Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimrecltneg Structured version   Visualization version   GIF version

Theorem pimrecltneg 46684
Description: The preimage of an unbounded below, open interval, with negative upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimrecltneg.x 𝑥𝜑
pimrecltneg.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
pimrecltneg.n ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
pimrecltneg.c (𝜑𝐶 ∈ ℝ)
pimrecltneg.l (𝜑𝐶 < 0)
Assertion
Ref Expression
pimrecltneg (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})

Proof of Theorem pimrecltneg
StepHypRef Expression
1 pimrecltneg.x . . 3 𝑥𝜑
2 rabidim1 3443 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥𝐴)
32adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥𝐴)
4 1red 11245 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
5 pimrecltneg.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6 pimrecltneg.l . . . . . . . . . . . 12 (𝜑𝐶 < 0)
75, 6ltned 11380 . . . . . . . . . . 11 (𝜑𝐶 ≠ 0)
84, 5, 7redivcld 12078 . . . . . . . . . 10 (𝜑 → (1 / 𝐶) ∈ ℝ)
98rexrd 11294 . . . . . . . . 9 (𝜑 → (1 / 𝐶) ∈ ℝ*)
109adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐶) ∈ ℝ*)
11 0xr 11291 . . . . . . . . 9 0 ∈ ℝ*
1211a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ∈ ℝ*)
13 pimrecltneg.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
142, 13sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ℝ)
15 rabidim2 45052 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → (1 / 𝐵) < 𝐶)
1615adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) < 𝐶)
174adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 1 ∈ ℝ)
18 pimrecltneg.n . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
193, 18syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ≠ 0)
2014, 19rereccld 12077 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) ∈ ℝ)
215adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐶 ∈ ℝ)
22 0red 11247 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ∈ ℝ)
236adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐶 < 0)
2420, 21, 22, 16, 23lttrd 11405 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) < 0)
2514, 19reclt0 45347 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (𝐵 < 0 ↔ (1 / 𝐵) < 0))
2624, 25mpbird 257 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 < 0)
2717, 14, 26, 21, 23ltdiv23neg 45350 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → ((1 / 𝐵) < 𝐶 ↔ (1 / 𝐶) < 𝐵))
2816, 27mpbid 232 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐶) < 𝐵)
2910, 12, 14, 28, 26eliood 45456 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ((1 / 𝐶)(,)0))
303, 29jca 511 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)))
31 rabid 3442 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} ↔ (𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)))
3230, 31sylibr 234 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})
3332ex 412 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
3431simplbi 497 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝑥𝐴)
3534adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝑥𝐴)
369adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐶) ∈ ℝ*)
3711a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 0 ∈ ℝ*)
3831simprbi 496 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝐵 ∈ ((1 / 𝐶)(,)0))
3938adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 ∈ ((1 / 𝐶)(,)0))
4036, 37, 39ioogtlbd 45508 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐶) < 𝐵)
414adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 1 ∈ ℝ)
425adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐶 ∈ ℝ)
436adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐶 < 0)
4435, 13syldan 591 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 ∈ ℝ)
4536, 37, 39iooltubd 45502 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 < 0)
4641, 42, 43, 44, 45ltdiv23neg 45350 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → ((1 / 𝐶) < 𝐵 ↔ (1 / 𝐵) < 𝐶))
4740, 46mpbid 232 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐵) < 𝐶)
4835, 47jca 511 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
49 rabid 3442 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
5048, 49sylibr 234 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
5150ex 412 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}))
5233, 51impbid 212 . . 3 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
531, 52alrimi 2212 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
54 nfrab1 3441 . . 3 𝑥{𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}
55 nfrab1 3441 . . 3 𝑥{𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}
5654, 55cleqf 2926 . 2 ({𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
5753, 56sylibr 234 1 (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wnf 1782  wcel 2107  wne 2931  {crab 3420   class class class wbr 5125  (class class class)co 7414  cr 11137  0cc0 11138  1c1 11139  *cxr 11277   < clt 11278   / cdiv 11903  (,)cioo 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-rp 13018  df-ioo 13374
This theorem is referenced by:  smfrec  46749
  Copyright terms: Public domain W3C validator