MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2pwpr Structured version   Visualization version   GIF version

Theorem hash2pwpr 14190
Description: If the size of a subset of an unordered pair is 2, the subset is the pair itself. (Contributed by Alexander van der Vekens, 9-Dec-2018.)
Assertion
Ref Expression
hash2pwpr (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌})

Proof of Theorem hash2pwpr
StepHypRef Expression
1 pwpr 4833 . . . . 5 𝒫 {𝑋, 𝑌} = ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}})
21eleq2i 2830 . . . 4 (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ 𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}))
3 elun 4083 . . . 4 (𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}) ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}))
42, 3bitri 274 . . 3 (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}))
5 fveq2 6774 . . . . . . 7 (𝑃 = ∅ → (♯‘𝑃) = (♯‘∅))
6 hash0 14082 . . . . . . . . 9 (♯‘∅) = 0
76eqeq2i 2751 . . . . . . . 8 ((♯‘𝑃) = (♯‘∅) ↔ (♯‘𝑃) = 0)
8 eqeq1 2742 . . . . . . . . 9 ((♯‘𝑃) = 0 → ((♯‘𝑃) = 2 ↔ 0 = 2))
9 0ne2 12180 . . . . . . . . . 10 0 ≠ 2
10 eqneqall 2954 . . . . . . . . . 10 (0 = 2 → (0 ≠ 2 → 𝑃 = {𝑋, 𝑌}))
119, 10mpi 20 . . . . . . . . 9 (0 = 2 → 𝑃 = {𝑋, 𝑌})
128, 11syl6bi 252 . . . . . . . 8 ((♯‘𝑃) = 0 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
137, 12sylbi 216 . . . . . . 7 ((♯‘𝑃) = (♯‘∅) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
145, 13syl 17 . . . . . 6 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
15 hashsng 14084 . . . . . . . 8 (𝑋 ∈ V → (♯‘{𝑋}) = 1)
16 fveq2 6774 . . . . . . . . . . 11 ({𝑋} = 𝑃 → (♯‘{𝑋}) = (♯‘𝑃))
1716eqcoms 2746 . . . . . . . . . 10 (𝑃 = {𝑋} → (♯‘{𝑋}) = (♯‘𝑃))
1817eqeq1d 2740 . . . . . . . . 9 (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 ↔ (♯‘𝑃) = 1))
19 eqeq1 2742 . . . . . . . . . 10 ((♯‘𝑃) = 1 → ((♯‘𝑃) = 2 ↔ 1 = 2))
20 1ne2 12181 . . . . . . . . . . 11 1 ≠ 2
21 eqneqall 2954 . . . . . . . . . . 11 (1 = 2 → (1 ≠ 2 → 𝑃 = {𝑋, 𝑌}))
2220, 21mpi 20 . . . . . . . . . 10 (1 = 2 → 𝑃 = {𝑋, 𝑌})
2319, 22syl6bi 252 . . . . . . . . 9 ((♯‘𝑃) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
2418, 23syl6bi 252 . . . . . . . 8 (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
2515, 24syl5com 31 . . . . . . 7 (𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
26 snprc 4653 . . . . . . . 8 𝑋 ∈ V ↔ {𝑋} = ∅)
27 eqeq2 2750 . . . . . . . . 9 ({𝑋} = ∅ → (𝑃 = {𝑋} ↔ 𝑃 = ∅))
285, 6eqtrdi 2794 . . . . . . . . . . 11 (𝑃 = ∅ → (♯‘𝑃) = 0)
2928eqeq1d 2740 . . . . . . . . . 10 (𝑃 = ∅ → ((♯‘𝑃) = 2 ↔ 0 = 2))
3029, 11syl6bi 252 . . . . . . . . 9 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
3127, 30syl6bi 252 . . . . . . . 8 ({𝑋} = ∅ → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
3226, 31sylbi 216 . . . . . . 7 𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
3325, 32pm2.61i 182 . . . . . 6 (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
3414, 33jaoi 854 . . . . 5 ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
35 hashsng 14084 . . . . . . . 8 (𝑌 ∈ V → (♯‘{𝑌}) = 1)
36 fveq2 6774 . . . . . . . . . . 11 ({𝑌} = 𝑃 → (♯‘{𝑌}) = (♯‘𝑃))
3736eqcoms 2746 . . . . . . . . . 10 (𝑃 = {𝑌} → (♯‘{𝑌}) = (♯‘𝑃))
3837eqeq1d 2740 . . . . . . . . 9 (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 ↔ (♯‘𝑃) = 1))
3938, 23syl6bi 252 . . . . . . . 8 (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4035, 39syl5com 31 . . . . . . 7 (𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
41 snprc 4653 . . . . . . . 8 𝑌 ∈ V ↔ {𝑌} = ∅)
42 eqeq2 2750 . . . . . . . . 9 ({𝑌} = ∅ → (𝑃 = {𝑌} ↔ 𝑃 = ∅))
435eqeq1d 2740 . . . . . . . . . 10 (𝑃 = ∅ → ((♯‘𝑃) = 2 ↔ (♯‘∅) = 2))
446eqeq1i 2743 . . . . . . . . . . 11 ((♯‘∅) = 2 ↔ 0 = 2)
4544, 11sylbi 216 . . . . . . . . . 10 ((♯‘∅) = 2 → 𝑃 = {𝑋, 𝑌})
4643, 45syl6bi 252 . . . . . . . . 9 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
4742, 46syl6bi 252 . . . . . . . 8 ({𝑌} = ∅ → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4841, 47sylbi 216 . . . . . . 7 𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4940, 48pm2.61i 182 . . . . . 6 (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
50 ax-1 6 . . . . . 6 (𝑃 = {𝑋, 𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
5149, 50jaoi 854 . . . . 5 ((𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
5234, 51jaoi 854 . . . 4 (((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
53 elpri 4583 . . . . 5 (𝑃 ∈ {∅, {𝑋}} → (𝑃 = ∅ ∨ 𝑃 = {𝑋}))
54 elpri 4583 . . . . 5 (𝑃 ∈ {{𝑌}, {𝑋, 𝑌}} → (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}))
5553, 54orim12i 906 . . . 4 ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})))
5652, 55syl11 33 . . 3 ((♯‘𝑃) = 2 → ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → 𝑃 = {𝑋, 𝑌}))
574, 56syl5bi 241 . 2 ((♯‘𝑃) = 2 → (𝑃 ∈ 𝒫 {𝑋, 𝑌} → 𝑃 = {𝑋, 𝑌}))
5857imp 407 1 (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cun 3885  c0 4256  𝒫 cpw 4533  {csn 4561  {cpr 4563  cfv 6433  0cc0 10871  1c1 10872  2c2 12028  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  pr2pwpr  14193
  Copyright terms: Public domain W3C validator