MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2pwpr Structured version   Visualization version   GIF version

Theorem hash2pwpr 14383
Description: If the size of a subset of an unordered pair is 2, the subset is the pair itself. (Contributed by Alexander van der Vekens, 9-Dec-2018.)
Assertion
Ref Expression
hash2pwpr (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌})

Proof of Theorem hash2pwpr
StepHypRef Expression
1 pwpr 4850 . . . . 5 𝒫 {𝑋, 𝑌} = ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}})
21eleq2i 2823 . . . 4 (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ 𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}))
3 elun 4100 . . . 4 (𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}) ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}))
42, 3bitri 275 . . 3 (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}))
5 fveq2 6822 . . . . . . 7 (𝑃 = ∅ → (♯‘𝑃) = (♯‘∅))
6 hash0 14274 . . . . . . . . 9 (♯‘∅) = 0
76eqeq2i 2744 . . . . . . . 8 ((♯‘𝑃) = (♯‘∅) ↔ (♯‘𝑃) = 0)
8 eqeq1 2735 . . . . . . . . 9 ((♯‘𝑃) = 0 → ((♯‘𝑃) = 2 ↔ 0 = 2))
9 0ne2 12327 . . . . . . . . . 10 0 ≠ 2
10 eqneqall 2939 . . . . . . . . . 10 (0 = 2 → (0 ≠ 2 → 𝑃 = {𝑋, 𝑌}))
119, 10mpi 20 . . . . . . . . 9 (0 = 2 → 𝑃 = {𝑋, 𝑌})
128, 11biimtrdi 253 . . . . . . . 8 ((♯‘𝑃) = 0 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
137, 12sylbi 217 . . . . . . 7 ((♯‘𝑃) = (♯‘∅) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
145, 13syl 17 . . . . . 6 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
15 hashsng 14276 . . . . . . . 8 (𝑋 ∈ V → (♯‘{𝑋}) = 1)
16 fveq2 6822 . . . . . . . . . . 11 ({𝑋} = 𝑃 → (♯‘{𝑋}) = (♯‘𝑃))
1716eqcoms 2739 . . . . . . . . . 10 (𝑃 = {𝑋} → (♯‘{𝑋}) = (♯‘𝑃))
1817eqeq1d 2733 . . . . . . . . 9 (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 ↔ (♯‘𝑃) = 1))
19 eqeq1 2735 . . . . . . . . . 10 ((♯‘𝑃) = 1 → ((♯‘𝑃) = 2 ↔ 1 = 2))
20 1ne2 12328 . . . . . . . . . . 11 1 ≠ 2
21 eqneqall 2939 . . . . . . . . . . 11 (1 = 2 → (1 ≠ 2 → 𝑃 = {𝑋, 𝑌}))
2220, 21mpi 20 . . . . . . . . . 10 (1 = 2 → 𝑃 = {𝑋, 𝑌})
2319, 22biimtrdi 253 . . . . . . . . 9 ((♯‘𝑃) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
2418, 23biimtrdi 253 . . . . . . . 8 (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
2515, 24syl5com 31 . . . . . . 7 (𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
26 snprc 4667 . . . . . . . 8 𝑋 ∈ V ↔ {𝑋} = ∅)
27 eqeq2 2743 . . . . . . . . 9 ({𝑋} = ∅ → (𝑃 = {𝑋} ↔ 𝑃 = ∅))
285, 6eqtrdi 2782 . . . . . . . . . . 11 (𝑃 = ∅ → (♯‘𝑃) = 0)
2928eqeq1d 2733 . . . . . . . . . 10 (𝑃 = ∅ → ((♯‘𝑃) = 2 ↔ 0 = 2))
3029, 11biimtrdi 253 . . . . . . . . 9 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
3127, 30biimtrdi 253 . . . . . . . 8 ({𝑋} = ∅ → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
3226, 31sylbi 217 . . . . . . 7 𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
3325, 32pm2.61i 182 . . . . . 6 (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
3414, 33jaoi 857 . . . . 5 ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
35 hashsng 14276 . . . . . . . 8 (𝑌 ∈ V → (♯‘{𝑌}) = 1)
36 fveq2 6822 . . . . . . . . . . 11 ({𝑌} = 𝑃 → (♯‘{𝑌}) = (♯‘𝑃))
3736eqcoms 2739 . . . . . . . . . 10 (𝑃 = {𝑌} → (♯‘{𝑌}) = (♯‘𝑃))
3837eqeq1d 2733 . . . . . . . . 9 (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 ↔ (♯‘𝑃) = 1))
3938, 23biimtrdi 253 . . . . . . . 8 (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4035, 39syl5com 31 . . . . . . 7 (𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
41 snprc 4667 . . . . . . . 8 𝑌 ∈ V ↔ {𝑌} = ∅)
42 eqeq2 2743 . . . . . . . . 9 ({𝑌} = ∅ → (𝑃 = {𝑌} ↔ 𝑃 = ∅))
435eqeq1d 2733 . . . . . . . . . 10 (𝑃 = ∅ → ((♯‘𝑃) = 2 ↔ (♯‘∅) = 2))
446eqeq1i 2736 . . . . . . . . . . 11 ((♯‘∅) = 2 ↔ 0 = 2)
4544, 11sylbi 217 . . . . . . . . . 10 ((♯‘∅) = 2 → 𝑃 = {𝑋, 𝑌})
4643, 45biimtrdi 253 . . . . . . . . 9 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
4742, 46biimtrdi 253 . . . . . . . 8 ({𝑌} = ∅ → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4841, 47sylbi 217 . . . . . . 7 𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4940, 48pm2.61i 182 . . . . . 6 (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
50 ax-1 6 . . . . . 6 (𝑃 = {𝑋, 𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
5149, 50jaoi 857 . . . . 5 ((𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
5234, 51jaoi 857 . . . 4 (((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
53 elpri 4597 . . . . 5 (𝑃 ∈ {∅, {𝑋}} → (𝑃 = ∅ ∨ 𝑃 = {𝑋}))
54 elpri 4597 . . . . 5 (𝑃 ∈ {{𝑌}, {𝑋, 𝑌}} → (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}))
5553, 54orim12i 908 . . . 4 ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})))
5652, 55syl11 33 . . 3 ((♯‘𝑃) = 2 → ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → 𝑃 = {𝑋, 𝑌}))
574, 56biimtrid 242 . 2 ((♯‘𝑃) = 2 → (𝑃 ∈ 𝒫 {𝑋, 𝑌} → 𝑃 = {𝑋, 𝑌}))
5857imp 406 1 (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cun 3895  c0 4280  𝒫 cpw 4547  {csn 4573  {cpr 4575  cfv 6481  0cc0 11006  1c1 11007  2c2 12180  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238
This theorem is referenced by:  pr2pwpr  14386
  Copyright terms: Public domain W3C validator