| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdiv | Structured version Visualization version GIF version | ||
| Description: The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfdiv.x | ⊢ Ⅎ𝑥𝜑 |
| smfdiv.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfdiv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| smfdiv.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| smfdiv.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| smfdiv.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
| smfdiv.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfdiv.n | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
| smfdiv.e | ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} |
| Ref | Expression |
|---|---|
| smfdiv | ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfdiv.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | elinel1 4151 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝑥 ∈ 𝐴) |
| 4 | smfdiv.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 5 | 3, 4 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐵 ∈ ℝ) |
| 6 | 5 | recnd 11137 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐵 ∈ ℂ) |
| 7 | smfdiv.e | . . . . . . . . 9 ⊢ 𝐸 = {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} | |
| 8 | ssrab2 4030 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} ⊆ 𝐶 | |
| 9 | 7, 8 | eqsstri 3981 | . . . . . . . 8 ⊢ 𝐸 ⊆ 𝐶 |
| 10 | elinel2 4152 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐸) | |
| 11 | 9, 10 | sselid 3932 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝑥 ∈ 𝐶) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝑥 ∈ 𝐶) |
| 13 | smfdiv.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | |
| 14 | 12, 13 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ∈ ℝ) |
| 15 | 14 | recnd 11137 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ∈ ℂ) |
| 16 | 7 | eleq2i 2823 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐸 ↔ 𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0}) |
| 17 | 16 | biimpi 216 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0}) |
| 18 | rabidim2 45138 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐶 ∣ 𝐷 ≠ 0} → 𝐷 ≠ 0) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝐷 ≠ 0) |
| 20 | 10, 19 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐸) → 𝐷 ≠ 0) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → 𝐷 ≠ 0) |
| 22 | 6, 15, 21 | divrecd 11897 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐸)) → (𝐵 / 𝐷) = (𝐵 · (1 / 𝐷))) |
| 23 | 1, 22 | mpteq2da 5183 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 · (1 / 𝐷)))) |
| 24 | smfdiv.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 25 | smfdiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 26 | 1red 11110 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 1 ∈ ℝ) | |
| 27 | 9 | sseli 3930 | . . . . . 6 ⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ 𝐶) |
| 28 | 27 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝑥 ∈ 𝐶) |
| 29 | 28, 13 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝐷 ∈ ℝ) |
| 30 | 19 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → 𝐷 ≠ 0) |
| 31 | 26, 29, 30 | redivcld 11946 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐸) → (1 / 𝐷) ∈ ℝ) |
| 32 | smfdiv.m | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 33 | smfdiv.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 34 | smfdiv.n | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | |
| 35 | 1, 24, 33, 13, 34, 7 | smfrec 46826 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐸 ↦ (1 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| 36 | 1, 24, 25, 4, 31, 32, 35 | smfmul 46832 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 · (1 / 𝐷))) ∈ (SMblFn‘𝑆)) |
| 37 | 23, 36 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ∩ cin 3901 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 0cc0 11003 1c1 11004 · cmul 11008 / cdiv 11771 SAlgcsalg 46345 SMblFncsmblfn 46732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10323 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-acn 9832 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-word 14418 df-concat 14475 df-s1 14501 df-s2 14752 df-s3 14753 df-s4 14754 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-rest 17323 df-salg 46346 df-smblfn 46733 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |