Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem8 Structured version   Visualization version   GIF version

Theorem smflimsuplem8 46842
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem8.m (𝜑𝑀 ∈ ℤ)
smflimsuplem8.z 𝑍 = (ℤ𝑀)
smflimsuplem8.s (𝜑𝑆 ∈ SAlg)
smflimsuplem8.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem8.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsuplem8.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimsuplem8.e 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem8.h 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem8 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑘,𝑚,𝑛   𝑘,𝐸,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝑘,𝐻,𝑚,𝑛,𝑥   𝑚,𝑀   𝑆,𝑘,𝑛   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑆(𝑥,𝑚)   𝐸(𝑚,𝑛)   𝐺(𝑥,𝑘,𝑚,𝑛)   𝑀(𝑥,𝑘,𝑛)

Proof of Theorem smflimsuplem8
Dummy variables 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimsuplem8.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
3 smflimsuplem8.m . . . . 5 (𝜑𝑀 ∈ ℤ)
4 smflimsuplem8.z . . . . 5 𝑍 = (ℤ𝑀)
5 smflimsuplem8.s . . . . 5 (𝜑𝑆 ∈ SAlg)
6 smflimsuplem8.f . . . . 5 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
7 smflimsuplem8.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
8 smflimsuplem8.e . . . . 5 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
9 smflimsuplem8.h . . . . 5 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
103, 4, 5, 6, 7, 8, 9smflimsuplem7 46841 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
11 rabidim1 3459 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
12 eliun 4995 . . . . . . . 8 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1311, 12sylib 218 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1413, 7eleq2s 2859 . . . . . 6 (𝑥𝐷 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1514adantl 481 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
16 nfv 1914 . . . . . 6 𝑛(𝜑𝑥𝐷)
17 nfv 1914 . . . . . 6 𝑛(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))
18 nfv 1914 . . . . . . . . . . 11 𝑘((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
19 nfv 1914 . . . . . . . . . . . 12 𝑚(𝜑𝑥𝐷)
20 nfv 1914 . . . . . . . . . . . 12 𝑚 𝑛𝑍
21 nfcv 2905 . . . . . . . . . . . . 13 𝑚𝑥
22 nfii1 5029 . . . . . . . . . . . . 13 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2321, 22nfel 2920 . . . . . . . . . . . 12 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2419, 20, 23nf3an 1901 . . . . . . . . . . 11 𝑚((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
253adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝑀 ∈ ℤ)
26253ad2ant1 1134 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑀 ∈ ℤ)
275adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝑆 ∈ SAlg)
28273ad2ant1 1134 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑆 ∈ SAlg)
296adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝐹:𝑍⟶(SMblFn‘𝑆))
30293ad2ant1 1134 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
31 rabidim2 45107 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
3231, 7eleq2s 2859 . . . . . . . . . . . . . . 15 (𝑥𝐷 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
33 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑦 → (𝐹𝑚) = (𝐹𝑦))
3433fveq1d 6908 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑦)‘𝑥))
3534cbvmptv 5255 . . . . . . . . . . . . . . . . . 18 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑦𝑍 ↦ ((𝐹𝑦)‘𝑥))
36 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
3736fveq1d 6908 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((𝐹𝑧)‘𝑥) = ((𝐹𝑦)‘𝑥))
3837cbvmptv 5255 . . . . . . . . . . . . . . . . . 18 (𝑧𝑍 ↦ ((𝐹𝑧)‘𝑥)) = (𝑦𝑍 ↦ ((𝐹𝑦)‘𝑥))
39 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
4039fveq1d 6908 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑤 → ((𝐹𝑧)‘𝑥) = ((𝐹𝑤)‘𝑥))
4140cbvmptv 5255 . . . . . . . . . . . . . . . . . 18 (𝑧𝑍 ↦ ((𝐹𝑧)‘𝑥)) = (𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))
4235, 38, 413eqtr2i 2771 . . . . . . . . . . . . . . . . 17 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))
4342fveq2i 6909 . . . . . . . . . . . . . . . 16 (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥)))
4443eleq1i 2832 . . . . . . . . . . . . . . 15 ((lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4532, 44sylib 218 . . . . . . . . . . . . . 14 (𝑥𝐷 → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4645adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐷) → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
47463ad2ant1 1134 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4847, 44sylibr 234 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
49 simp2 1138 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛𝑍)
50 simp3 1139 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
5118, 24, 26, 4, 28, 30, 8, 9, 48, 49, 50smflimsuplem5 46839 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘 ∈ (ℤ𝑛) ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))))
52 fvexd 6921 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ∈ V)
534fvexi 6920 . . . . . . . . . . . 12 𝑍 ∈ V
5453a1i 11 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑍 ∈ V)
554, 49eluzelz2d 45424 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ ℤ)
56 eqid 2737 . . . . . . . . . . 11 (ℤ𝑛) = (ℤ𝑛)
5755uzidd 12894 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ (ℤ𝑛))
5857uzssd 45419 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ (ℤ𝑛))
594, 49uzssd2 45428 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ 𝑍)
60 fvexd 6921 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘)‘𝑥) ∈ V)
6118, 52, 54, 55, 56, 58, 59, 60climeqmpt 45712 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ((𝑘 ∈ (ℤ𝑛) ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) ↔ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))))
6251, 61mpbid 232 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))))
63 simp1l 1198 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝜑)
64 nfv 1914 . . . . . . . . . . . 12 𝑚𝜑
6564, 20nfan 1899 . . . . . . . . . . 11 𝑚(𝜑𝑛𝑍)
664eluzelz2 45414 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ ℤ)
6766adantl 481 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
683adantr 480 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
69 fvexd 6921 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑥) ∈ V)
70 fvexd 6921 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
7165, 67, 68, 56, 4, 69, 70limsupequzmpt 45744 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7263, 49, 71syl2anc 584 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7362, 72breqtrd 5169 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7473climfvd 45713 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))
75743exp 1120 . . . . . 6 ((𝜑𝑥𝐷) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))))
7616, 17, 75rexlimd 3266 . . . . 5 ((𝜑𝑥𝐷) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
7715, 76mpd 15 . . . 4 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))
7810, 77mpteq12dva 5231 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
792, 78eqtrd 2777 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
803, 4, 5, 6, 8, 9smflimsuplem3 46837 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))) ∈ (SMblFn‘𝑆))
8179, 80eqeltrd 2841 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  Vcvv 3480   ciun 4991   ciin 4992   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  wf 6557  cfv 6561  supcsup 9480  cr 11154  *cxr 11294   < clt 11295  cz 12613  cuz 12878  lim supclsp 15506  cli 15520  SAlgcsalg 46323  SMblFncsmblfn 46710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ioo 13391  df-ioc 13392  df-ico 13393  df-fz 13548  df-fl 13832  df-ceil 13833  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-rest 17467  df-topgen 17488  df-top 22900  df-bases 22953  df-salg 46324  df-salgen 46328  df-smblfn 46711
This theorem is referenced by:  smflimsup  46843
  Copyright terms: Public domain W3C validator