| Step | Hyp | Ref
| Expression |
| 1 | | 0elpw 5326 |
. . 3
⊢ ∅
∈ 𝒫 𝑂 |
| 2 | | pwidg 4595 |
. . 3
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂) |
| 3 | | prssi 4797 |
. . 3
⊢ ((∅
∈ 𝒫 𝑂 ∧
𝑂 ∈ 𝒫 𝑂) → {∅, 𝑂} ⊆ 𝒫 𝑂) |
| 4 | 1, 2, 3 | sylancr 587 |
. 2
⊢ (𝑂 ∈ 𝑉 → {∅, 𝑂} ⊆ 𝒫 𝑂) |
| 5 | | prid2g 4737 |
. . 3
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ {∅, 𝑂}) |
| 6 | | dif0 4353 |
. . . . 5
⊢ (𝑂 ∖ ∅) = 𝑂 |
| 7 | 6, 5 | eqeltrid 2838 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → (𝑂 ∖ ∅) ∈ {∅, 𝑂}) |
| 8 | | difid 4351 |
. . . . 5
⊢ (𝑂 ∖ 𝑂) = ∅ |
| 9 | | 0ex 5277 |
. . . . . . 7
⊢ ∅
∈ V |
| 10 | 9 | prid1 4738 |
. . . . . 6
⊢ ∅
∈ {∅, 𝑂} |
| 11 | 10 | a1i 11 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → ∅ ∈ {∅, 𝑂}) |
| 12 | 8, 11 | eqeltrid 2838 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → (𝑂 ∖ 𝑂) ∈ {∅, 𝑂}) |
| 13 | | difeq2 4095 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑂 ∖ 𝑥) = (𝑂 ∖ ∅)) |
| 14 | 13 | eleq1d 2819 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ↔ (𝑂 ∖ ∅) ∈ {∅, 𝑂})) |
| 15 | | difeq2 4095 |
. . . . . . 7
⊢ (𝑥 = 𝑂 → (𝑂 ∖ 𝑥) = (𝑂 ∖ 𝑂)) |
| 16 | 15 | eleq1d 2819 |
. . . . . 6
⊢ (𝑥 = 𝑂 → ((𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ↔ (𝑂 ∖ 𝑂) ∈ {∅, 𝑂})) |
| 17 | 14, 16 | ralprg 4672 |
. . . . 5
⊢ ((∅
∈ V ∧ 𝑂 ∈
𝑉) → (∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ↔ ((𝑂 ∖ ∅) ∈ {∅, 𝑂} ∧ (𝑂 ∖ 𝑂) ∈ {∅, 𝑂}))) |
| 18 | 9, 17 | mpan 690 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → (∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ↔ ((𝑂 ∖ ∅) ∈ {∅, 𝑂} ∧ (𝑂 ∖ 𝑂) ∈ {∅, 𝑂}))) |
| 19 | 7, 12, 18 | mpbir2and 713 |
. . 3
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂}) |
| 20 | | uni0 4911 |
. . . . . . . . 9
⊢ ∪ ∅ = ∅ |
| 21 | 20, 10 | eqeltri 2830 |
. . . . . . . 8
⊢ ∪ ∅ ∈ {∅, 𝑂} |
| 22 | 9 | unisn 4902 |
. . . . . . . . 9
⊢ ∪ {∅} = ∅ |
| 23 | 22, 10 | eqeltri 2830 |
. . . . . . . 8
⊢ ∪ {∅} ∈ {∅, 𝑂} |
| 24 | 21, 23 | pm3.2i 470 |
