MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2pwpr Structured version   Visualization version   GIF version

Theorem hash2pwpr 14433
Description: If the size of a subset of an unordered pair is 2, the subset is the pair itself. (Contributed by Alexander van der Vekens, 9-Dec-2018.)
Assertion
Ref Expression
hash2pwpr (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌})

Proof of Theorem hash2pwpr
StepHypRef Expression
1 pwpr 4901 . . . . 5 𝒫 {𝑋, 𝑌} = ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}})
21eleq2i 2825 . . . 4 (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ 𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}))
3 elun 4147 . . . 4 (𝑃 ∈ ({∅, {𝑋}} ∪ {{𝑌}, {𝑋, 𝑌}}) ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}))
42, 3bitri 274 . . 3 (𝑃 ∈ 𝒫 {𝑋, 𝑌} ↔ (𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}))
5 fveq2 6888 . . . . . . 7 (𝑃 = ∅ → (♯‘𝑃) = (♯‘∅))
6 hash0 14323 . . . . . . . . 9 (♯‘∅) = 0
76eqeq2i 2745 . . . . . . . 8 ((♯‘𝑃) = (♯‘∅) ↔ (♯‘𝑃) = 0)
8 eqeq1 2736 . . . . . . . . 9 ((♯‘𝑃) = 0 → ((♯‘𝑃) = 2 ↔ 0 = 2))
9 0ne2 12415 . . . . . . . . . 10 0 ≠ 2
10 eqneqall 2951 . . . . . . . . . 10 (0 = 2 → (0 ≠ 2 → 𝑃 = {𝑋, 𝑌}))
119, 10mpi 20 . . . . . . . . 9 (0 = 2 → 𝑃 = {𝑋, 𝑌})
128, 11syl6bi 252 . . . . . . . 8 ((♯‘𝑃) = 0 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
137, 12sylbi 216 . . . . . . 7 ((♯‘𝑃) = (♯‘∅) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
145, 13syl 17 . . . . . 6 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
15 hashsng 14325 . . . . . . . 8 (𝑋 ∈ V → (♯‘{𝑋}) = 1)
16 fveq2 6888 . . . . . . . . . . 11 ({𝑋} = 𝑃 → (♯‘{𝑋}) = (♯‘𝑃))
1716eqcoms 2740 . . . . . . . . . 10 (𝑃 = {𝑋} → (♯‘{𝑋}) = (♯‘𝑃))
1817eqeq1d 2734 . . . . . . . . 9 (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 ↔ (♯‘𝑃) = 1))
19 eqeq1 2736 . . . . . . . . . 10 ((♯‘𝑃) = 1 → ((♯‘𝑃) = 2 ↔ 1 = 2))
20 1ne2 12416 . . . . . . . . . . 11 1 ≠ 2
21 eqneqall 2951 . . . . . . . . . . 11 (1 = 2 → (1 ≠ 2 → 𝑃 = {𝑋, 𝑌}))
2220, 21mpi 20 . . . . . . . . . 10 (1 = 2 → 𝑃 = {𝑋, 𝑌})
2319, 22syl6bi 252 . . . . . . . . 9 ((♯‘𝑃) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
2418, 23syl6bi 252 . . . . . . . 8 (𝑃 = {𝑋} → ((♯‘{𝑋}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
2515, 24syl5com 31 . . . . . . 7 (𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
26 snprc 4720 . . . . . . . 8 𝑋 ∈ V ↔ {𝑋} = ∅)
27 eqeq2 2744 . . . . . . . . 9 ({𝑋} = ∅ → (𝑃 = {𝑋} ↔ 𝑃 = ∅))
285, 6eqtrdi 2788 . . . . . . . . . . 11 (𝑃 = ∅ → (♯‘𝑃) = 0)
2928eqeq1d 2734 . . . . . . . . . 10 (𝑃 = ∅ → ((♯‘𝑃) = 2 ↔ 0 = 2))
3029, 11syl6bi 252 . . . . . . . . 9 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
