MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2pwpr Structured version   Visualization version   GIF version

Theorem pr2pwpr 14384
Description: The set of subsets of a pair having length 2 is the set of the pair as singleton. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pr2pwpr ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} = {{𝐴, 𝐵}})
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝
Allowed substitution hints:   𝑉(𝑝)   𝑊(𝑝)

Proof of Theorem pr2pwpr
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4568 . . . . . . 7 (𝑠 ∈ 𝒫 {𝐴, 𝐵} → 𝑠 ⊆ {𝐴, 𝐵})
2 prfi 9269 . . . . . . . . 9 {𝐴, 𝐵} ∈ Fin
3 ssfi 9120 . . . . . . . . 9 (({𝐴, 𝐵} ∈ Fin ∧ 𝑠 ⊆ {𝐴, 𝐵}) → 𝑠 ∈ Fin)
42, 3mpan 689 . . . . . . . 8 (𝑠 ⊆ {𝐴, 𝐵} → 𝑠 ∈ Fin)
5 hash2 14311 . . . . . . . . . . . . . 14 (♯‘2o) = 2
65eqcomi 2742 . . . . . . . . . . . . 13 2 = (♯‘2o)
76a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ Fin → 2 = (♯‘2o))
87eqeq2d 2744 . . . . . . . . . . 11 (𝑠 ∈ Fin → ((♯‘𝑠) = 2 ↔ (♯‘𝑠) = (♯‘2o)))
9 2onn 8589 . . . . . . . . . . . . 13 2o ∈ ω
10 nnfi 9114 . . . . . . . . . . . . 13 (2o ∈ ω → 2o ∈ Fin)
119, 10ax-mp 5 . . . . . . . . . . . 12 2o ∈ Fin
12 hashen 14253 . . . . . . . . . . . 12 ((𝑠 ∈ Fin ∧ 2o ∈ Fin) → ((♯‘𝑠) = (♯‘2o) ↔ 𝑠 ≈ 2o))
1311, 12mpan2 690 . . . . . . . . . . 11 (𝑠 ∈ Fin → ((♯‘𝑠) = (♯‘2o) ↔ 𝑠 ≈ 2o))
148, 13bitrd 279 . . . . . . . . . 10 (𝑠 ∈ Fin → ((♯‘𝑠) = 2 ↔ 𝑠 ≈ 2o))
15 hash2pwpr 14381 . . . . . . . . . . . 12 (((♯‘𝑠) = 2 ∧ 𝑠 ∈ 𝒫 {𝐴, 𝐵}) → 𝑠 = {𝐴, 𝐵})
1615a1d 25 . . . . . . . . . . 11 (((♯‘𝑠) = 2 ∧ 𝑠 ∈ 𝒫 {𝐴, 𝐵}) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))
1716ex 414 . . . . . . . . . 10 ((♯‘𝑠) = 2 → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵})))
1814, 17syl6bir 254 . . . . . . . . 9 (𝑠 ∈ Fin → (𝑠 ≈ 2o → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
1918com23 86 . . . . . . . 8 (𝑠 ∈ Fin → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
204, 19syl 17 . . . . . . 7 (𝑠 ⊆ {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
211, 20mpcom 38 . . . . . 6 (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵})))
2221imp 408 . . . . 5 ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))
2322com12 32 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) → 𝑠 = {𝐴, 𝐵}))
24 prex 5390 . . . . . . . . . . . . 13 {𝐴, 𝐵} ∈ V
2524prid2 4725 . . . . . . . . . . . 12 {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}
2625a1i 11 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}})
2726olcd 873 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ∈ {∅, {𝐴}} ∨ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}))
28 elun 4109 . . . . . . . . . 10 ({𝐴, 𝐵} ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ ({𝐴, 𝐵} ∈ {∅, {𝐴}} ∨ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}))
2927, 28sylibr 233 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}))
30 pwpr 4860 . . . . . . . . 9 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})
3129, 30eleqtrrdi 2845 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵})
3231adantr 482 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵})
33 eleq1 2822 . . . . . . . 8 (𝑠 = {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ↔ {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵}))
3433adantl 483 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ↔ {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵}))
3532, 34mpbird 257 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → 𝑠 ∈ 𝒫 {𝐴, 𝐵})
36 enpr2 9943 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
3736adantr 482 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → {𝐴, 𝐵} ≈ 2o)
38 breq1 5109 . . . . . . . 8 (𝑠 = {𝐴, 𝐵} → (𝑠 ≈ 2o ↔ {𝐴, 𝐵} ≈ 2o))
3938adantl 483 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ≈ 2o ↔ {𝐴, 𝐵} ≈ 2o))
4037, 39mpbird 257 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → 𝑠 ≈ 2o)
4135, 40jca 513 . . . . 5 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o))
4241ex 414 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝑠 = {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o)))
4323, 42impbid 211 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) ↔ 𝑠 = {𝐴, 𝐵}))
44 breq1 5109 . . . 4 (𝑝 = 𝑠 → (𝑝 ≈ 2o𝑠 ≈ 2o))
4544elrab 3646 . . 3 (𝑠 ∈ {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} ↔ (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o))
46 velsn 4603 . . 3 (𝑠 ∈ {{𝐴, 𝐵}} ↔ 𝑠 = {𝐴, 𝐵})
4743, 45, 463bitr4g 314 . 2 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝑠 ∈ {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} ↔ 𝑠 ∈ {{𝐴, 𝐵}}))
4847eqrdv 2731 1 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} = {{𝐴, 𝐵}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2940  {crab 3406  cun 3909  wss 3911  c0 4283  𝒫 cpw 4561  {csn 4587  {cpr 4589   class class class wbr 5106  cfv 6497  ωcom 7803  2oc2o 8407  cen 8883  Fincfn 8886  2c2 12213  chash 14236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-oadd 8417  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-dju 9842  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-hash 14237
This theorem is referenced by:  pmtrprfval  19274
  Copyright terms: Public domain W3C validator