. . . . . . 7
⊢ (∪ ∅ ∈ {∅, 𝑂} ∧ ∪
{∅} ∈ {∅, 𝑂}) |
| 25 | | snex 5406 |
. . . . . . . . 9
⊢ {∅}
∈ V |
| 26 | 9, 25 | pm3.2i 470 |
. . . . . . . 8
⊢ (∅
∈ V ∧ {∅} ∈ V) |
| 27 | | unieq 4894 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∪ ∅) |
| 28 | 27 | eleq1d 2819 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (∪ 𝑥
∈ {∅, 𝑂} ↔
∪ ∅ ∈ {∅, 𝑂})) |
| 29 | | unieq 4894 |
. . . . . . . . . 10
⊢ (𝑥 = {∅} → ∪ 𝑥 =
∪ {∅}) |
| 30 | 29 | eleq1d 2819 |
. . . . . . . . 9
⊢ (𝑥 = {∅} → (∪ 𝑥
∈ {∅, 𝑂} ↔
∪ {∅} ∈ {∅, 𝑂})) |
| 31 | 28, 30 | ralprg 4672 |
. . . . . . . 8
⊢ ((∅
∈ V ∧ {∅} ∈ V) → (∀𝑥 ∈ {∅, {∅}}∪ 𝑥
∈ {∅, 𝑂} ↔
(∪ ∅ ∈ {∅, 𝑂} ∧ ∪
{∅} ∈ {∅, 𝑂}))) |
| 32 | 26, 31 | mp1i 13 |
. . . . . . 7
⊢ (𝑂 ∈ 𝑉 → (∀𝑥 ∈ {∅, {∅}}∪ 𝑥
∈ {∅, 𝑂} ↔
(∪ ∅ ∈ {∅, 𝑂} ∧ ∪
{∅} ∈ {∅, 𝑂}))) |
| 33 | 24, 32 | mpbiri 258 |
. . . . . 6
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ {∅, {∅}}∪ 𝑥
∈ {∅, 𝑂}) |
| 34 | | unisng 4901 |
. . . . . . . 8
⊢ (𝑂 ∈ 𝑉 → ∪ {𝑂} = 𝑂) |
| 35 | 34, 5 | eqeltrd 2834 |
. . . . . . 7
⊢ (𝑂 ∈ 𝑉 → ∪ {𝑂} ∈ {∅, 𝑂}) |
| 36 | | uniprg 4899 |
. . . . . . . . . 10
⊢ ((∅
∈ V ∧ 𝑂 ∈
𝑉) → ∪ {∅, 𝑂} = (∅ ∪ 𝑂)) |
| 37 | 9, 36 | mpan 690 |
. . . . . . . . 9
⊢ (𝑂 ∈ 𝑉 → ∪
{∅, 𝑂} = (∅
∪ 𝑂)) |
| 38 | | uncom 4133 |
. . . . . . . . . 10
⊢ (∅
∪ 𝑂) = (𝑂 ∪ ∅) |
| 39 | | un0 4369 |
. . . . . . . . . 10
⊢ (𝑂 ∪ ∅) = 𝑂 |
| 40 | 38, 39 | eqtri 2758 |
. . . . . . . . 9
⊢ (∅
∪ 𝑂) = 𝑂 |
| 41 | 37, 40 | eqtrdi 2786 |
. . . . . . . 8
⊢ (𝑂 ∈ 𝑉 → ∪
{∅, 𝑂} = 𝑂) |
| 42 | 41, 5 | eqeltrd 2834 |
. . . . . . 7
⊢ (𝑂 ∈ 𝑉 → ∪
{∅, 𝑂} ∈
{∅, 𝑂}) |
| 43 | | snex 5406 |
. . . . . . . . 9
⊢ {𝑂} ∈ V |
| 44 | | prex 5407 |
. . . . . . . . 9
⊢ {∅,
𝑂} ∈
V |
| 45 | 43, 44 | pm3.2i 470 |
. . . . . . . 8
⊢ ({𝑂} ∈ V ∧ {∅, 𝑂} ∈ V) |
| 46 | | unieq 4894 |
. . . . . . . . . 10
⊢ (𝑥 = {𝑂} → ∪ 𝑥 = ∪
{𝑂}) |
| 47 | 46 | eleq1d 2819 |
. . . . . . . . 9
⊢ (𝑥 = {𝑂} → (∪ 𝑥 ∈ {∅, 𝑂} ↔ ∪ {𝑂}
∈ {∅, 𝑂})) |
| 48 | | unieq 4894 |
. . . . . . . . . 10
⊢ (𝑥 = {∅, 𝑂} → ∪ 𝑥 = ∪
{∅, 𝑂}) |
| 49 | 48 | eleq1d 2819 |
. . . . . . . . 9
⊢ (𝑥 = {∅, 𝑂} → (∪ 𝑥 ∈ {∅, 𝑂} ↔ ∪ {∅, 𝑂} ∈ {∅, 𝑂})) |
| 50 | 47, 49 | ralprg 4672 |
. . . . . . . 8
⊢ (({𝑂} ∈ V ∧ {∅, 𝑂} ∈ V) →
(∀𝑥 ∈ {{𝑂}, {∅, 𝑂}}∪ 𝑥 ∈ {∅, 𝑂} ↔ (∪ {𝑂}
∈ {∅, 𝑂} ∧
∪ {∅, 𝑂} ∈ {∅, 𝑂}))) |
| 51 | 45, 50 | mp1i 13 |
. . . . . . 7
⊢ (𝑂 ∈ 𝑉 → (∀𝑥 ∈ {{𝑂}, {∅, 𝑂}}∪ 𝑥 ∈ {∅, 𝑂} ↔ (∪ {𝑂}
∈ {∅, 𝑂} ∧
∪ {∅, 𝑂} ∈ {∅, 𝑂}))) |
| 52 | 35, 42, 51 | mpbir2and 713 |
. . . . . 6
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ {{𝑂}, {∅, 𝑂}}∪ 𝑥 ∈ {∅, 𝑂}) |
| 53 | | ralun 4173 |
. . . . . 6
⊢
((∀𝑥 ∈
{∅, {∅}}∪ 𝑥 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {{𝑂}, {∅, 𝑂}}∪ 𝑥 ∈ {∅, 𝑂}) → ∀𝑥 ∈ ({∅, {∅}}
∪ {{𝑂}, {∅, 𝑂}})∪
𝑥 ∈ {∅, 𝑂}) |
| 54 | 33, 52, 53 | syl2anc 584 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ ({∅, {∅}} ∪ {{𝑂}, {∅, 𝑂}})∪ 𝑥 ∈ {∅, 𝑂}) |
| 55 | | pwpr 4877 |
. . . . . 6
⊢ 𝒫
{∅, 𝑂} = ({∅,
{∅}} ∪ {{𝑂},
{∅, 𝑂}}) |
| 56 | 55 | raleqi 3303 |
. . . . 5
⊢
(∀𝑥 ∈
𝒫 {∅, 𝑂}∪ 𝑥
∈ {∅, 𝑂} ↔
∀𝑥 ∈ ({∅,
{∅}} ∪ {{𝑂},
{∅, 𝑂}})∪ 𝑥
∈ {∅, 𝑂}) |
| 57 | 54, 56 | sylibr 234 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 {∅, 𝑂}∪ 𝑥 ∈ {∅, 𝑂}) |
| 58 | | ax-1 6 |
. . . . 5
⊢ (∪ 𝑥
∈ {∅, 𝑂} →
(𝑥 ≼ ω →
∪ 𝑥 ∈ {∅, 𝑂})) |
| 59 | 58 | ralimi 3073 |
. . . 4
⊢
(∀𝑥 ∈
𝒫 {∅, 𝑂}∪ 𝑥
∈ {∅, 𝑂} →
∀𝑥 ∈ 𝒫
{∅, 𝑂} (𝑥 ≼ ω → ∪ 𝑥
∈ {∅, 𝑂})) |
| 60 | 57, 59 | syl 17 |
. . 3
⊢ (𝑂 ∈ 𝑉 → ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → ∪ 𝑥
∈ {∅, 𝑂})) |
| 61 | 5, 19, 60 | 3jca 1128 |
. 2
⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → ∪ 𝑥
∈ {∅, 𝑂}))) |
| 62 | | issiga 34143 |
. . 3
⊢
({∅, 𝑂} ∈
V → ({∅, 𝑂}
∈ (sigAlgebra‘𝑂)
↔ ({∅, 𝑂}
⊆ 𝒫 𝑂 ∧
(𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → ∪ 𝑥
∈ {∅, 𝑂}))))) |
| 63 | 44, 62 | ax-mp 5 |
. 2
⊢
({∅, 𝑂} ∈
(sigAlgebra‘𝑂) ↔
({∅, 𝑂} ⊆
𝒫 𝑂 ∧ (𝑂 ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ {∅, 𝑂} (𝑂 ∖ 𝑥) ∈ {∅, 𝑂} ∧ ∀𝑥 ∈ 𝒫 {∅, 𝑂} (𝑥 ≼ ω → ∪ 𝑥
∈ {∅, 𝑂})))) |
| 64 | 4, 61, 63 | sylanbrc 583 |
1
⊢ (𝑂 ∈ 𝑉 → {∅, 𝑂} ∈ (sigAlgebra‘𝑂)) |