MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2pwpr Structured version   Visualization version   GIF version

Theorem hash2pwpr 14494
Description: If the size of a subset of an unordered pair is 2, the subset is the pair itself. (Contributed by Alexander van der Vekens, 9-Dec-2018.)
Assertion
Ref Expression
hash2pwpr (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌})

Proof of Theorem hash2pwpr
StepHypRef Expression
1 pwpr 4877 . . . . 5 𝒫 {𝑋, 𝑌} = ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}})
21eleq2i 2826 . . . 4 (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ 𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}))
3 elun 4128 . . . 4 (𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}) ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}))
42, 3bitri 275 . . 3 (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}))
5 fveq2 6876 . . . . . . 7 (𝑃 = ∅ → (♯‘𝑃) = (♯‘∅))
6 hash0 14385 . . . . . . . . 9 (♯‘∅) = 0
76eqeq2i 2748 . . . . . . . 8 ((♯‘𝑃) = (♯‘∅) ↔ (♯‘𝑃) = 0)
8 eqeq1 2739 . . . . . . . . 9 ((♯‘𝑃) = 0 → ((♯‘𝑃) = 2 ↔ 0 = 2))
9 0ne2 12447 . . . . . . . . . 10 0 ≠ 2
10 eqneqall 2943 . . . . . . . . . 10 (0 = 2 → (0 ≠ 2 → 𝑃 = {𝑋, 𝑌}))
119, 10mpi 20 . . . . . . . . 9 (0 = 2 → 𝑃 = {𝑋, 𝑌})
128, 11biimtrdi 253 . . . . . . . 8 ((♯‘𝑃) = 0 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
137, 12sylbi 217 . . . . . . 7 ((♯‘𝑃) = (♯‘∅) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
145, 13syl 17 . . . . . 6 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
15 hashsng 14387 . . . . . . . 8 (𝑋 ∈ V → (♯‘{𝑋}) = 1)
16 fveq2 6876 . . . . . . . . . . 11 ({𝑋} = 𝑃 → (♯‘{𝑋}) = (♯‘𝑃))
1716eqcoms 2743 . . . . . . . . . 10 (𝑃 = {𝑋} → (♯‘{𝑋}) = (♯‘𝑃))
1817eqeq1d 2737 . . . . . . . . 9 (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 ↔ (♯‘𝑃) = 1))
19 eqeq1 2739 . . . . . . . . . 10 ((♯‘𝑃) = 1 → ((♯‘𝑃) = 2 ↔ 1 = 2))
20 1ne2 12448 . . . . . . . . . . 11 1 ≠ 2
21 eqneqall 2943 . . . . . . . . . . 11 (1 = 2 → (1 ≠ 2 → 𝑃 = {𝑋, 𝑌}))
2220, 21mpi 20 . . . . . . . . . 10 (1 = 2 → 𝑃 = {𝑋, 𝑌})
2319, 22biimtrdi 253 . . . . . . . . 9 ((♯‘𝑃) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
2418, 23biimtrdi 253 . . . . . . . 8 (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
2515, 24syl5com 31 . . . . . . 7 (𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
26 snprc 4693 . . . . . . . 8 𝑋 ∈ V ↔ {𝑋} = ∅)
27 eqeq2 2747 . . . . . . . . 9 ({𝑋} = ∅ → (𝑃 = {𝑋} ↔ 𝑃 = ∅))
285, 6eqtrdi 2786 . . . . . . . . . . 11 (𝑃 = ∅ → (♯‘𝑃) = 0)
2928eqeq1d 2737 . . . . . . . . . 10 (𝑃 = ∅ → ((♯‘𝑃) = 2 ↔ 0 = 2))
3029, 11biimtrdi 253 . . . . . . . . 9 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
3127, 30biimtrdi 253 . . . . . . . 8 ({𝑋} = ∅ → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
3226, 31sylbi 217 . . . . . . 7 𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
3325, 32pm2.61i 182 . . . . . 6 (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
3414, 33jaoi 857 . . . . 5 ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
35 hashsng 14387 . . . . . . . 8 (𝑌 ∈ V → (♯‘{𝑌}) = 1)
36 fveq2 6876 . . . . . . . . . . 11 ({𝑌} = 𝑃 → (♯‘{𝑌}) = (♯‘𝑃))
3736eqcoms 2743 . . . . . . . . . 10 (𝑃 = {𝑌} → (♯‘{𝑌}) = (♯‘𝑃))
3837eqeq1d 2737 . . . . . . . . 9 (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 ↔ (♯‘𝑃) = 1))
3938, 23biimtrdi 253 . . . . . . . 8 (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4035, 39syl5com 31 . . . . . . 7 (𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
41 snprc 4693 . . . . . . . 8 𝑌 ∈ V ↔ {𝑌} = ∅)
42 eqeq2 2747 . . . . . . . . 9 ({𝑌} = ∅ → (𝑃 = {𝑌} ↔ 𝑃 = ∅))
435eqeq1d 2737 . . . . . . . . . 10 (𝑃 = ∅ → ((♯‘𝑃) = 2 ↔ (♯‘∅) = 2))
446eqeq1i 2740 . . . . . . . . . . 11 ((♯‘∅) = 2 ↔ 0 = 2)
4544, 11sylbi 217 . . . . . . . . . 10 ((♯‘∅) = 2 → 𝑃 = {𝑋, 𝑌})
4643, 45biimtrdi 253 . . . . . . . . 9 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
4742, 46biimtrdi 253 . . . . . . . 8 ({𝑌} = ∅ → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4841, 47sylbi 217 . . . . . . 7 𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4940, 48pm2.61i 182 . . . . . 6 (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
50 ax-1 6 . . . . . 6 (𝑃 = {𝑋, 𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
5149, 50jaoi 857 . . . . 5 ((𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
5234, 51jaoi 857 . . . 4 (((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
53 elpri 4625 . . . . 5 (𝑃 ∈ {∅, {𝑋}} → (𝑃 = ∅ ∨ 𝑃 = {𝑋}))
54 elpri 4625 . . . . 5 (𝑃 ∈ {{𝑌}, {𝑋, 𝑌}} → (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}))
5553, 54orim12i 908 . . . 4 ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})))
5652, 55syl11 33 . . 3 ((♯‘𝑃) = 2 → ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → 𝑃 = {𝑋, 𝑌}))
574, 56biimtrid 242 . 2 ((♯‘𝑃) = 2 → (𝑃 ∈ 𝒫 {𝑋, 𝑌} → 𝑃 = {𝑋, 𝑌}))
5857imp 406 1 (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cun 3924  c0 4308  𝒫 cpw 4575  {csn 4601  {cpr 4603  cfv 6531  0cc0 11129  1c1 11130  2c2 12295  chash 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349
This theorem is referenced by:  pr2pwpr  14497
  Copyright terms: Public domain W3C validator