MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2pwpr Structured version   Visualization version   GIF version

Theorem pr2pwpr 14439
Description: The set of subsets of a pair having length 2 is the set of the pair as singleton. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pr2pwpr ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} = {{𝐴, 𝐵}})
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝
Allowed substitution hints:   𝑉(𝑝)   𝑊(𝑝)

Proof of Theorem pr2pwpr
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4609 . . . . . . 7 (𝑠 ∈ 𝒫 {𝐴, 𝐵} → 𝑠 ⊆ {𝐴, 𝐵})
2 prfi 9321 . . . . . . . . 9 {𝐴, 𝐵} ∈ Fin
3 ssfi 9172 . . . . . . . . 9 (({𝐴, 𝐵} ∈ Fin ∧ 𝑠 ⊆ {𝐴, 𝐵}) → 𝑠 ∈ Fin)
42, 3mpan 688 . . . . . . . 8 (𝑠 ⊆ {𝐴, 𝐵} → 𝑠 ∈ Fin)
5 hash2 14364 . . . . . . . . . . . . . 14 (♯‘2o) = 2
65eqcomi 2741 . . . . . . . . . . . . 13 2 = (♯‘2o)
76a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ Fin → 2 = (♯‘2o))
87eqeq2d 2743 . . . . . . . . . . 11 (𝑠 ∈ Fin → ((♯‘𝑠) = 2 ↔ (♯‘𝑠) = (♯‘2o)))
9 2onn 8640 . . . . . . . . . . . . 13 2o ∈ ω
10 nnfi 9166 . . . . . . . . . . . . 13 (2o ∈ ω → 2o ∈ Fin)
119, 10ax-mp 5 . . . . . . . . . . . 12 2o ∈ Fin
12 hashen 14306 . . . . . . . . . . . 12 ((𝑠 ∈ Fin ∧ 2o ∈ Fin) → ((♯‘𝑠) = (♯‘2o) ↔ 𝑠 ≈ 2o))
1311, 12mpan2 689 . . . . . . . . . . 11 (𝑠 ∈ Fin → ((♯‘𝑠) = (♯‘2o) ↔ 𝑠 ≈ 2o))
148, 13bitrd 278 . . . . . . . . . 10 (𝑠 ∈ Fin → ((♯‘𝑠) = 2 ↔ 𝑠 ≈ 2o))
15 hash2pwpr 14436 . . . . . . . . . . . 12 (((♯‘𝑠) = 2 ∧ 𝑠 ∈ 𝒫 {𝐴, 𝐵}) → 𝑠 = {𝐴, 𝐵})
1615a1d 25 . . . . . . . . . . 11 (((♯‘𝑠) = 2 ∧ 𝑠 ∈ 𝒫 {𝐴, 𝐵}) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))
1716ex 413 . . . . . . . . . 10 ((♯‘𝑠) = 2 → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵})))
1814, 17syl6bir 253 . . . . . . . . 9 (𝑠 ∈ Fin → (𝑠 ≈ 2o → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
1918com23 86 . . . . . . . 8 (𝑠 ∈ Fin → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
204, 19syl 17 . . . . . . 7 (𝑠 ⊆ {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
211, 20mpcom 38 . . . . . 6 (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵})))
2221imp 407 . . . . 5 ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))
2322com12 32 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) → 𝑠 = {𝐴, 𝐵}))
24 prex 5432 . . . . . . . . . . . . 13 {𝐴, 𝐵} ∈ V
2524prid2 4767 . . . . . . . . . . . 12 {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}
2625a1i 11 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}})
2726olcd 872 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ∈ {∅, {𝐴}} ∨ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}))
28 elun 4148 . . . . . . . . . 10 ({𝐴, 𝐵} ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ ({𝐴, 𝐵} ∈ {∅, {𝐴}} ∨ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}))
2927, 28sylibr 233 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}))
30 pwpr 4902 . . . . . . . . 9 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})
3129, 30eleqtrrdi 2844 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵})
3231adantr 481 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵})
33 eleq1 2821 . . . . . . . 8 (𝑠 = {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ↔ {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵}))
3433adantl 482 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ↔ {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵}))
3532, 34mpbird 256 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → 𝑠 ∈ 𝒫 {𝐴, 𝐵})
36 enpr2 9996 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
3736adantr 481 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → {𝐴, 𝐵} ≈ 2o)
38 breq1 5151 . . . . . . . 8 (𝑠 = {𝐴, 𝐵} → (𝑠 ≈ 2o ↔ {𝐴, 𝐵} ≈ 2o))
3938adantl 482 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ≈ 2o ↔ {𝐴, 𝐵} ≈ 2o))
4037, 39mpbird 256 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → 𝑠 ≈ 2o)
4135, 40jca 512 . . . . 5 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o))
4241ex 413 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝑠 = {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o)))
4323, 42impbid 211 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) ↔ 𝑠 = {𝐴, 𝐵}))
44 breq1 5151 . . . 4 (𝑝 = 𝑠 → (𝑝 ≈ 2o𝑠 ≈ 2o))
4544elrab 3683 . . 3 (𝑠 ∈ {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} ↔ (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o))
46 velsn 4644 . . 3 (𝑠 ∈ {{𝐴, 𝐵}} ↔ 𝑠 = {𝐴, 𝐵})
4743, 45, 463bitr4g 313 . 2 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝑠 ∈ {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} ↔ 𝑠 ∈ {{𝐴, 𝐵}}))
4847eqrdv 2730 1 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} = {{𝐴, 𝐵}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  {crab 3432  cun 3946  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628  {cpr 4630   class class class wbr 5148  cfv 6543  ωcom 7854  2oc2o 8459  cen 8935  Fincfn 8938  2c2 12266  chash 14289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-hash 14290
This theorem is referenced by:  pmtrprfval  19354
  Copyright terms: Public domain W3C validator