Proof of Theorem hash2pwpr
| Step | Hyp | Ref
| Expression |
| 1 | | pwpr 4877 |
. . . . 5
⊢ 𝒫
{𝑋, 𝑌} = ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}) |
| 2 | 1 | eleq2i 2826 |
. . . 4
⊢ (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ 𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}})) |
| 3 | | elun 4128 |
. . . 4
⊢ (𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}) ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}})) |
| 4 | 2, 3 | bitri 275 |
. . 3
⊢ (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}})) |
| 5 | | fveq2 6876 |
. . . . . . 7
⊢ (𝑃 = ∅ →
(♯‘𝑃) =
(♯‘∅)) |
| 6 | | hash0 14385 |
. . . . . . . . 9
⊢
(♯‘∅) = 0 |
| 7 | 6 | eqeq2i 2748 |
. . . . . . . 8
⊢
((♯‘𝑃) =
(♯‘∅) ↔ (♯‘𝑃) = 0) |
| 8 | | eqeq1 2739 |
. . . . . . . . 9
⊢
((♯‘𝑃) =
0 → ((♯‘𝑃)
= 2 ↔ 0 = 2)) |
| 9 | | 0ne2 12447 |
. . . . . . . . . 10
⊢ 0 ≠
2 |
| 10 | | eqneqall 2943 |
. . . . . . . . . 10
⊢ (0 = 2
→ (0 ≠ 2 → 𝑃 =
{𝑋, 𝑌})) |
| 11 | 9, 10 | mpi 20 |
. . . . . . . . 9
⊢ (0 = 2
→ 𝑃 = {𝑋, 𝑌}) |
| 12 | 8, 11 | biimtrdi 253 |
. . . . . . . 8
⊢
((♯‘𝑃) =
0 → ((♯‘𝑃)
= 2 → 𝑃 = {𝑋, 𝑌})) |
| 13 | 7, 12 | sylbi 217 |
. . . . . . 7
⊢
((♯‘𝑃) =
(♯‘∅) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})) |
| 14 | 5, 13 | syl 17 |
. . . . . 6
⊢ (𝑃 = ∅ →
((♯‘𝑃) = 2
→ 𝑃 = {𝑋, 𝑌})) |
| 15 | | hashsng 14387 |
. . . . . . . 8
⊢ (𝑋 ∈ V →
(♯‘{𝑋}) =
1) |
| 16 | | fveq2 6876 |
. . . . . . . . . . 11
⊢ ({𝑋} = 𝑃 → (♯‘{𝑋}) = (♯‘𝑃)) |
| 17 | 16 | eqcoms 2743 |
. . . . . . . . . 10
⊢ (𝑃 = {𝑋} → (♯‘{𝑋}) = (♯‘𝑃)) |
| 18 | 17 | eqeq1d 2737 |
. . . . . . . . 9
⊢ (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 ↔ (♯‘𝑃) = 1)) |
| 19 | | eqeq1 2739 |
. . . . . . . . . 10
⊢
((♯‘𝑃) =
1 → ((♯‘𝑃)
= 2 ↔ 1 = 2)) |
| 20 | | 1ne2 12448 |
. . . . . . . . . . 11
⊢ 1 ≠
2 |
| 21 | | eqneqall 2943 |
. . . . . . . . . . 11
⊢ (1 = 2
→ (1 ≠ 2 → 𝑃 =
{𝑋, 𝑌})) |
| 22 | 20, 21 | mpi 20 |
. . . . . . . . . 10
⊢ (1 = 2
→ 𝑃 = {𝑋, 𝑌}) |
| 23 | 19, 22 | biimtrdi 253 |
. . . . . . . . 9
⊢
((♯‘𝑃) =
1 → ((♯‘𝑃)
= 2 → 𝑃 = {𝑋, 𝑌})) |
| 24 | 18, 23 | biimtrdi 253 |
. . . . . . . 8
⊢ (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))) |
| 25 | 15, 24 | syl5com 31 |
. . . . . . 7
⊢ (𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))) |
| 26 | | snprc 4693 |
. . . . . . . 8
⊢ (¬
𝑋 ∈ V ↔ {𝑋} = ∅) |
| 27 | | eqeq2 2747 |
. . . . . . . . 9
⊢ ({𝑋} = ∅ → (𝑃 = {𝑋} ↔ 𝑃 = ∅)) |
| 28 | 5, 6 | eqtrdi 2786 |
. . . . . . . . . . 11
⊢ (𝑃 = ∅ →
(♯‘𝑃) =
0) |
| 29 | 28 | eqeq1d 2737 |
. . . . . . . . . 10
⊢ (𝑃 = ∅ →
((♯‘𝑃) = 2
↔ 0 = 2)) |
| 30 | 29, 11 | biimtrdi 253 |
. . . . . . . . 9
⊢ (𝑃 = ∅ →
((♯‘𝑃) = 2
→ 𝑃 = {𝑋, 𝑌})) |
| 31 | 27, 30 | biimtrdi 253 |
