Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimrecltneg Structured version   Visualization version   GIF version

Theorem pimrecltneg 42986
 Description: The preimage of an unbounded below, open interval, with negative upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimrecltneg.x 𝑥𝜑
pimrecltneg.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
pimrecltneg.n ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
pimrecltneg.c (𝜑𝐶 ∈ ℝ)
pimrecltneg.l (𝜑𝐶 < 0)
Assertion
Ref Expression
pimrecltneg (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})

Proof of Theorem pimrecltneg
StepHypRef Expression
1 pimrecltneg.x . . 3 𝑥𝜑
2 rabidim1 3379 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥𝐴)
32adantl 484 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥𝐴)
4 1red 10634 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
5 pimrecltneg.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6 pimrecltneg.l . . . . . . . . . . . 12 (𝜑𝐶 < 0)
75, 6ltned 10768 . . . . . . . . . . 11 (𝜑𝐶 ≠ 0)
84, 5, 7redivcld 11460 . . . . . . . . . 10 (𝜑 → (1 / 𝐶) ∈ ℝ)
98rexrd 10683 . . . . . . . . 9 (𝜑 → (1 / 𝐶) ∈ ℝ*)
109adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐶) ∈ ℝ*)
11 0xr 10680 . . . . . . . . 9 0 ∈ ℝ*
1211a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ∈ ℝ*)
13 pimrecltneg.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
142, 13sylan2 594 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ℝ)
15 rabidim2 41353 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → (1 / 𝐵) < 𝐶)
1615adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) < 𝐶)
174adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 1 ∈ ℝ)
18 pimrecltneg.n . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
193, 18syldan 593 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ≠ 0)
2014, 19rereccld 11459 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) ∈ ℝ)
215adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐶 ∈ ℝ)
22 0red 10636 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ∈ ℝ)
236adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐶 < 0)
2420, 21, 22, 16, 23lttrd 10793 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) < 0)
2514, 19reclt0 41647 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (𝐵 < 0 ↔ (1 / 𝐵) < 0))
2624, 25mpbird 259 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 < 0)
2717, 14, 26, 21, 23ltdiv23neg 41650 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → ((1 / 𝐵) < 𝐶 ↔ (1 / 𝐶) < 𝐵))
2816, 27mpbid 234 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐶) < 𝐵)
2910, 12, 14, 28, 26eliood 41757 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ((1 / 𝐶)(,)0))
303, 29jca 514 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)))
31 rabid 3377 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} ↔ (𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)))
3230, 31sylibr 236 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})
3332ex 415 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
3431simplbi 500 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝑥𝐴)
3534adantl 484 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝑥𝐴)
369adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐶) ∈ ℝ*)
3711a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 0 ∈ ℝ*)
3831simprbi 499 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝐵 ∈ ((1 / 𝐶)(,)0))
3938adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 ∈ ((1 / 𝐶)(,)0))
4036, 37, 39ioogtlbd 41810 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐶) < 𝐵)
414adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 1 ∈ ℝ)
425adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐶 ∈ ℝ)
436adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐶 < 0)
4435, 13syldan 593 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 ∈ ℝ)
4536, 37, 39iooltubd 41804 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 < 0)
4641, 42, 43, 44, 45ltdiv23neg 41650 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → ((1 / 𝐶) < 𝐵 ↔ (1 / 𝐵) < 𝐶))
4740, 46mpbid 234 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐵) < 𝐶)
4835, 47jca 514 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
49 rabid 3377 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
5048, 49sylibr 236 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
5150ex 415 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}))
5233, 51impbid 214 . . 3 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
531, 52alrimi 2205 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
54 nfrab1 3383 . . 3 𝑥{𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}
55 nfrab1 3383 . . 3 𝑥{𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}
5654, 55cleqf 3008 . 2 ({𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
5753, 56sylibr 236 1 (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398  ∀wal 1528   = wceq 1530  Ⅎwnf 1777   ∈ wcel 2107   ≠ wne 3014  {crab 3140   class class class wbr 5057  (class class class)co 7148  ℝcr 10528  0cc0 10529  1c1 10530  ℝ*cxr 10666   < clt 10667   / cdiv 11289  (,)cioo 12730 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-rp 12382  df-ioo 12734 This theorem is referenced by:  smfrec  43049
 Copyright terms: Public domain W3C validator