Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem8 Structured version   Visualization version   GIF version

Theorem smflimsuplem8 43091
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem8.m (𝜑𝑀 ∈ ℤ)
smflimsuplem8.z 𝑍 = (ℤ𝑀)
smflimsuplem8.s (𝜑𝑆 ∈ SAlg)
smflimsuplem8.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem8.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsuplem8.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimsuplem8.e 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem8.h 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem8 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑘,𝑚,𝑛   𝑘,𝐸,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝑘,𝐻,𝑚,𝑛,𝑥   𝑚,𝑀   𝑆,𝑘,𝑛   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑆(𝑥,𝑚)   𝐸(𝑚,𝑛)   𝐺(𝑥,𝑘,𝑚,𝑛)   𝑀(𝑥,𝑘,𝑛)

Proof of Theorem smflimsuplem8
Dummy variables 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimsuplem8.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
3 smflimsuplem8.m . . . . 5 (𝜑𝑀 ∈ ℤ)
4 smflimsuplem8.z . . . . 5 𝑍 = (ℤ𝑀)
5 smflimsuplem8.s . . . . 5 (𝜑𝑆 ∈ SAlg)
6 smflimsuplem8.f . . . . 5 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
7 smflimsuplem8.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
8 smflimsuplem8.e . . . . 5 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
9 smflimsuplem8.h . . . . 5 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
103, 4, 5, 6, 7, 8, 9smflimsuplem7 43090 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
11 rabidim1 3379 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
12 eliun 4914 . . . . . . . 8 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1311, 12sylib 220 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1413, 7eleq2s 2929 . . . . . 6 (𝑥𝐷 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1514adantl 484 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
16 nfv 1908 . . . . . 6 𝑛(𝜑𝑥𝐷)
17 nfv 1908 . . . . . 6 𝑛(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))
18 nfv 1908 . . . . . . . . . . 11 𝑘((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
19 nfv 1908 . . . . . . . . . . . 12 𝑚(𝜑𝑥𝐷)
20 nfv 1908 . . . . . . . . . . . 12 𝑚 𝑛𝑍
21 nfcv 2975 . . . . . . . . . . . . 13 𝑚𝑥
22 nfii1 4945 . . . . . . . . . . . . 13 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2321, 22nfel 2990 . . . . . . . . . . . 12 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2419, 20, 23nf3an 1895 . . . . . . . . . . 11 𝑚((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
253adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝑀 ∈ ℤ)
26253ad2ant1 1127 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑀 ∈ ℤ)
275adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝑆 ∈ SAlg)
28273ad2ant1 1127 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑆 ∈ SAlg)
296adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝐹:𝑍⟶(SMblFn‘𝑆))
30293ad2ant1 1127 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
31 rabidim2 41358 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
3231, 7eleq2s 2929 . . . . . . . . . . . . . . 15 (𝑥𝐷 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
33 fveq2 6663 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑦 → (𝐹𝑚) = (𝐹𝑦))
3433fveq1d 6665 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑦)‘𝑥))
3534cbvmptv 5160 . . . . . . . . . . . . . . . . . 18 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑦𝑍 ↦ ((𝐹𝑦)‘𝑥))
36 fveq2 6663 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
3736fveq1d 6665 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((𝐹𝑧)‘𝑥) = ((𝐹𝑦)‘𝑥))
3837cbvmptv 5160 . . . . . . . . . . . . . . . . . 18 (𝑧𝑍 ↦ ((𝐹𝑧)‘𝑥)) = (𝑦𝑍 ↦ ((𝐹𝑦)‘𝑥))
39 fveq2 6663 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
4039fveq1d 6665 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑤 → ((𝐹𝑧)‘𝑥) = ((𝐹𝑤)‘𝑥))
4140cbvmptv 5160 . . . . . . . . . . . . . . . . . 18 (𝑧𝑍 ↦ ((𝐹𝑧)‘𝑥)) = (𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))
4235, 38, 413eqtr2i 2848 . . . . . . . . . . . . . . . . 17 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))
4342fveq2i 6666 . . . . . . . . . . . . . . . 16 (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥)))
4443eleq1i 2901 . . . . . . . . . . . . . . 15 ((lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4532, 44sylib 220 . . . . . . . . . . . . . 14 (𝑥𝐷 → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4645adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑥𝐷) → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
47463ad2ant1 1127 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4847, 44sylibr 236 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
49 simp2 1131 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛𝑍)
50 simp3 1132 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
5118, 24, 26, 4, 28, 30, 8, 9, 48, 49, 50smflimsuplem5 43088 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘 ∈ (ℤ𝑛) ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))))
52 fvexd 6678 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ∈ V)
534fvexi 6677 . . . . . . . . . . . 12 𝑍 ∈ V
5453a1i 11 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑍 ∈ V)
554, 49eluzelz2d 41676 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ ℤ)
56 eqid 2819 . . . . . . . . . . 11 (ℤ𝑛) = (ℤ𝑛)
5755uzidd 12251 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ (ℤ𝑛))
5857uzssd 41670 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ (ℤ𝑛))
594, 49uzssd2 41680 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ 𝑍)
60 fvexd 6678 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘)‘𝑥) ∈ V)
6118, 52, 54, 55, 56, 58, 59, 60climeqmpt 41967 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ((𝑘 ∈ (ℤ𝑛) ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) ↔ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))))
6251, 61mpbid 234 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))))
63 simp1l 1191 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝜑)
64 nfv 1908 . . . . . . . . . . . 12 𝑚𝜑
6564, 20nfan 1893 . . . . . . . . . . 11 𝑚(𝜑𝑛𝑍)
664eluzelz2 41665 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ ℤ)
6766adantl 484 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
683adantr 483 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
69 fvexd 6678 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑥) ∈ V)
70 fvexd 6678 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
7165, 67, 68, 56, 4, 69, 70limsupequzmpt 41999 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7263, 49, 71syl2anc 586 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7362, 72breqtrd 5083 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7473climfvd 41968 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))
75743exp 1113 . . . . . 6 ((𝜑𝑥𝐷) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))))
7616, 17, 75rexlimd 3315 . . . . 5 ((𝜑𝑥𝐷) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
7715, 76mpd 15 . . . 4 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))
7810, 77mpteq12dva 5141 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
792, 78eqtrd 2854 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
803, 4, 5, 6, 8, 9smflimsuplem3 43086 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))) ∈ (SMblFn‘𝑆))
8179, 80eqeltrd 2911 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1081   = wceq 1530  wcel 2107  wrex 3137  {crab 3140  Vcvv 3493   ciun 4910   ciin 4911   class class class wbr 5057  cmpt 5137  dom cdm 5548  ran crn 5549  wf 6344  cfv 6348  supcsup 8896  cr 10528  *cxr 10666   < clt 10667  cz 11973  cuz 12235  lim supclsp 14819  cli 14833  SAlgcsalg 42583  SMblFncsmblfn 42967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2383  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cc 9849  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-omul 8099  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-ioo 12734  df-ioc 12735  df-ico 12736  df-fz 12885  df-fl 13154  df-ceil 13155  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-rest 16688  df-topgen 16709  df-top 21494  df-bases 21546  df-salg 42584  df-salgen 42588  df-smblfn 42968
This theorem is referenced by:  smflimsup  43092
  Copyright terms: Public domain W3C validator