3127, 30syl6bi 252 . . . . . . . 8 ({𝑋} = ∅ → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
3226, 31sylbi 216 . . . . . . 7 𝑋 ∈ V → (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
3325, 32pm2.61i 182 . . . . . 6 (𝑃 = {𝑋} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
3414, 33jaoi 855 . . . . 5 ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
35 hashsng 14325 . . . . . . . 8 (𝑌 ∈ V → (♯‘{𝑌}) = 1)
36 fveq2 6888 . . . . . . . . . . 11 ({𝑌} = 𝑃 → (♯‘{𝑌}) = (♯‘𝑃))
3736eqcoms 2740 . . . . . . . . . 10 (𝑃 = {𝑌} → (♯‘{𝑌}) = (♯‘𝑃))
3837eqeq1d 2734 . . . . . . . . 9 (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 ↔ (♯‘𝑃) = 1))
3938, 23syl6bi 252 . . . . . . . 8 (𝑃 = {𝑌} → ((♯‘{𝑌}) = 1 → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4035, 39syl5com 31 . . . . . . 7 (𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
41 snprc 4720 . . . . . . . 8 𝑌 ∈ V ↔ {𝑌} = ∅)
42 eqeq2 2744 . . . . . . . . 9 ({𝑌} = ∅ → (𝑃 = {𝑌} ↔ 𝑃 = ∅))
435eqeq1d 2734 . . . . . . . . . 10 (𝑃 = ∅ → ((♯‘𝑃) = 2 ↔ (♯‘∅) = 2))
446eqeq1i 2737 . . . . . . . . . . 11 ((♯‘∅) = 2 ↔ 0 = 2)
4544, 11sylbi 216 . . . . . . . . . 10 ((♯‘∅) = 2 → 𝑃 = {𝑋, 𝑌})
4643, 45syl6bi 252 . . . . . . . . 9 (𝑃 = ∅ → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
4742, 46syl6bi 252 . . . . . . . 8 ({𝑌} = ∅ → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4841, 47sylbi 216 . . . . . . 7 𝑌 ∈ V → (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌})))
4940, 48pm2.61i 182 . . . . . 6 (𝑃 = {𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
50 ax-1 6 . . . . . 6 (𝑃 = {𝑋, 𝑌} → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
5149, 50jaoi 855 . . . . 5 ((𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
5234, 51jaoi 855 . . . 4 (((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})) → ((♯‘𝑃) = 2 → 𝑃 = {𝑋, 𝑌}))
53 elpri 4649 . . . . 5 (𝑃 ∈ {∅, {𝑋}} → (𝑃 = ∅ ∨ 𝑃 = {𝑋}))
54 elpri 4649 . . . . 5 (𝑃 ∈ {{𝑌}, {𝑋, 𝑌}} → (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌}))
5553, 54orim12i 907 . . . 4 ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → ((𝑃 = ∅ ∨ 𝑃 = {𝑋}) ∨ (𝑃 = {𝑌} ∨ 𝑃 = {𝑋, 𝑌})))
5652, 55syl11 33 . . 3 ((♯‘𝑃) = 2 → ((𝑃 ∈ {∅, {𝑋}} ∨ 𝑃 ∈ {{𝑌}, {𝑋, 𝑌}}) → 𝑃 = {𝑋, 𝑌}))
574, 56biimtrid 241 . 2 ((♯‘𝑃) = 2 → (𝑃 ∈ 𝒫 {𝑋, 𝑌} → 𝑃 = {𝑋, 𝑌}))
5857imp 407 1 (((♯‘𝑃) = 2 ∧ 𝑃 ∈ 𝒫 {𝑋, 𝑌}) → 𝑃 = {𝑋, 𝑌})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  cun 3945  c0 4321  𝒫 cpw 4601  {csn 4627  {cpr 4629  cfv 6540  0cc0 11106  1c1 11107  2c2 12263  chash 14286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287
This theorem is referenced by:  pr2pwpr  14436
  Copyright terms: Public domain W3C validator