MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2pwpr Structured version   Visualization version   GIF version

Theorem pr2pwpr 14420
Description: The set of subsets of a pair having length 2 is the set of the pair as singleton. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pr2pwpr ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} = {{𝐴, 𝐵}})
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝
Allowed substitution hints:   𝑉(𝑝)   𝑊(𝑝)

Proof of Theorem pr2pwpr
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4566 . . . . . . 7 (𝑠 ∈ 𝒫 {𝐴, 𝐵} → 𝑠 ⊆ {𝐴, 𝐵})
2 prfi 9250 . . . . . . . . 9 {𝐴, 𝐵} ∈ Fin
3 ssfi 9114 . . . . . . . . 9 (({𝐴, 𝐵} ∈ Fin ∧ 𝑠 ⊆ {𝐴, 𝐵}) → 𝑠 ∈ Fin)
42, 3mpan 690 . . . . . . . 8 (𝑠 ⊆ {𝐴, 𝐵} → 𝑠 ∈ Fin)
5 hash2 14346 . . . . . . . . . . . . . 14 (♯‘2o) = 2
65eqcomi 2738 . . . . . . . . . . . . 13 2 = (♯‘2o)
76a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ Fin → 2 = (♯‘2o))
87eqeq2d 2740 . . . . . . . . . . 11 (𝑠 ∈ Fin → ((♯‘𝑠) = 2 ↔ (♯‘𝑠) = (♯‘2o)))
9 2onn 8583 . . . . . . . . . . . . 13 2o ∈ ω
10 nnfi 9108 . . . . . . . . . . . . 13 (2o ∈ ω → 2o ∈ Fin)
119, 10ax-mp 5 . . . . . . . . . . . 12 2o ∈ Fin
12 hashen 14288 . . . . . . . . . . . 12 ((𝑠 ∈ Fin ∧ 2o ∈ Fin) → ((♯‘𝑠) = (♯‘2o) ↔ 𝑠 ≈ 2o))
1311, 12mpan2 691 . . . . . . . . . . 11 (𝑠 ∈ Fin → ((♯‘𝑠) = (♯‘2o) ↔ 𝑠 ≈ 2o))
148, 13bitrd 279 . . . . . . . . . 10 (𝑠 ∈ Fin → ((♯‘𝑠) = 2 ↔ 𝑠 ≈ 2o))
15 hash2pwpr 14417 . . . . . . . . . . . 12 (((♯‘𝑠) = 2 ∧ 𝑠 ∈ 𝒫 {𝐴, 𝐵}) → 𝑠 = {𝐴, 𝐵})
1615a1d 25 . . . . . . . . . . 11 (((♯‘𝑠) = 2 ∧ 𝑠 ∈ 𝒫 {𝐴, 𝐵}) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))
1716ex 412 . . . . . . . . . 10 ((♯‘𝑠) = 2 → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵})))
1814, 17biimtrrdi 254 . . . . . . . . 9 (𝑠 ∈ Fin → (𝑠 ≈ 2o → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
1918com23 86 . . . . . . . 8 (𝑠 ∈ Fin → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
204, 19syl 17 . . . . . . 7 (𝑠 ⊆ {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))))
211, 20mpcom 38 . . . . . 6 (𝑠 ∈ 𝒫 {𝐴, 𝐵} → (𝑠 ≈ 2o → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵})))
2221imp 406 . . . . 5 ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) → ((𝐴𝑉𝐵𝑊𝐴𝐵) → 𝑠 = {𝐴, 𝐵}))
2322com12 32 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) → 𝑠 = {𝐴, 𝐵}))
24 prex 5387 . . . . . . . . . . . . 13 {𝐴, 𝐵} ∈ V
2524prid2 4723 . . . . . . . . . . . 12 {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}
2625a1i 11 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}})
2726olcd 874 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ∈ {∅, {𝐴}} ∨ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}))
28 elun 4112 . . . . . . . . . 10 ({𝐴, 𝐵} ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ ({𝐴, 𝐵} ∈ {∅, {𝐴}} ∨ {𝐴, 𝐵} ∈ {{𝐵}, {𝐴, 𝐵}}))
2927, 28sylibr 234 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}))
30 pwpr 4861 . . . . . . . . 9 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})
3129, 30eleqtrrdi 2839 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵})
3231adantr 480 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵})
33 eleq1 2816 . . . . . . . 8 (𝑠 = {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ↔ {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵}))
3433adantl 481 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ↔ {𝐴, 𝐵} ∈ 𝒫 {𝐴, 𝐵}))
3532, 34mpbird 257 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → 𝑠 ∈ 𝒫 {𝐴, 𝐵})
36 enpr2 9931 . . . . . . . 8 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
3736adantr 480 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → {𝐴, 𝐵} ≈ 2o)
38 breq1 5105 . . . . . . . 8 (𝑠 = {𝐴, 𝐵} → (𝑠 ≈ 2o ↔ {𝐴, 𝐵} ≈ 2o))
3938adantl 481 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ≈ 2o ↔ {𝐴, 𝐵} ≈ 2o))
4037, 39mpbird 257 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → 𝑠 ≈ 2o)
4135, 40jca 511 . . . . 5 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝑠 = {𝐴, 𝐵}) → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o))
4241ex 412 . . . 4 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝑠 = {𝐴, 𝐵} → (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o)))
4323, 42impbid 212 . . 3 ((𝐴𝑉𝐵𝑊𝐴𝐵) → ((𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o) ↔ 𝑠 = {𝐴, 𝐵}))
44 breq1 5105 . . . 4 (𝑝 = 𝑠 → (𝑝 ≈ 2o𝑠 ≈ 2o))
4544elrab 3656 . . 3 (𝑠 ∈ {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} ↔ (𝑠 ∈ 𝒫 {𝐴, 𝐵} ∧ 𝑠 ≈ 2o))
46 velsn 4601 . . 3 (𝑠 ∈ {{𝐴, 𝐵}} ↔ 𝑠 = {𝐴, 𝐵})
4743, 45, 463bitr4g 314 . 2 ((𝐴𝑉𝐵𝑊𝐴𝐵) → (𝑠 ∈ {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} ↔ 𝑠 ∈ {{𝐴, 𝐵}}))
4847eqrdv 2727 1 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝑝 ∈ 𝒫 {𝐴, 𝐵} ∣ 𝑝 ≈ 2o} = {{𝐴, 𝐵}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3402  cun 3909  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585  {cpr 4587   class class class wbr 5102  cfv 6499  ωcom 7822  2oc2o 8405  cen 8892  Fincfn 8895  2c2 12217  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272
This theorem is referenced by:  pmtrprfval  19393
  Copyright terms: Public domain W3C validator