Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfdiv Structured version   Visualization version   GIF version

Theorem smfdiv 46834
Description: The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfdiv.x 𝑥𝜑
smfdiv.s (𝜑𝑆 ∈ SAlg)
smfdiv.a (𝜑𝐴𝑉)
smfdiv.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfdiv.c (𝜑𝐶𝑊)
smfdiv.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfdiv.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfdiv.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfdiv.e 𝐸 = {𝑥𝐶𝐷 ≠ 0}
Assertion
Ref Expression
smfdiv (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐸
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem smfdiv
StepHypRef Expression
1 smfdiv.x . . 3 𝑥𝜑
2 elinel1 4151 . . . . . . 7 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐴)
32adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝑥𝐴)
4 smfdiv.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
53, 4syldan 591 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐵 ∈ ℝ)
65recnd 11137 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐵 ∈ ℂ)
7 smfdiv.e . . . . . . . . 9 𝐸 = {𝑥𝐶𝐷 ≠ 0}
8 ssrab2 4030 . . . . . . . . 9 {𝑥𝐶𝐷 ≠ 0} ⊆ 𝐶
97, 8eqsstri 3981 . . . . . . . 8 𝐸𝐶
10 elinel2 4152 . . . . . . . 8 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐸)
119, 10sselid 3932 . . . . . . 7 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐶)
1211adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝑥𝐶)
13 smfdiv.d . . . . . 6 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
1412, 13syldan 591 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ∈ ℝ)
1514recnd 11137 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ∈ ℂ)
167eleq2i 2823 . . . . . . . 8 (𝑥𝐸𝑥 ∈ {𝑥𝐶𝐷 ≠ 0})
1716biimpi 216 . . . . . . 7 (𝑥𝐸𝑥 ∈ {𝑥𝐶𝐷 ≠ 0})
18 rabidim2 45138 . . . . . . 7 (𝑥 ∈ {𝑥𝐶𝐷 ≠ 0} → 𝐷 ≠ 0)
1917, 18syl 17 . . . . . 6 (𝑥𝐸𝐷 ≠ 0)
2010, 19syl 17 . . . . 5 (𝑥 ∈ (𝐴𝐸) → 𝐷 ≠ 0)
2120adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ≠ 0)
226, 15, 21divrecd 11897 . . 3 ((𝜑𝑥 ∈ (𝐴𝐸)) → (𝐵 / 𝐷) = (𝐵 · (1 / 𝐷)))
231, 22mpteq2da 5183 . 2 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) = (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 · (1 / 𝐷))))
24 smfdiv.s . . 3 (𝜑𝑆 ∈ SAlg)
25 smfdiv.a . . 3 (𝜑𝐴𝑉)
26 1red 11110 . . . 4 ((𝜑𝑥𝐸) → 1 ∈ ℝ)
279sseli 3930 . . . . . 6 (𝑥𝐸𝑥𝐶)
2827adantl 481 . . . . 5 ((𝜑𝑥𝐸) → 𝑥𝐶)
2928, 13syldan 591 . . . 4 ((𝜑𝑥𝐸) → 𝐷 ∈ ℝ)
3019adantl 481 . . . 4 ((𝜑𝑥𝐸) → 𝐷 ≠ 0)
3126, 29, 30redivcld 11946 . . 3 ((𝜑𝑥𝐸) → (1 / 𝐷) ∈ ℝ)
32 smfdiv.m . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
33 smfdiv.c . . . 4 (𝜑𝐶𝑊)
34 smfdiv.n . . . 4 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
351, 24, 33, 13, 34, 7smfrec 46826 . . 3 (𝜑 → (𝑥𝐸 ↦ (1 / 𝐷)) ∈ (SMblFn‘𝑆))
361, 24, 25, 4, 31, 32, 35smfmul 46832 . 2 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 · (1 / 𝐷))) ∈ (SMblFn‘𝑆))
3723, 36eqeltrd 2831 1 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wne 2928  {crab 3395  cin 3901  cmpt 5172  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   · cmul 11008   / cdiv 11771  SAlgcsalg 46345  SMblFncsmblfn 46732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10323  ax-ac2 10351  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-acn 9832  df-ac 10004  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-ioo 13246  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-s2 14752  df-s3 14753  df-s4 14754  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-rest 17323  df-salg 46346  df-smblfn 46733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator