Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimrecltneg Structured version   Visualization version   GIF version

Theorem pimrecltneg 45925
Description: The preimage of an unbounded below, open interval, with negative upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimrecltneg.x 𝑥𝜑
pimrecltneg.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
pimrecltneg.n ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
pimrecltneg.c (𝜑𝐶 ∈ ℝ)
pimrecltneg.l (𝜑𝐶 < 0)
Assertion
Ref Expression
pimrecltneg (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})

Proof of Theorem pimrecltneg
StepHypRef Expression
1 pimrecltneg.x . . 3 𝑥𝜑
2 rabidim1 3445 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥𝐴)
32adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥𝐴)
4 1red 11212 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
5 pimrecltneg.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6 pimrecltneg.l . . . . . . . . . . . 12 (𝜑𝐶 < 0)
75, 6ltned 11347 . . . . . . . . . . 11 (𝜑𝐶 ≠ 0)
84, 5, 7redivcld 12039 . . . . . . . . . 10 (𝜑 → (1 / 𝐶) ∈ ℝ)
98rexrd 11261 . . . . . . . . 9 (𝜑 → (1 / 𝐶) ∈ ℝ*)
109adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐶) ∈ ℝ*)
11 0xr 11258 . . . . . . . . 9 0 ∈ ℝ*
1211a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ∈ ℝ*)
13 pimrecltneg.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
142, 13sylan2 592 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ℝ)
15 rabidim2 44279 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → (1 / 𝐵) < 𝐶)
1615adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) < 𝐶)
174adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 1 ∈ ℝ)
18 pimrecltneg.n . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
193, 18syldan 590 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ≠ 0)
2014, 19rereccld 12038 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) ∈ ℝ)
215adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐶 ∈ ℝ)
22 0red 11214 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ∈ ℝ)
236adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐶 < 0)
2420, 21, 22, 16, 23lttrd 11372 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) < 0)
2514, 19reclt0 44586 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (𝐵 < 0 ↔ (1 / 𝐵) < 0))
2624, 25mpbird 257 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 < 0)
2717, 14, 26, 21, 23ltdiv23neg 44589 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → ((1 / 𝐵) < 𝐶 ↔ (1 / 𝐶) < 𝐵))
2816, 27mpbid 231 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐶) < 𝐵)
2910, 12, 14, 28, 26eliood 44696 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ((1 / 𝐶)(,)0))
303, 29jca 511 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)))
31 rabid 3444 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} ↔ (𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)))
3230, 31sylibr 233 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})
3332ex 412 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
3431simplbi 497 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝑥𝐴)
3534adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝑥𝐴)
369adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐶) ∈ ℝ*)
3711a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 0 ∈ ℝ*)
3831simprbi 496 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝐵 ∈ ((1 / 𝐶)(,)0))
3938adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 ∈ ((1 / 𝐶)(,)0))
4036, 37, 39ioogtlbd 44748 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐶) < 𝐵)
414adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 1 ∈ ℝ)
425adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐶 ∈ ℝ)
436adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐶 < 0)
4435, 13syldan 590 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 ∈ ℝ)
4536, 37, 39iooltubd 44742 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 < 0)
4641, 42, 43, 44, 45ltdiv23neg 44589 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → ((1 / 𝐶) < 𝐵 ↔ (1 / 𝐵) < 𝐶))
4740, 46mpbid 231 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐵) < 𝐶)
4835, 47jca 511 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
49 rabid 3444 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
5048, 49sylibr 233 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
5150ex 412 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}))
5233, 51impbid 211 . . 3 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
531, 52alrimi 2198 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
54 nfrab1 3443 . . 3 𝑥{𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}
55 nfrab1 3443 . . 3 𝑥{𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}
5654, 55cleqf 2926 . 2 ({𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
5753, 56sylibr 233 1 (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wnf 1777  wcel 2098  wne 2932  {crab 3424   class class class wbr 5138  (class class class)co 7401  cr 11105  0cc0 11106  1c1 11107  *cxr 11244   < clt 11245   / cdiv 11868  (,)cioo 13321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-rp 12972  df-ioo 13325
This theorem is referenced by:  smfrec  45990
  Copyright terms: Public domain W3C validator