Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdiv | Structured version Visualization version GIF version |
Description: The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfdiv.x | ⊢ Ⅎ𝑥𝜑 |
smfdiv.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfdiv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
smfdiv.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
smfdiv.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
smfdiv.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
smfdiv.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
smfdiv.n | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
smfdiv.e | ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} |
Ref | Expression |
---|---|
smfdiv | ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfdiv.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | elinel1 4096 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐴) | |
3 | 2 | adantl 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝑥 ∈ 𝐴) |
4 | smfdiv.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
5 | 3, 4 | syldan 595 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐵 ∈ ℝ) |
6 | 5 | recnd 10692 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐵 ∈ ℂ) |
7 | smfdiv.e | . . . . . . . . 9 ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} | |
8 | ssrab2 3980 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} ⊆ 𝐶 | |
9 | 7, 8 | eqsstri 3922 | . . . . . . . 8 ⊢ 𝐸 ⊆ 𝐶 |
10 | elinel2 4097 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐸) | |
11 | 9, 10 | sseldi 3886 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐶) |
12 | 11 | adantl 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝑥 ∈ 𝐶) |
13 | smfdiv.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | |
14 | 12, 13 | syldan 595 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ∈ ℝ) |
15 | 14 | recnd 10692 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ∈ ℂ) |
16 | 7 | eleq2i 2842 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐸 ↔ 𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0}) |
17 | 16 | biimpi 219 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0}) |
18 | rabidim2 42096 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} → 𝐷 ≠ 0) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝐷 ≠ 0) |
20 | 10, 19 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝐷 ≠ 0) |
21 | 20 | adantl 486 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ≠ 0) |
22 | 6, 15, 21 | divrecd 11442 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → (𝐵 / 𝐷) = (𝐵 · (1 / 𝐷))) |
23 | 1, 22 | mpteq2da 5119 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 · (1 / 𝐷)))) |
24 | smfdiv.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
25 | smfdiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
26 | 1red 10665 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 1 ∈ ℝ) | |
27 | 9 | sseli 3884 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ 𝐶) |
28 | 27 | adantl 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝑥 ∈ 𝐶) |
29 | 28, 13 | syldan 595 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝐷 ∈ ℝ) |
30 | 19 | adantl 486 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝐷 ≠ 0) |
31 | 26, 29, 30 | redivcld 11491 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → (1 / 𝐷) ∈ ℝ) |
32 | smfdiv.m | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
33 | smfdiv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
34 | smfdiv.n | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | |
35 | 1, 24, 33, 13, 34, 7 | smfrec 43772 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐸 ↦ (1 / 𝐷)) ∈ (SMblFn‘𝑆)) |
36 | 1, 24, 25, 4, 31, 32, 35 | smfmul 43778 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 · (1 / 𝐷))) ∈ (SMblFn‘𝑆)) |
37 | 23, 36 | eqeltrd 2851 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 ≠ wne 2949 {crab 3072 ∩ cin 3853 ↦ cmpt 5105 ‘cfv 6328 (class class class)co 7143 ℝcr 10559 0cc0 10560 1c1 10561 · cmul 10565 / cdiv 11320 SAlgcsalg 43301 SMblFncsmblfn 43685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-inf2 9122 ax-cc 9880 ax-ac2 9908 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 ax-pre-sup 10638 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-iin 4879 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-se 5477 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-isom 6337 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-om 7573 df-1st 7686 df-2nd 7687 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-oadd 8109 df-omul 8110 df-er 8292 df-map 8411 df-pm 8412 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-sup 8924 df-inf 8925 df-oi 8992 df-card 9386 df-acn 9389 df-ac 9561 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-div 11321 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-n0 11920 df-z 12006 df-uz 12268 df-q 12374 df-rp 12416 df-ioo 12768 df-ico 12770 df-icc 12771 df-fz 12925 df-fzo 13068 df-fl 13196 df-seq 13404 df-exp 13465 df-hash 13726 df-word 13899 df-concat 13955 df-s1 13982 df-s2 14242 df-s3 14243 df-s4 14244 df-cj 14491 df-re 14492 df-im 14493 df-sqrt 14627 df-abs 14628 df-rest 16739 df-salg 43302 df-smblfn 43686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |