Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfdiv Structured version   Visualization version   GIF version

Theorem smfdiv 43062
Description: The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfdiv.x 𝑥𝜑
smfdiv.s (𝜑𝑆 ∈ SAlg)
smfdiv.a (𝜑𝐴𝑉)
smfdiv.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfdiv.c (𝜑𝐶𝑊)
smfdiv.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfdiv.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfdiv.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfdiv.e 𝐸 = {𝑥𝐶𝐷 ≠ 0}
Assertion
Ref Expression
smfdiv (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐸
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem smfdiv
StepHypRef Expression
1 smfdiv.x . . 3 𝑥𝜑
2 elinel1 4170 . . . . . . 7 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐴)
32adantl 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝑥𝐴)
4 smfdiv.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
53, 4syldan 593 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐵 ∈ ℝ)
65recnd 10661 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐵 ∈ ℂ)
7 smfdiv.e . . . . . . . . 9 𝐸 = {𝑥𝐶𝐷 ≠ 0}
8 ssrab2 4054 . . . . . . . . 9 {𝑥𝐶𝐷 ≠ 0} ⊆ 𝐶
97, 8eqsstri 3999 . . . . . . . 8 𝐸𝐶
10 elinel2 4171 . . . . . . . 8 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐸)
119, 10sseldi 3963 . . . . . . 7 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐶)
1211adantl 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝑥𝐶)
13 smfdiv.d . . . . . 6 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
1412, 13syldan 593 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ∈ ℝ)
1514recnd 10661 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ∈ ℂ)
167eleq2i 2902 . . . . . . . 8 (𝑥𝐸𝑥 ∈ {𝑥𝐶𝐷 ≠ 0})
1716biimpi 218 . . . . . . 7 (𝑥𝐸𝑥 ∈ {𝑥𝐶𝐷 ≠ 0})
18 rabidim2 41358 . . . . . . 7 (𝑥 ∈ {𝑥𝐶𝐷 ≠ 0} → 𝐷 ≠ 0)
1917, 18syl 17 . . . . . 6 (𝑥𝐸𝐷 ≠ 0)
2010, 19syl 17 . . . . 5 (𝑥 ∈ (𝐴𝐸) → 𝐷 ≠ 0)
2120adantl 484 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ≠ 0)
226, 15, 21divrecd 11411 . . 3 ((𝜑𝑥 ∈ (𝐴𝐸)) → (𝐵 / 𝐷) = (𝐵 · (1 / 𝐷)))
231, 22mpteq2da 5151 . 2 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) = (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 · (1 / 𝐷))))
24 smfdiv.s . . 3 (𝜑𝑆 ∈ SAlg)
25 smfdiv.a . . 3 (𝜑𝐴𝑉)
26 1red 10634 . . . 4 ((𝜑𝑥𝐸) → 1 ∈ ℝ)
279sseli 3961 . . . . . 6 (𝑥𝐸𝑥𝐶)
2827adantl 484 . . . . 5 ((𝜑𝑥𝐸) → 𝑥𝐶)
2928, 13syldan 593 . . . 4 ((𝜑𝑥𝐸) → 𝐷 ∈ ℝ)
3019adantl 484 . . . 4 ((𝜑𝑥𝐸) → 𝐷 ≠ 0)
3126, 29, 30redivcld 11460 . . 3 ((𝜑𝑥𝐸) → (1 / 𝐷) ∈ ℝ)
32 smfdiv.m . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
33 smfdiv.c . . . 4 (𝜑𝐶𝑊)
34 smfdiv.n . . . 4 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
351, 24, 33, 13, 34, 7smfrec 43054 . . 3 (𝜑 → (𝑥𝐸 ↦ (1 / 𝐷)) ∈ (SMblFn‘𝑆))
361, 24, 25, 4, 31, 32, 35smfmul 43060 . 2 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 · (1 / 𝐷))) ∈ (SMblFn‘𝑆))
3723, 36eqeltrd 2911 1 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wnf 1778  wcel 2108  wne 3014  {crab 3140  cin 3933  cmpt 5137  cfv 6348  (class class class)co 7148  cr 10528  0cc0 10529  1c1 10530   · cmul 10534   / cdiv 11289  SAlgcsalg 42583  SMblFncsmblfn 42967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cc 9849  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-omul 8099  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-word 13854  df-concat 13915  df-s1 13942  df-s2 14202  df-s3 14203  df-s4 14204  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-rest 16688  df-salg 42584  df-smblfn 42968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator