Proof of Theorem preimalegt
| Step | Hyp | Ref
| Expression |
| 1 | | preimalegt.x |
. 2
⊢
Ⅎ𝑥𝜑 |
| 2 | | nfcv 2905 |
. . 3
⊢
Ⅎ𝑥𝐴 |
| 3 | | nfrab1 3457 |
. . 3
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} |
| 4 | 2, 3 | nfdif 4129 |
. 2
⊢
Ⅎ𝑥(𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) |
| 5 | | nfrab1 3457 |
. 2
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵} |
| 6 | | eldifi 4131 |
. . . . 5
⊢ (𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) → 𝑥 ∈ 𝐴) |
| 7 | 6 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶})) → 𝑥 ∈ 𝐴) |
| 8 | | eldifn 4132 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) → ¬ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) |
| 9 | 6 | anim1i 615 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) ∧ 𝐵 ≤ 𝐶) → (𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝐶)) |
| 10 | | rabid 3458 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝐶)) |
| 11 | 9, 10 | sylibr 234 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) ∧ 𝐵 ≤ 𝐶) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) |
| 12 | 8, 11 | mtand 816 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) → ¬ 𝐵 ≤ 𝐶) |
| 13 | 12 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶})) → ¬ 𝐵 ≤ 𝐶) |
| 14 | | preimalegt.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
| 15 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶})) → 𝐶 ∈
ℝ*) |
| 16 | | preimalegt.b |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
| 17 | 6, 16 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶})) → 𝐵 ∈
ℝ*) |
| 18 | 15, 17 | xrltnled 45374 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶})) → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) |
| 19 | 13, 18 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶})) → 𝐶 < 𝐵) |
| 20 | | rabid 3458 |
. . . 4
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵} ↔ (𝑥 ∈ 𝐴 ∧ 𝐶 < 𝐵)) |
| 21 | 7, 19, 20 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶})) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) |
| 22 | | rabidim1 3459 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵} → 𝑥 ∈ 𝐴) |
| 23 | 22 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) → 𝑥 ∈ 𝐴) |
| 24 | | rabidim2 45107 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵} → 𝐶 < 𝐵) |
| 25 | 24 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) → 𝐶 < 𝐵) |
| 26 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) → 𝐶 ∈
ℝ*) |
| 27 | 22, 16 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) → 𝐵 ∈
ℝ*) |
| 28 | 26, 27 | xrltnled 45374 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) → (𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶)) |
| 29 | 25, 28 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) → ¬ 𝐵 ≤ 𝐶) |
| 30 | 29 | intnand 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) → ¬ (𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝐶)) |
| 31 | 30, 10 | sylnibr 329 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) → ¬ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) |
| 32 | 23, 31 | eldifd 3962 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) → 𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶})) |
| 33 | 21, 32 | impbida 801 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) ↔ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵})) |
| 34 | 1, 4, 5, 33 | eqrd 4003 |
1
⊢ (𝜑 → (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝐵 ≤ 𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐶 < 𝐵}) |