Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimrecltneg Structured version   Visualization version   GIF version

Theorem pimrecltneg 45426
Description: The preimage of an unbounded below, open interval, with negative upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimrecltneg.x 𝑥𝜑
pimrecltneg.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
pimrecltneg.n ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
pimrecltneg.c (𝜑𝐶 ∈ ℝ)
pimrecltneg.l (𝜑𝐶 < 0)
Assertion
Ref Expression
pimrecltneg (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})

Proof of Theorem pimrecltneg
StepHypRef Expression
1 pimrecltneg.x . . 3 𝑥𝜑
2 rabidim1 3453 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥𝐴)
32adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥𝐴)
4 1red 11211 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
5 pimrecltneg.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6 pimrecltneg.l . . . . . . . . . . . 12 (𝜑𝐶 < 0)
75, 6ltned 11346 . . . . . . . . . . 11 (𝜑𝐶 ≠ 0)
84, 5, 7redivcld 12038 . . . . . . . . . 10 (𝜑 → (1 / 𝐶) ∈ ℝ)
98rexrd 11260 . . . . . . . . 9 (𝜑 → (1 / 𝐶) ∈ ℝ*)
109adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐶) ∈ ℝ*)
11 0xr 11257 . . . . . . . . 9 0 ∈ ℝ*
1211a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ∈ ℝ*)
13 pimrecltneg.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
142, 13sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ℝ)
15 rabidim2 43776 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → (1 / 𝐵) < 𝐶)
1615adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) < 𝐶)
174adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 1 ∈ ℝ)
18 pimrecltneg.n . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
193, 18syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ≠ 0)
2014, 19rereccld 12037 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) ∈ ℝ)
215adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐶 ∈ ℝ)
22 0red 11213 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ∈ ℝ)
236adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐶 < 0)
2420, 21, 22, 16, 23lttrd 11371 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) < 0)
2514, 19reclt0 44087 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (𝐵 < 0 ↔ (1 / 𝐵) < 0))
2624, 25mpbird 256 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 < 0)
2717, 14, 26, 21, 23ltdiv23neg 44090 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → ((1 / 𝐵) < 𝐶 ↔ (1 / 𝐶) < 𝐵))
2816, 27mpbid 231 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐶) < 𝐵)
2910, 12, 14, 28, 26eliood 44197 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ((1 / 𝐶)(,)0))
303, 29jca 512 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)))
31 rabid 3452 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} ↔ (𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)))
3230, 31sylibr 233 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})
3332ex 413 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
3431simplbi 498 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝑥𝐴)
3534adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝑥𝐴)
369adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐶) ∈ ℝ*)
3711a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 0 ∈ ℝ*)
3831simprbi 497 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝐵 ∈ ((1 / 𝐶)(,)0))
3938adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 ∈ ((1 / 𝐶)(,)0))
4036, 37, 39ioogtlbd 44249 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐶) < 𝐵)
414adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 1 ∈ ℝ)
425adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐶 ∈ ℝ)
436adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐶 < 0)
4435, 13syldan 591 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 ∈ ℝ)
4536, 37, 39iooltubd 44243 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 < 0)
4641, 42, 43, 44, 45ltdiv23neg 44090 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → ((1 / 𝐶) < 𝐵 ↔ (1 / 𝐵) < 𝐶))
4740, 46mpbid 231 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐵) < 𝐶)
4835, 47jca 512 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
49 rabid 3452 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
5048, 49sylibr 233 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
5150ex 413 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}))
5233, 51impbid 211 . . 3 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
531, 52alrimi 2206 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
54 nfrab1 3451 . . 3 𝑥{𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}
55 nfrab1 3451 . . 3 𝑥{𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}
5654, 55cleqf 2934 . 2 ({𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
5753, 56sylibr 233 1 (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wnf 1785  wcel 2106  wne 2940  {crab 3432   class class class wbr 5147  (class class class)co 7405  cr 11105  0cc0 11106  1c1 11107  *cxr 11243   < clt 11244   / cdiv 11867  (,)cioo 13320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-rp 12971  df-ioo 13324
This theorem is referenced by:  smfrec  45491
  Copyright terms: Public domain W3C validator