| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdiv | Structured version Visualization version GIF version | ||
| Description: The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfdiv.x | ⊢ Ⅎ𝑥𝜑 |
| smfdiv.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfdiv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| smfdiv.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| smfdiv.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| smfdiv.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
| smfdiv.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfdiv.n | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
| smfdiv.e | ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} |
| Ref | Expression |
|---|---|
| smfdiv | ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfdiv.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | elinel1 4201 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝑥 ∈ 𝐴) |
| 4 | smfdiv.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 5 | 3, 4 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐵 ∈ ℝ) |
| 6 | 5 | recnd 11289 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐵 ∈ ℂ) |
| 7 | smfdiv.e | . . . . . . . . 9 ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} | |
| 8 | ssrab2 4080 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} ⊆ 𝐶 | |
| 9 | 7, 8 | eqsstri 4030 | . . . . . . . 8 ⊢ 𝐸 ⊆ 𝐶 |
| 10 | elinel2 4202 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐸) | |
| 11 | 9, 10 | sselid 3981 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐶) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝑥 ∈ 𝐶) |
| 13 | smfdiv.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | |
| 14 | 12, 13 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ∈ ℝ) |
| 15 | 14 | recnd 11289 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ∈ ℂ) |
| 16 | 7 | eleq2i 2833 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐸 ↔ 𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0}) |
| 17 | 16 | biimpi 216 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0}) |
| 18 | rabidim2 45107 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} → 𝐷 ≠ 0) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝐷 ≠ 0) |
| 20 | 10, 19 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝐷 ≠ 0) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ≠ 0) |
| 22 | 6, 15, 21 | divrecd 12046 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → (𝐵 / 𝐷) = (𝐵 · (1 / 𝐷))) |
| 23 | 1, 22 | mpteq2da 5240 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 · (1 / 𝐷)))) |
| 24 | smfdiv.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 25 | smfdiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 26 | 1red 11262 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 1 ∈ ℝ) | |
| 27 | 9 | sseli 3979 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ 𝐶) |
| 28 | 27 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝑥 ∈ 𝐶) |
| 29 | 28, 13 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝐷 ∈ ℝ) |
| 30 | 19 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝐷 ≠ 0) |
| 31 | 26, 29, 30 | redivcld 12095 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → (1 / 𝐷) ∈ ℝ) |
| 32 | smfdiv.m | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 33 | smfdiv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 34 | smfdiv.n | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | |
| 35 | 1, 24, 33, 13, 34, 7 | smfrec 46804 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐸 ↦ (1 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| 36 | 1, 24, 25, 4, 31, 32, 35 | smfmul 46810 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 · (1 / 𝐷))) ∈ (SMblFn‘𝑆)) |
| 37 | 23, 36 | eqeltrd 2841 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ≠ wne 2940 {crab 3436 ∩ cin 3950 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 1c1 11156 · cmul 11160 / cdiv 11920 SAlgcsalg 46323 SMblFncsmblfn 46710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cc 10475 ax-ac2 10503 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-acn 9982 df-ac 10156 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-s2 14887 df-s3 14888 df-s4 14889 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-rest 17467 df-salg 46324 df-smblfn 46711 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |