Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimalegt Structured version   Visualization version   GIF version

Theorem preimalegt 46860
Description: The preimage of a left-open, unbounded above interval, is the complement of a right-closed unbounded below interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimalegt.x 𝑥𝜑
preimalegt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimalegt.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
preimalegt (𝜑 → (𝐴 ∖ {𝑥𝐴𝐵𝐶}) = {𝑥𝐴𝐶 < 𝐵})
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimalegt
StepHypRef Expression
1 preimalegt.x . 2 𝑥𝜑
2 nfcv 2895 . . 3 𝑥𝐴
3 nfrab1 3416 . . 3 𝑥{𝑥𝐴𝐵𝐶}
42, 3nfdif 4078 . 2 𝑥(𝐴 ∖ {𝑥𝐴𝐵𝐶})
5 nfrab1 3416 . 2 𝑥{𝑥𝐴𝐶 < 𝐵}
6 eldifi 4080 . . . . 5 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) → 𝑥𝐴)
76adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → 𝑥𝐴)
8 eldifn 4081 . . . . . . 7 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) → ¬ 𝑥 ∈ {𝑥𝐴𝐵𝐶})
96anim1i 615 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) ∧ 𝐵𝐶) → (𝑥𝐴𝐵𝐶))
10 rabid 3417 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵𝐶} ↔ (𝑥𝐴𝐵𝐶))
119, 10sylibr 234 . . . . . . 7 ((𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) ∧ 𝐵𝐶) → 𝑥 ∈ {𝑥𝐴𝐵𝐶})
128, 11mtand 815 . . . . . 6 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) → ¬ 𝐵𝐶)
1312adantl 481 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → ¬ 𝐵𝐶)
14 preimalegt.c . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
1514adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → 𝐶 ∈ ℝ*)
16 preimalegt.b . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
176, 16sylan2 593 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → 𝐵 ∈ ℝ*)
1815, 17xrltnled 11191 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
1913, 18mpbird 257 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → 𝐶 < 𝐵)
20 rabid 3417 . . . 4 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} ↔ (𝑥𝐴𝐶 < 𝐵))
217, 19, 20sylanbrc 583 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶})) → 𝑥 ∈ {𝑥𝐴𝐶 < 𝐵})
22 rabidim1 3418 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} → 𝑥𝐴)
2322adantl 481 . . . 4 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → 𝑥𝐴)
24 rabidim2 45262 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} → 𝐶 < 𝐵)
2524adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → 𝐶 < 𝐵)
2614adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → 𝐶 ∈ ℝ*)
2722, 16sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → 𝐵 ∈ ℝ*)
2826, 27xrltnled 11191 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
2925, 28mpbid 232 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → ¬ 𝐵𝐶)
3029intnand 488 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → ¬ (𝑥𝐴𝐵𝐶))
3130, 10sylnibr 329 . . . 4 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → ¬ 𝑥 ∈ {𝑥𝐴𝐵𝐶})
3223, 31eldifd 3909 . . 3 ((𝜑𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}) → 𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}))
3321, 32impbida 800 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐵𝐶}) ↔ 𝑥 ∈ {𝑥𝐴𝐶 < 𝐵}))
341, 4, 5, 33eqrd 3950 1 (𝜑 → (𝐴 ∖ {𝑥𝐴𝐵𝐶}) = {𝑥𝐴𝐶 < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  {crab 3396  cdif 3895   class class class wbr 5095  *cxr 11156   < clt 11157  cle 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-le 11163
This theorem is referenced by:  salpreimalegt  46869
  Copyright terms: Public domain W3C validator