Step | Hyp | Ref
| Expression |
1 | | smflimsuplem8.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))))) |
3 | | smflimsuplem8.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | | smflimsuplem8.z |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | | smflimsuplem8.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ SAlg) |
6 | | smflimsuplem8.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
7 | | smflimsuplem8.d |
. . . . 5
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} |
8 | | smflimsuplem8.e |
. . . . 5
⊢ 𝐸 = (𝑘 ∈ 𝑍 ↦ {𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑘)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈
ℝ}) |
9 | | smflimsuplem8.h |
. . . . 5
⊢ 𝐻 = (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑘) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, <
))) |
10 | 3, 4, 5, 6, 7, 8, 9 | smflimsuplem7 44246 |
. . . 4
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) |
11 | | rabidim1 3306 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
12 | | eliun 4925 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
13 | 11, 12 | sylib 217 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
14 | 13, 7 | eleq2s 2857 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
15 | 14 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
16 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐷) |
17 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑛(lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥))) |
18 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
19 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚(𝜑 ∧ 𝑥 ∈ 𝐷) |
20 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚 𝑛 ∈ 𝑍 |
21 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚𝑥 |
22 | | nfii1 4956 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
23 | 21, 22 | nfel 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚 𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
24 | 19, 20, 23 | nf3an 1905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
25 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑀 ∈ ℤ) |
26 | 25 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑀 ∈ ℤ) |
27 | 5 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑆 ∈ SAlg) |
28 | 27 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑆 ∈ SAlg) |
29 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
30 | 29 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
31 | | rabidim2 42541 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} → (lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
32 | 31, 7 | eleq2s 2857 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐷 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
33 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑦 → (𝐹‘𝑚) = (𝐹‘𝑦)) |
34 | 33 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑦)‘𝑥)) |
35 | 34 | cbvmptv 5183 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑦 ∈ 𝑍 ↦ ((𝐹‘𝑦)‘𝑥)) |
36 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
37 | 36 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑦 → ((𝐹‘𝑧)‘𝑥) = ((𝐹‘𝑦)‘𝑥)) |
38 | 37 | cbvmptv 5183 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑍 ↦ ((𝐹‘𝑧)‘𝑥)) = (𝑦 ∈ 𝑍 ↦ ((𝐹‘𝑦)‘𝑥)) |
39 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) |
40 | 39 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧)‘𝑥) = ((𝐹‘𝑤)‘𝑥)) |
41 | 40 | cbvmptv 5183 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑍 ↦ ((𝐹‘𝑧)‘𝑥)) = (𝑤 ∈ 𝑍 ↦ ((𝐹‘𝑤)‘𝑥)) |
42 | 35, 38, 41 | 3eqtr2i 2772 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑤 ∈ 𝑍 ↦ ((𝐹‘𝑤)‘𝑥)) |
43 | 42 | fveq2i 6759 |
. . . . . . . . . . . . . . . 16
⊢ (lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = (lim sup‘(𝑤 ∈ 𝑍 ↦ ((𝐹‘𝑤)‘𝑥))) |
44 | 43 | eleq1i 2829 |
. . . . . . . . . . . . . . 15
⊢ ((lim
sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ ↔ (lim
sup‘(𝑤 ∈ 𝑍 ↦ ((𝐹‘𝑤)‘𝑥))) ∈ ℝ) |
45 | 32, 44 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐷 → (lim sup‘(𝑤 ∈ 𝑍 ↦ ((𝐹‘𝑤)‘𝑥))) ∈ ℝ) |
46 | 45 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (lim sup‘(𝑤 ∈ 𝑍 ↦ ((𝐹‘𝑤)‘𝑥))) ∈ ℝ) |
47 | 46 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (lim sup‘(𝑤 ∈ 𝑍 ↦ ((𝐹‘𝑤)‘𝑥))) ∈ ℝ) |
48 | 47, 44 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) |
49 | | simp2 1135 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑛 ∈ 𝑍) |
50 | | simp3 1136 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
51 | 18, 24, 26, 4, 28, 30, 8, 9, 48, 49, 50 | smflimsuplem5 44244 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (𝑘 ∈ (ℤ≥‘𝑛) ↦ ((𝐻‘𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)))) |
52 | | fvexd 6771 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (ℤ≥‘𝑛) ∈ V) |
53 | 4 | fvexi 6770 |
. . . . . . . . . . . 12
⊢ 𝑍 ∈ V |
54 | 53 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑍 ∈ V) |
55 | 4, 49 | eluzelz2d 42843 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑛 ∈ ℤ) |
56 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
57 | 55 | uzidd 12527 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑛 ∈ (ℤ≥‘𝑛)) |
58 | 57 | uzssd 42838 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (ℤ≥‘𝑛) ⊆
(ℤ≥‘𝑛)) |
59 | 4, 49 | uzssd2 42847 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (ℤ≥‘𝑛) ⊆ 𝑍) |
60 | | fvexd 6771 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐻‘𝑘)‘𝑥) ∈ V) |
61 | 18, 52, 54, 55, 56, 58, 59, 60 | climeqmpt 43128 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → ((𝑘 ∈ (ℤ≥‘𝑛) ↦ ((𝐻‘𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥))) ↔ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥))))) |
62 | 51, 61 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)))) |
63 | | simp1l 1195 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝜑) |
64 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚𝜑 |
65 | 64, 20 | nfan 1903 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
66 | 4 | eluzelz2 42833 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
67 | 66 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ ℤ) |
68 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑀 ∈ ℤ) |
69 | | fvexd 6771 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑥) ∈ V) |
70 | | fvexd 6771 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ 𝑍) → ((𝐹‘𝑚)‘𝑥) ∈ V) |
71 | 65, 67, 68, 56, 4, 69, 70 | limsupequzmpt 43160 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (lim sup‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
72 | 63, 49, 71 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (lim sup‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
73 | 62, 72 | breqtrd 5096 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
74 | 73 | climfvd 43129 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)))) |
75 | 74 | 3exp 1117 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)))))) |
76 | 16, 17, 75 | rexlimd 3245 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥))))) |
77 | 15, 76 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) = ( ⇝ ‘(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)))) |
78 | 10, 77 | mpteq12dva 5159 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥))))) |
79 | 2, 78 | eqtrd 2778 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥))))) |
80 | 3, 4, 5, 6, 8, 9 | smflimsuplem3 44242 |
. 2
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑘 ∈
(ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)))) ∈ (SMblFn‘𝑆)) |
81 | 79, 80 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |