Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimagelt Structured version   Visualization version   GIF version

Theorem preimagelt 44196
Description: The preimage of a right-open, unbounded below interval, is the complement of a left-closed unbounded above interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimagelt.x 𝑥𝜑
preimagelt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimagelt.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
preimagelt (𝜑 → (𝐴 ∖ {𝑥𝐴𝐶𝐵}) = {𝑥𝐴𝐵 < 𝐶})
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimagelt
StepHypRef Expression
1 preimagelt.x . 2 𝑥𝜑
2 nfcv 2907 . . 3 𝑥𝐴
3 nfrab1 3316 . . 3 𝑥{𝑥𝐴𝐶𝐵}
42, 3nfdif 4061 . 2 𝑥(𝐴 ∖ {𝑥𝐴𝐶𝐵})
5 nfrab1 3316 . 2 𝑥{𝑥𝐴𝐵 < 𝐶}
6 eldifi 4062 . . . . 5 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) → 𝑥𝐴)
76adantl 482 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → 𝑥𝐴)
8 eldifn 4063 . . . . . . 7 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) → ¬ 𝑥 ∈ {𝑥𝐴𝐶𝐵})
96anim1i 615 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) ∧ 𝐶𝐵) → (𝑥𝐴𝐶𝐵))
10 rabid 3309 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐶𝐵} ↔ (𝑥𝐴𝐶𝐵))
119, 10sylibr 233 . . . . . . 7 ((𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) ∧ 𝐶𝐵) → 𝑥 ∈ {𝑥𝐴𝐶𝐵})
128, 11mtand 813 . . . . . 6 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) → ¬ 𝐶𝐵)
1312adantl 482 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → ¬ 𝐶𝐵)
14 preimagelt.b . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
156, 14sylan2 593 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → 𝐵 ∈ ℝ*)
16 preimagelt.c . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
1716adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → 𝐶 ∈ ℝ*)
1815, 17xrltnled 42862 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
1913, 18mpbird 256 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → 𝐵 < 𝐶)
20 rabid 3309 . . . 4 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} ↔ (𝑥𝐴𝐵 < 𝐶))
217, 19, 20sylanbrc 583 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝐶})
22 rabidim1 3311 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} → 𝑥𝐴)
2322adantl 482 . . . 4 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → 𝑥𝐴)
24 rabidim2 42612 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} → 𝐵 < 𝐶)
2524adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → 𝐵 < 𝐶)
2622, 14sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → 𝐵 ∈ ℝ*)
2716adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → 𝐶 ∈ ℝ*)
2826, 27xrltnled 42862 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
2925, 28mpbid 231 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → ¬ 𝐶𝐵)
3029intnand 489 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → ¬ (𝑥𝐴𝐶𝐵))
3130, 10sylnibr 329 . . . 4 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → ¬ 𝑥 ∈ {𝑥𝐴𝐶𝐵})
3223, 31eldifd 3899 . . 3 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → 𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}))
3321, 32impbida 798 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) ↔ 𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}))
341, 4, 5, 33eqrd 3941 1 (𝜑 → (𝐴 ∖ {𝑥𝐴𝐶𝐵}) = {𝑥𝐴𝐵 < 𝐶})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  {crab 3068  cdif 3885   class class class wbr 5075  *cxr 10997   < clt 10998  cle 10999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-dif 3891  df-un 3893  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-br 5076  df-opab 5138  df-xp 5592  df-cnv 5594  df-le 11004
This theorem is referenced by:  salpreimagelt  44202
  Copyright terms: Public domain W3C validator