |
44 | | prex 5350 |
. . . . . . . . 9
⊢ {∅,
𝑂} ∈
V |
45 | 43, 44 | pm3.2i 470 |
. . . . . . . 8
⊢ ({𝑂} ∈ V ∧ {∅, 𝑂} ∈ V) |
46 | | unieq 4847 |
. . . . . . . . . 10
⊢ (𝑥 = {𝑂} → ∪ 𝑥 = ∪
{𝑂}) |
47 | 46 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = {𝑂} → (∪ 𝑥 ∈ {∅, 𝑂} ↔ ∪ {𝑂}
∈ {∅, 𝑂})) |
48 | | unieq 4847 |
. . . . . . . . . 10
⊢ (𝑥 = {∅, 𝑂} → ∪ 𝑥 = ∪
{∅, 𝑂}) |
49 | 48 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = {∅, 𝑂} → (∪ 𝑥 ∈ {∅, 𝑂} ↔ ∪ {∅, 𝑂} ∈ {∅, 𝑂})) |
50 | 47, 49 | ralprg 4627 |
. . . . . . . 8
⊢ (({𝑂} ∈ V ∧ {∅, 𝑂} ∈ V) →
(∀𝑥 ∈ {{𝑂}, {∅, 𝑂}}∪ 𝑥 ∈ {∅, 𝑂} ↔ (∪ {𝑂}
∈ {∅, 𝑂} ∧
∪ {∅, 𝑂} ∈ {∅, 𝑂}))) |
51 | 45, 50 | mp1i 13 |
. . . . . . 7
⊢ (𝑂 ∈ 𝑉 → (∀𝑥 ∈ {{𝑂}, {∅, 𝑂}}∪ 𝑥 ∈ {∅, 𝑂} ↔ (∪ {𝑂}
∈ {∅, 𝑂} ∧
∪ {∅, 𝑂} ∈ {∅, 𝑂}))) |
52 | 35, 42, 51 | mpbir2and 709 |
. . . . . 6
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ {{𝑂}, {∅, 𝑂}}∪ 𝑥 ∈ {∅, 𝑂}) |
53 | | ralun 4122 |
. . . . . 6
⊢
((∀𝑥 ∈
{∅, {∅}}∪ 𝑥 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {{𝑂}, {∅, 𝑂}}∪ 𝑥 ∈ {∅, 𝑂}) → ∀𝑥 ∈ ({∅, {∅}}
∪ {{𝑂}, {∅, 𝑂}})∪
𝑥 ∈ {∅, 𝑂}) |
54 | 33, 52, 53 | syl2anc 583 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}})∪ 𝑥 ∈ {∅, 𝑂}) |
55 | | pwpr 4830 |
. . . . . 6
⊢ 𝒫
{∅, 𝑂} = ({∅,
{∅}} ∪ {{𝑂},
{∅, 𝑂}}) |
56 | 55 | raleqi 3337 |
. . . . 5
⊢
(∀𝑥 ∈
𝒫 {∅, 𝑂}∪ 𝑥
∈ {∅, 𝑂} ↔
∀𝑥 ∈ ({∅,
{∅}} ∪ {{𝑂},
{∅, 𝑂}})∪ 𝑥
∈ {∅, 𝑂}) |
57 | 54, 56 | sylibr 233 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 {∅, 𝑂}∪ 𝑥 ∈ {∅, 𝑂}) |
58 | | ax-1 6 |
. . . . 5
⊢ (∪ 𝑥
∈ {∅, 𝑂} →
(𝑥 ≼ ω →
∪ 𝑥 ∈ {∅, 𝑂})) |
59 | 58 | ralimi 3086 |
. . . 4
⊢
(∀𝑥 ∈
𝒫 {∅, 𝑂}∪ 𝑥
∈ {∅, 𝑂} →
∀𝑥 ∈ 𝒫
{∅, 𝑂} (𝑥 ≼ ω → ∪ 𝑥
∈ {∅, 𝑂})) |
60 | 57, 59 | syl 17 |
. . 3
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → ∪ 𝑥
∈ {∅, 𝑂})) |
61 | 5, 19, 60 | 3jca 1126 |
. 2
⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → ∪ 𝑥
∈ {∅, 𝑂}))) |
62 | | issiga 31980 |
. . 3
⊢
({∅, 𝑂} ∈
V → ({∅, 𝑂}
∈ (sigAlgebra‘𝑂)
↔ ({∅, 𝑂}
⊆ 𝒫 𝑂 ∧
(𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → ∪ 𝑥
∈ {∅, 𝑂}))))) |
63 | 44, 62 | ax-mp 5 |
. 2
⊢
({∅, 𝑂} ∈
(sigAlgebra‘𝑂) ↔
({∅, 𝑂} ⊆
𝒫 𝑂 ∧ (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → ∪ 𝑥
∈ {∅, 𝑂})))) |
64 | 4, 61, 63 | sylanbrc 582 |
1
⊢ (𝑂 ∈ 𝑉 → {∅, 𝑂} ∈ (sigAlgebra‘𝑂)) |