Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimagelt Structured version   Visualization version   GIF version

Theorem preimagelt 43865
Description: The preimage of a right-open, unbounded below interval, is the complement of a left-closed unbounded above interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimagelt.x 𝑥𝜑
preimagelt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
preimagelt.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
preimagelt (𝜑 → (𝐴 ∖ {𝑥𝐴𝐶𝐵}) = {𝑥𝐴𝐵 < 𝐶})
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem preimagelt
StepHypRef Expression
1 preimagelt.x . 2 𝑥𝜑
2 nfcv 2900 . . 3 𝑥𝐴
3 nfrab1 3289 . . 3 𝑥{𝑥𝐴𝐶𝐵}
42, 3nfdif 4030 . 2 𝑥(𝐴 ∖ {𝑥𝐴𝐶𝐵})
5 nfrab1 3289 . 2 𝑥{𝑥𝐴𝐵 < 𝐶}
6 eldifi 4031 . . . . 5 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) → 𝑥𝐴)
76adantl 485 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → 𝑥𝐴)
8 eldifn 4032 . . . . . . 7 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) → ¬ 𝑥 ∈ {𝑥𝐴𝐶𝐵})
96anim1i 618 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) ∧ 𝐶𝐵) → (𝑥𝐴𝐶𝐵))
10 rabid 3283 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐶𝐵} ↔ (𝑥𝐴𝐶𝐵))
119, 10sylibr 237 . . . . . . 7 ((𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) ∧ 𝐶𝐵) → 𝑥 ∈ {𝑥𝐴𝐶𝐵})
128, 11mtand 816 . . . . . 6 (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) → ¬ 𝐶𝐵)
1312adantl 485 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → ¬ 𝐶𝐵)
14 preimagelt.b . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
156, 14sylan2 596 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → 𝐵 ∈ ℝ*)
16 preimagelt.c . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
1716adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → 𝐶 ∈ ℝ*)
1815, 17xrltnled 42527 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
1913, 18mpbird 260 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → 𝐵 < 𝐶)
20 rabid 3283 . . . 4 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} ↔ (𝑥𝐴𝐵 < 𝐶))
217, 19, 20sylanbrc 586 . . 3 ((𝜑𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵})) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝐶})
22 rabidim1 3285 . . . . 5 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} → 𝑥𝐴)
2322adantl 485 . . . 4 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → 𝑥𝐴)
24 rabidim2 42277 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} → 𝐵 < 𝐶)
2524adantl 485 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → 𝐵 < 𝐶)
2622, 14sylan2 596 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → 𝐵 ∈ ℝ*)
2716adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → 𝐶 ∈ ℝ*)
2826, 27xrltnled 42527 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → (𝐵 < 𝐶 ↔ ¬ 𝐶𝐵))
2925, 28mpbid 235 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → ¬ 𝐶𝐵)
3029intnand 492 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → ¬ (𝑥𝐴𝐶𝐵))
3130, 10sylnibr 332 . . . 4 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → ¬ 𝑥 ∈ {𝑥𝐴𝐶𝐵})
3223, 31eldifd 3868 . . 3 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}) → 𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}))
3321, 32impbida 801 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∖ {𝑥𝐴𝐶𝐵}) ↔ 𝑥 ∈ {𝑥𝐴𝐵 < 𝐶}))
341, 4, 5, 33eqrd 3910 1 (𝜑 → (𝐴 ∖ {𝑥𝐴𝐶𝐵}) = {𝑥𝐴𝐵 < 𝐶})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wnf 1791  wcel 2110  {crab 3058  cdif 3854   class class class wbr 5043  *cxr 10849   < clt 10850  cle 10851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-dif 3860  df-un 3862  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-br 5044  df-opab 5106  df-xp 5546  df-cnv 5548  df-le 10856
This theorem is referenced by:  salpreimagelt  43871
  Copyright terms: Public domain W3C validator