| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdiv | Structured version Visualization version GIF version | ||
| Description: The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfdiv.x | ⊢ Ⅎ𝑥𝜑 |
| smfdiv.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfdiv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| smfdiv.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| smfdiv.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| smfdiv.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
| smfdiv.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfdiv.n | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
| smfdiv.e | ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} |
| Ref | Expression |
|---|---|
| smfdiv | ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfdiv.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | elinel1 4176 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝑥 ∈ 𝐴) |
| 4 | smfdiv.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 5 | 3, 4 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐵 ∈ ℝ) |
| 6 | 5 | recnd 11263 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐵 ∈ ℂ) |
| 7 | smfdiv.e | . . . . . . . . 9 ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} | |
| 8 | ssrab2 4055 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} ⊆ 𝐶 | |
| 9 | 7, 8 | eqsstri 4005 | . . . . . . . 8 ⊢ 𝐸 ⊆ 𝐶 |
| 10 | elinel2 4177 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐸) | |
| 11 | 9, 10 | sselid 3956 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐶) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝑥 ∈ 𝐶) |
| 13 | smfdiv.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | |
| 14 | 12, 13 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ∈ ℝ) |
| 15 | 14 | recnd 11263 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ∈ ℂ) |
| 16 | 7 | eleq2i 2826 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐸 ↔ 𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0}) |
| 17 | 16 | biimpi 216 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0}) |
| 18 | rabidim2 45126 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} → 𝐷 ≠ 0) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝐷 ≠ 0) |
| 20 | 10, 19 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝐷 ≠ 0) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ≠ 0) |
| 22 | 6, 15, 21 | divrecd 12020 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → (𝐵 / 𝐷) = (𝐵 · (1 / 𝐷))) |
| 23 | 1, 22 | mpteq2da 5213 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 · (1 / 𝐷)))) |
| 24 | smfdiv.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 25 | smfdiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 26 | 1red 11236 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 1 ∈ ℝ) | |
| 27 | 9 | sseli 3954 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ 𝐶) |
| 28 | 27 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝑥 ∈ 𝐶) |
| 29 | 28, 13 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝐷 ∈ ℝ) |
| 30 | 19 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝐷 ≠ 0) |
| 31 | 26, 29, 30 | redivcld 12069 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → (1 / 𝐷) ∈ ℝ) |
| 32 | smfdiv.m | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 33 | smfdiv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 34 | smfdiv.n | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | |
| 35 | 1, 24, 33, 13, 34, 7 | smfrec 46818 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐸 ↦ (1 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| 36 | 1, 24, 25, 4, 31, 32, 35 | smfmul 46824 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 · (1 / 𝐷))) ∈ (SMblFn‘𝑆)) |
| 37 | 23, 36 | eqeltrd 2834 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ≠ wne 2932 {crab 3415 ∩ cin 3925 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 · cmul 11134 / cdiv 11894 SAlgcsalg 46337 SMblFncsmblfn 46724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 df-s4 14869 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-rest 17436 df-salg 46338 df-smblfn 46725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |