Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfdiv Structured version   Visualization version   GIF version

Theorem smfdiv 43780
 Description: The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfdiv.x 𝑥𝜑
smfdiv.s (𝜑𝑆 ∈ SAlg)
smfdiv.a (𝜑𝐴𝑉)
smfdiv.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfdiv.c (𝜑𝐶𝑊)
smfdiv.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfdiv.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfdiv.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfdiv.e 𝐸 = {𝑥𝐶𝐷 ≠ 0}
Assertion
Ref Expression
smfdiv (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐸
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem smfdiv
StepHypRef Expression
1 smfdiv.x . . 3 𝑥𝜑
2 elinel1 4096 . . . . . . 7 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐴)
32adantl 486 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝑥𝐴)
4 smfdiv.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
53, 4syldan 595 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐵 ∈ ℝ)
65recnd 10692 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐵 ∈ ℂ)
7 smfdiv.e . . . . . . . . 9 𝐸 = {𝑥𝐶𝐷 ≠ 0}
8 ssrab2 3980 . . . . . . . . 9 {𝑥𝐶𝐷 ≠ 0} ⊆ 𝐶
97, 8eqsstri 3922 . . . . . . . 8 𝐸𝐶
10 elinel2 4097 . . . . . . . 8 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐸)
119, 10sseldi 3886 . . . . . . 7 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐶)
1211adantl 486 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝑥𝐶)
13 smfdiv.d . . . . . 6 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
1412, 13syldan 595 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ∈ ℝ)
1514recnd 10692 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ∈ ℂ)
167eleq2i 2842 . . . . . . . 8 (𝑥𝐸𝑥 ∈ {𝑥𝐶𝐷 ≠ 0})
1716biimpi 219 . . . . . . 7 (𝑥𝐸𝑥 ∈ {𝑥𝐶𝐷 ≠ 0})
18 rabidim2 42096 . . . . . . 7 (𝑥 ∈ {𝑥𝐶𝐷 ≠ 0} → 𝐷 ≠ 0)
1917, 18syl 17 . . . . . 6 (𝑥𝐸𝐷 ≠ 0)
2010, 19syl 17 . . . . 5 (𝑥 ∈ (𝐴𝐸) → 𝐷 ≠ 0)
2120adantl 486 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ≠ 0)
226, 15, 21divrecd 11442 . . 3 ((𝜑𝑥 ∈ (𝐴𝐸)) → (𝐵 / 𝐷) = (𝐵 · (1 / 𝐷)))
231, 22mpteq2da 5119 . 2 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) = (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 · (1 / 𝐷))))
24 smfdiv.s . . 3 (𝜑𝑆 ∈ SAlg)
25 smfdiv.a . . 3 (𝜑𝐴𝑉)
26 1red 10665 . . . 4 ((𝜑𝑥𝐸) → 1 ∈ ℝ)
279sseli 3884 . . . . . 6 (𝑥𝐸𝑥𝐶)
2827adantl 486 . . . . 5 ((𝜑𝑥𝐸) → 𝑥𝐶)
2928, 13syldan 595 . . . 4 ((𝜑𝑥𝐸) → 𝐷 ∈ ℝ)
3019adantl 486 . . . 4 ((𝜑𝑥𝐸) → 𝐷 ≠ 0)
3126, 29, 30redivcld 11491 . . 3 ((𝜑𝑥𝐸) → (1 / 𝐷) ∈ ℝ)
32 smfdiv.m . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
33 smfdiv.c . . . 4 (𝜑𝐶𝑊)
34 smfdiv.n . . . 4 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
351, 24, 33, 13, 34, 7smfrec 43772 . . 3 (𝜑 → (𝑥𝐸 ↦ (1 / 𝐷)) ∈ (SMblFn‘𝑆))
361, 24, 25, 4, 31, 32, 35smfmul 43778 . 2 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 · (1 / 𝐷))) ∈ (SMblFn‘𝑆))
3723, 36eqeltrd 2851 1 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539  Ⅎwnf 1786   ∈ wcel 2112   ≠ wne 2949  {crab 3072   ∩ cin 3853   ↦ cmpt 5105  ‘cfv 6328  (class class class)co 7143  ℝcr 10559  0cc0 10560  1c1 10561   · cmul 10565   / cdiv 11320  SAlgcsalg 43301  SMblFncsmblfn 43685 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cc 9880  ax-ac2 9908  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-sup 8924  df-inf 8925  df-oi 8992  df-card 9386  df-acn 9389  df-ac 9561  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-n0 11920  df-z 12006  df-uz 12268  df-q 12374  df-rp 12416  df-ioo 12768  df-ico 12770  df-icc 12771  df-fz 12925  df-fzo 13068  df-fl 13196  df-seq 13404  df-exp 13465  df-hash 13726  df-word 13899  df-concat 13955  df-s1 13982  df-s2 14242  df-s3 14243  df-s4 14244  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628  df-rest 16739  df-salg 43302  df-smblfn 43686 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator