MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2pwpr Structured version   Visualization version   GIF version

Theorem pr2pwpr 14497
Description: The set of subsets of a pair having length 2 is the set of the pair as singleton. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pr2pwpr ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} = {{𝐴, 𝐵}})
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝
Allowed substitution hints:   𝑉(𝑝)   𝑊(𝑝)

Proof of Theorem pr2pwpr
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4582 . . . . . . 7 (𝑠 ∈ 𝒫 {𝐴, 𝐵} → 𝑠 ⊆ {𝐴, 𝐵})
2 prfi 9335 . . . . . . . . 9 {𝐴, 𝐵} ∈ Fin
3 ssfi 9187 . . . . . . . . 9 (({𝐴, 𝐵} ∈ Fin ∧ 𝑠 ⊆ {𝐴, 𝐵}) → 𝑠 ∈ Fin)
42, 3mpan 690 . . . . . . . 8 (𝑠 ⊆ {𝐴, 𝐵} → 𝑠 ∈ Fin)
5 hash2 14423 . . . . . . . . . . . . . 14 (♯‘2o) = 2
65eqcomi 2744 . . . . . . . . . . . . 13 2 = (♯‘2o)
76a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ Fin → 2 = (♯‘2o))
87eqeq2d 2746 . . . . . . . . . . 11 (𝑠 ∈ Fin → ((♯‘𝑠) = 2 ↔ (♯‘𝑠) = (♯‘2o)))
9 2onn 8654 . . . . . . . . . . . . 13 2o ∈ ω
10 nnfi 9181 . . . . . . . . . . . . 13 (2o ∈ ω → 2o ∈ Fin)
119, 10ax-mp 5 . . . . . . . . . . . 12 2o ∈ Fin
12 hashen 14365 . . . . . . . . . . . 12 ((𝑠 ∈ Fin ∧ 2o ∈ Fin) → ((♯‘𝑠) = (♯‘2o) ↔ 𝑠 ≈ 2o))
1311, 12mpan2 691 . . . . . . . . . . 11 (𝑠 ∈ Fin → ((♯‘𝑠) = (♯‘2o) ↔ 𝑠 ≈ 2o))
148, 13bitrd 279 . . . . . . . . . 10 (𝑠 ∈ Fin → ((♯‘𝑠) = 2 ↔ 𝑠 ≈ 2o))
15 hash2pwpr 14494 . . . . . . . . . . . 12 (((♯‘𝑠) = 2 ∧ 𝑠 ∈ 𝒫 {𝐴, 𝐵}) → 𝑠 = {𝐴, 𝐵})
1615a1d 25 . . . . . . . . . . 11 (((♯‘𝑠) = 2 ∧ 𝑠 ∈ 𝒫 {𝐴, 𝐵}) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))
1716ex 412 . . . . . . . . . 10 ((♯‘𝑠) = 2 → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵})))
1814, 17biimtrrdi 254 . . . . . . . . 9 (𝑠 ∈ Fin → (𝑠 ≈ 2o → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
1918com23 86 . . . . . . . 8 (𝑠 ∈ Fin → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
204, 19syl 17 . . . . . . 7 (𝑠 ⊆ {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
211, 20mpcom 38 . . . . . 6 (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵})))
2221imp 406 . . . . 5 ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))
2322com12 32 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) → 𝑠 = {𝐴, 𝐵}))
24 prex 5407 . . . . . . . . . . . . 13 {𝐴, 𝐵} ∈ V
2524prid2 4739 . . . . . . . . . . . 12 {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}
2625a1i 11 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}})
2726olcd 874 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ∈ {∅, {𝐴}} ∨ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}))
28 elun 4128 . . . . . . . . . 10 ({𝐴, 𝐵} ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ ({𝐴, 𝐵} ∈ {∅, {𝐴}} ∨ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}))
2927, 28sylibr 234 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}))
30 pwpr 4877 . . . . . . . . 9 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})
3129, 30eleqtrrdi 2845 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵})
3231adantr 480 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵})
33 eleq1 2822 . . . . . . . 8 (𝑠 = {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ↔ {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵}))
3433adantl 481 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ↔ {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵}))
3532, 34mpbird 257 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → 𝑠 ∈ 𝒫 {𝐴, 𝐵})
36 enpr2 10016 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
3736adantr 480 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → {𝐴, 𝐵} ≈ 2o)
38 breq1 5122 . . . . . . . 8 (𝑠 = {𝐴, 𝐵} → (𝑠 ≈ 2o ↔ {𝐴, 𝐵} ≈ 2o))
3938adantl 481 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ≈ 2o ↔ {𝐴, 𝐵} ≈ 2o))
4037, 39mpbird 257 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → 𝑠 ≈ 2o)
4135, 40jca 511 . . . . 5 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o))
4241ex 412 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝑠 = {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o)))
4323, 42impbid 212 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) ↔ 𝑠 = {𝐴, 𝐵}))
44 breq1 5122 . . . 4 (𝑝 = 𝑠 → (𝑝 ≈ 2o𝑠 ≈ 2o))
4544elrab 3671 . . 3 (𝑠 ∈ {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} ↔ (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o))
46 velsn 4617 . . 3 (𝑠 ∈ {{𝐴, 𝐵}} ↔ 𝑠 = {𝐴, 𝐵})
4743, 45, 463bitr4g 314 . 2 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝑠 ∈ {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} ↔ 𝑠 ∈ {{𝐴, 𝐵}}))
4847eqrdv 2733 1 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} = {{𝐴, 𝐵}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  {crab 3415  cun 3924  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  {cpr 4603   class class class wbr 5119  cfv 6531  ωcom 7861  2oc2o 8474  cen 8956  Fincfn 8959  2c2 12295  chash 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349
This theorem is referenced by:  pmtrprfval  19468
  Copyright terms: Public domain W3C validator