Step | Hyp | Ref
| Expression |
1 | | elpwi 4542 |
. . . . . . 7
⊢ (𝑠 ∈ 𝒫 {𝐴, 𝐵} → 𝑠 ⊆ {𝐴, 𝐵}) |
2 | | prfi 9089 |
. . . . . . . . 9
⊢ {𝐴, 𝐵} ∈ Fin |
3 | | ssfi 8956 |
. . . . . . . . 9
⊢ (({𝐴, 𝐵} ∈ Fin ∧ 𝑠 ⊆ {𝐴, 𝐵}) → 𝑠 ∈ Fin) |
4 | 2, 3 | mpan 687 |
. . . . . . . 8
⊢ (𝑠 ⊆ {𝐴, 𝐵} → 𝑠 ∈ Fin) |
5 | | hash2 14120 |
. . . . . . . . . . . . . 14
⊢
(♯‘2o) = 2 |
6 | 5 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ 2 =
(♯‘2o) |
7 | 6 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ Fin → 2 =
(♯‘2o)) |
8 | 7 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ Fin →
((♯‘𝑠) = 2
↔ (♯‘𝑠) =
(♯‘2o))) |
9 | | 2onn 8472 |
. . . . . . . . . . . . 13
⊢
2o ∈ ω |
10 | | nnfi 8950 |
. . . . . . . . . . . . 13
⊢
(2o ∈ ω → 2o ∈
Fin) |
11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
2o ∈ Fin |
12 | | hashen 14061 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ Fin ∧ 2o
∈ Fin) → ((♯‘𝑠) = (♯‘2o) ↔
𝑠 ≈
2o)) |
13 | 11, 12 | mpan2 688 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ Fin →
((♯‘𝑠) =
(♯‘2o) ↔ 𝑠 ≈ 2o)) |
14 | 8, 13 | bitrd 278 |
. . . . . . . . . 10
⊢ (𝑠 ∈ Fin →
((♯‘𝑠) = 2
↔ 𝑠 ≈
2o)) |
15 | | hash2pwpr 14190 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑠)
= 2 ∧ 𝑠 ∈
𝒫 {𝐴, 𝐵}) → 𝑠 = {𝐴, 𝐵}) |
16 | 15 | a1d 25 |
. . . . . . . . . . 11
⊢
(((♯‘𝑠)
= 2 ∧ 𝑠 ∈
𝒫 {𝐴, 𝐵}) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝑠 = {𝐴, 𝐵})) |
17 | 16 | ex 413 |
. . . . . . . . . 10
⊢
((♯‘𝑠) =
2 → (𝑠 ∈
𝒫 {𝐴, 𝐵} → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝑠 = {𝐴, 𝐵}))) |
18 | 14, 17 | syl6bir 253 |
. . . . . . . . 9
⊢ (𝑠 ∈ Fin → (𝑠 ≈ 2o →
(𝑠 ∈ 𝒫 {𝐴, 𝐵} → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝑠 = {𝐴, 𝐵})))) |
19 | 18 | com23 86 |
. . . . . . . 8
⊢ (𝑠 ∈ Fin → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝑠 = {𝐴, 𝐵})))) |
20 | 4, 19 | syl 17 |
. . . . . . 7
⊢ (𝑠 ⊆ {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝑠 = {𝐴, 𝐵})))) |
21 | 1, 20 | mpcom 38 |
. . . . . 6
⊢ (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝑠 = {𝐴, 𝐵}))) |
22 | 21 | imp 407 |
. . . . 5
⊢ ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → 𝑠 = {𝐴, 𝐵})) |
23 | 22 | com12 32 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) → 𝑠 = {𝐴, 𝐵})) |
24 | | prex 5355 |
. . . . . . . . . . . . 13
⊢ {𝐴, 𝐵} ∈ V |
25 | 24 | prid2 4699 |
. . . . . . . . . . . 12
⊢ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}} |
26 | 25 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}) |
27 | 26 | olcd 871 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ∈ {∅, {𝐴}} ∨ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}})) |
28 | | elun 4083 |
. . . . . . . . . 10
⊢ ({𝐴, 𝐵} ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ ({𝐴, 𝐵} ∈ {∅, {𝐴}} ∨ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}})) |
29 | 27, 28 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})) |
30 | | pwpr 4833 |
. . . . . . . . 9
⊢ 𝒫
{𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) |
31 | 29, 30 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵}) |
32 | 31 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵}) |
33 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑠 = {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ↔ {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵})) |
34 | 33 | adantl 482 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ↔ {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵})) |
35 | 32, 34 | mpbird 256 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → 𝑠 ∈ 𝒫 {𝐴, 𝐵}) |
36 | | pr2nelem 9760 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
37 | 36 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → {𝐴, 𝐵} ≈ 2o) |
38 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑠 = {𝐴, 𝐵} → (𝑠 ≈ 2o ↔ {𝐴, 𝐵} ≈ 2o)) |
39 | 38 | adantl 482 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ≈ 2o ↔ {𝐴, 𝐵} ≈ 2o)) |
40 | 37, 39 | mpbird 256 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → 𝑠 ≈ 2o) |
41 | 35, 40 | jca 512 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o)) |
42 | 41 | ex 413 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝑠 = {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o))) |
43 | 23, 42 | impbid 211 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) ↔ 𝑠 = {𝐴, 𝐵})) |
44 | | breq1 5077 |
. . . 4
⊢ (𝑝 = 𝑠 → (𝑝 ≈ 2o ↔ 𝑠 ≈
2o)) |
45 | 44 | elrab 3624 |
. . 3
⊢ (𝑠 ∈ {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} ↔ (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o)) |
46 | | velsn 4577 |
. . 3
⊢ (𝑠 ∈ {{𝐴, 𝐵}} ↔ 𝑠 = {𝐴, 𝐵}) |
47 | 43, 45, 46 | 3bitr4g 314 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝑠 ∈ {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} ↔ 𝑠 ∈ {{𝐴, 𝐵}})) |
48 | 47 | eqrdv 2736 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} = {{𝐴, 𝐵}}) |