. . . . . . . 8
⊢ ({𝑋} = ∅ → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))) |
| 32 | 26, 31 | sylbi 217 |
. . . . . . 7
⊢ (¬
𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))) |
| 33 | 25, 32 | pm2.61i 182 |
. . . . . 6
⊢ (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})) |
| 34 | 14, 33 | jaoi 857 |
. . . . 5
⊢ ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})) |
| 35 | | hashsng 14387 |
. . . . . . . 8
⊢ (𝑌 ∈ V →
(♯‘{𝑌}) =
1) |
| 36 | | fveq2 6876 |
. . . . . . . . . . 11
⊢ ({𝑌} = 𝑃 → (♯‘{𝑌}) = (♯‘𝑃)) |
| 37 | 36 | eqcoms 2743 |
. . . . . . . . . 10
⊢ (𝑃 = {𝑌} → (♯‘{𝑌}) = (♯‘𝑃)) |
| 38 | 37 | eqeq1d 2737 |
. . . . . . . . 9
⊢ (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 ↔ (♯‘𝑃) = 1)) |
| 39 | 38, 23 | biimtrdi 253 |
. . . . . . . 8
⊢ (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))) |
| 40 | 35, 39 | syl5com 31 |
. . . . . . 7
⊢ (𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))) |
| 41 | | snprc 4693 |
. . . . . . . 8
⊢ (¬
𝑌 ∈ V ↔ {𝑌} = ∅) |
| 42 | | eqeq2 2747 |
. . . . . . . . 9
⊢ ({𝑌} = ∅ → (𝑃 = {𝑌} ↔ 𝑃 = ∅)) |
| 43 | 5 | eqeq1d 2737 |
. . . . . . . . . 10
⊢ (𝑃 = ∅ →
((♯‘𝑃) = 2
↔ (♯‘∅) = 2)) |
| 44 | 6 | eqeq1i 2740 |
. . . . . . . . . . 11
⊢
((♯‘∅) = 2 ↔ 0 = 2) |
| 45 | 44, 11 | sylbi 217 |
. . . . . . . . . 10
⊢
((♯‘∅) = 2 → 𝑃 = {𝑋, 𝑌}) |
| 46 | 43, 45 | biimtrdi 253 |
. . . . . . . . 9
⊢ (𝑃 = ∅ →
((♯‘𝑃) = 2
→ 𝑃 = {𝑋, 𝑌})) |
| 47 | 42, 46 | biimtrdi 253 |
. . . . . . . 8
⊢ ({𝑌} = ∅ → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))) |
| 48 | 41, 47 | sylbi 217 |
. . . . . . 7
⊢ (¬
𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))) |
| 49 | 40, 48 | pm2.61i 182 |
. . . . . 6
⊢ (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})) |
| 50 | | ax-1 6 |
. . . . . 6
⊢ (𝑃 = {𝑋, 𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})) |
| 51 | 49, 50 | jaoi 857 |
. . . . 5
⊢ ((𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})) |
| 52 | 34, 51 | jaoi 857 |
. . . 4
⊢ (((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})) |
| 53 | | elpri 4625 |
. . . . 5
⊢ (𝑃 ∈ {∅, {𝑋}} → (𝑃 = ∅ ∨ 𝑃 = {𝑋})) |
| 54 | | elpri 4625 |
. . . . 5
⊢ (𝑃 ∈ {{𝑌}, {𝑋, 𝑌}} → (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})) |
| 55 | 53, 54 | orim12i 908 |
. . . 4
⊢ ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}))) |
| 56 | 52, 55 | syl11 33 |
. . 3
⊢
((♯‘𝑃) =
2 → ((𝑃 ∈
{∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → 𝑃 = {𝑋, 𝑌})) |
| 57 | 4, 56 | biimtrid 242 |
. 2
⊢
((♯‘𝑃) =
2 → (𝑃 ∈
𝒫 {𝑋, 𝑌} → 𝑃 = {𝑋, 𝑌})) |
| 58 | 57 | imp 406 |
1
⊢
(((♯‘𝑃)
= 2 ∧ 𝑃 ∈
𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌}) |