| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdiv | Structured version Visualization version GIF version | ||
| Description: The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfdiv.x | ⊢ Ⅎ𝑥𝜑 |
| smfdiv.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfdiv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| smfdiv.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| smfdiv.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| smfdiv.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
| smfdiv.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfdiv.n | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
| smfdiv.e | ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} |
| Ref | Expression |
|---|---|
| smfdiv | ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfdiv.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | elinel1 4150 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝑥 ∈ 𝐴) |
| 4 | smfdiv.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 5 | 3, 4 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐵 ∈ ℝ) |
| 6 | 5 | recnd 11147 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐵 ∈ ℂ) |
| 7 | smfdiv.e | . . . . . . . . 9 ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} | |
| 8 | ssrab2 4029 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} ⊆ 𝐶 | |
| 9 | 7, 8 | eqsstri 3977 | . . . . . . . 8 ⊢ 𝐸 ⊆ 𝐶 |
| 10 | elinel2 4151 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐸) | |
| 11 | 9, 10 | sselid 3928 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐶) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝑥 ∈ 𝐶) |
| 13 | smfdiv.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | |
| 14 | 12, 13 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ∈ ℝ) |
| 15 | 14 | recnd 11147 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ∈ ℂ) |
| 16 | 7 | eleq2i 2825 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐸 ↔ 𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0}) |
| 17 | 16 | biimpi 216 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0}) |
| 18 | rabidim2 45223 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} → 𝐷 ≠ 0) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝐷 ≠ 0) |
| 20 | 10, 19 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝐷 ≠ 0) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ≠ 0) |
| 22 | 6, 15, 21 | divrecd 11907 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → (𝐵 / 𝐷) = (𝐵 · (1 / 𝐷))) |
| 23 | 1, 22 | mpteq2da 5185 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 · (1 / 𝐷)))) |
| 24 | smfdiv.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 25 | smfdiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 26 | 1red 11120 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 1 ∈ ℝ) | |
| 27 | 9 | sseli 3926 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ 𝐶) |
| 28 | 27 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝑥 ∈ 𝐶) |
| 29 | 28, 13 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝐷 ∈ ℝ) |
| 30 | 19 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝐷 ≠ 0) |
| 31 | 26, 29, 30 | redivcld 11956 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → (1 / 𝐷) ∈ ℝ) |
| 32 | smfdiv.m | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 33 | smfdiv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 34 | smfdiv.n | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | |
| 35 | 1, 24, 33, 13, 34, 7 | smfrec 46911 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐸 ↦ (1 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| 36 | 1, 24, 25, 4, 31, 32, 35 | smfmul 46917 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 · (1 / 𝐷))) ∈ (SMblFn‘𝑆)) |
| 37 | 23, 36 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 ≠ wne 2929 {crab 3396 ∩ cin 3897 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 0cc0 11013 1c1 11014 · cmul 11018 / cdiv 11781 SAlgcsalg 46430 SMblFncsmblfn 46817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-acn 9842 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-ioo 13251 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 df-s3 14758 df-s4 14759 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-rest 17328 df-salg 46431 df-smblfn 46818 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |