Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem8 Structured version   Visualization version   GIF version

Theorem smflimsuplem8 43094
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem8.m (𝜑𝑀 ∈ ℤ)
smflimsuplem8.z 𝑍 = (ℤ𝑀)
smflimsuplem8.s (𝜑𝑆 ∈ SAlg)
smflimsuplem8.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem8.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsuplem8.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimsuplem8.e 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem8.h 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem8 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑘,𝑚,𝑛   𝑘,𝐸,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝑘,𝐻,𝑚,𝑛,𝑥   𝑚,𝑀   𝑆,𝑘,𝑛   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑆(𝑥,𝑚)   𝐸(𝑚,𝑛)   𝐺(𝑥,𝑘,𝑚,𝑛)   𝑀(𝑥,𝑘,𝑛)

Proof of Theorem smflimsuplem8
Dummy variables 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimsuplem8.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
3 smflimsuplem8.m . . . . 5 (𝜑𝑀 ∈ ℤ)
4 smflimsuplem8.z . . . . 5 𝑍 = (ℤ𝑀)
5 smflimsuplem8.s . . . . 5 (𝜑𝑆 ∈ SAlg)
6 smflimsuplem8.f . . . . 5 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
7 smflimsuplem8.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
8 smflimsuplem8.e . . . . 5 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
9 smflimsuplem8.h . . . . 5 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
103, 4, 5, 6, 7, 8, 9smflimsuplem7 43093 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
11 rabidim1 3381 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
12 eliun 4916 . . . . . . . 8 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1311, 12sylib 220 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1413, 7eleq2s 2931 . . . . . 6 (𝑥𝐷 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1514adantl 484 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
16 nfv 1911 . . . . . 6 𝑛(𝜑𝑥𝐷)
17 nfv 1911 . . . . . 6 𝑛(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))
18 nfv 1911 . . . . . . . . . . 11 𝑘((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
19 nfv 1911 . . . . . . . . . . . 12 𝑚(𝜑𝑥𝐷)
20 nfv 1911 . . . . . . . . . . . 12 𝑚 𝑛𝑍
21 nfcv 2977 . . . . . . . . . . . . 13 𝑚𝑥
22 nfii1 4947 . . . . . . . . . . . . 13 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2321, 22nfel 2992 . . . . . . . . . . . 12 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2419, 20, 23nf3an 1898 . . . . . . . . . . 11 𝑚((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
253adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝑀 ∈ ℤ)
26253ad2ant1 1129 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑀 ∈ ℤ)
275adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝑆 ∈ SAlg)
28273ad2ant1 1129 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑆 ∈ SAlg)
296adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝐹:𝑍⟶(SMblFn‘𝑆))
30293ad2ant1 1129 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
31 rabidim2 41361 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
3231, 7eleq2s 2931 . . . . . . . . . . . . . . 15 (𝑥𝐷 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
33 fveq2 6665 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑦 → (𝐹𝑚) = (𝐹𝑦))
3433fveq1d 6667 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑦)‘𝑥))
3534cbvmptv 5162 . . . . . . . . . . . . . . . . . 18 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑦𝑍 ↦ ((𝐹𝑦)‘𝑥))
36 fveq2 6665 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
3736fveq1d 6667 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((𝐹𝑧)‘𝑥) = ((𝐹𝑦)‘𝑥))
3837cbvmptv 5162 . . . . . . . . . . . . . . . . . 18 (𝑧𝑍 ↦ ((𝐹𝑧)‘𝑥)) = (𝑦𝑍 ↦ ((𝐹𝑦)‘𝑥))
39 fveq2 6665 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
4039fveq1d 6667 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑤 → ((𝐹𝑧)‘𝑥) = ((𝐹𝑤)‘𝑥))
4140cbvmptv 5162 . . . . . . . . . . . . . . . . . 18 (𝑧𝑍 ↦ ((𝐹𝑧)‘𝑥)) = (𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))
4235, 38, 413eqtr2i 2850 . . . . . . . . . . . . . . . . 17 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))
4342fveq2i 6668 . . . . . . . . . . . . . . . 16 (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥)))
4443eleq1i 2903 . . . . . . . . . . . . . . 15 ((lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4532, 44sylib 220 . . . . . . . . . . . . . 14 (𝑥𝐷 → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4645adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑥𝐷) → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
47463ad2ant1 1129 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4847, 44sylibr 236 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
49 simp2 1133 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛𝑍)
50 simp3 1134 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
5118, 24, 26, 4, 28, 30, 8, 9, 48, 49, 50smflimsuplem5 43091 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘 ∈ (ℤ𝑛) ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))))
52 fvexd 6680 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ∈ V)
534fvexi 6679 . . . . . . . . . . . 12 𝑍 ∈ V
5453a1i 11 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑍 ∈ V)
554, 49eluzelz2d 41679 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ ℤ)
56 eqid 2821 . . . . . . . . . . 11 (ℤ𝑛) = (ℤ𝑛)
5755uzidd 12253 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ (ℤ𝑛))
5857uzssd 41673 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ (ℤ𝑛))
594, 49uzssd2 41683 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ 𝑍)
60 fvexd 6680 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘)‘𝑥) ∈ V)
6118, 52, 54, 55, 56, 58, 59, 60climeqmpt 41970 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ((𝑘 ∈ (ℤ𝑛) ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) ↔ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))))
6251, 61mpbid 234 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))))
63 simp1l 1193 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝜑)
64 nfv 1911 . . . . . . . . . . . 12 𝑚𝜑
6564, 20nfan 1896 . . . . . . . . . . 11 𝑚(𝜑𝑛𝑍)
664eluzelz2 41668 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ ℤ)
6766adantl 484 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
683adantr 483 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
69 fvexd 6680 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑥) ∈ V)
70 fvexd 6680 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
7165, 67, 68, 56, 4, 69, 70limsupequzmpt 42002 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7263, 49, 71syl2anc 586 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7362, 72breqtrd 5085 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7473climfvd 41971 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))
75743exp 1115 . . . . . 6 ((𝜑𝑥𝐷) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))))
7616, 17, 75rexlimd 3317 . . . . 5 ((𝜑𝑥𝐷) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
7715, 76mpd 15 . . . 4 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))
7810, 77mpteq12dva 5143 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
792, 78eqtrd 2856 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
803, 4, 5, 6, 8, 9smflimsuplem3 43089 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))) ∈ (SMblFn‘𝑆))
8179, 80eqeltrd 2913 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3495   ciun 4912   ciin 4913   class class class wbr 5059  cmpt 5139  dom cdm 5550  ran crn 5551  wf 6346  cfv 6350  supcsup 8898  cr 10530  *cxr 10668   < clt 10669  cz 11975  cuz 12237  lim supclsp 14821  cli 14835  SAlgcsalg 42586  SMblFncsmblfn 42970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-13 2386  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-ioo 12736  df-ioc 12737  df-ico 12738  df-fz 12887  df-fl 13156  df-ceil 13157  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-rest 16690  df-topgen 16711  df-top 21496  df-bases 21548  df-salg 42587  df-salgen 42591  df-smblfn 42971
This theorem is referenced by:  smflimsup  43095
  Copyright terms: Public domain W3C validator