Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem8 Structured version   Visualization version   GIF version

Theorem smflimsuplem8 45543
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem8.m (𝜑𝑀 ∈ ℤ)
smflimsuplem8.z 𝑍 = (ℤ𝑀)
smflimsuplem8.s (𝜑𝑆 ∈ SAlg)
smflimsuplem8.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem8.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smflimsuplem8.g 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimsuplem8.e 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem8.h 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
Assertion
Ref Expression
smflimsuplem8 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑘,𝑚,𝑛   𝑘,𝐸,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝑘,𝐻,𝑚,𝑛,𝑥   𝑚,𝑀   𝑆,𝑘,𝑛   𝑘,𝑍,𝑚,𝑛,𝑥   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑆(𝑥,𝑚)   𝐸(𝑚,𝑛)   𝐺(𝑥,𝑘,𝑚,𝑛)   𝑀(𝑥,𝑘,𝑛)

Proof of Theorem smflimsuplem8
Dummy variables 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimsuplem8.g . . . 4 𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))))
3 smflimsuplem8.m . . . . 5 (𝜑𝑀 ∈ ℤ)
4 smflimsuplem8.z . . . . 5 𝑍 = (ℤ𝑀)
5 smflimsuplem8.s . . . . 5 (𝜑𝑆 ∈ SAlg)
6 smflimsuplem8.f . . . . 5 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
7 smflimsuplem8.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
8 smflimsuplem8.e . . . . 5 𝐸 = (𝑘𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
9 smflimsuplem8.h . . . . 5 𝐻 = (𝑘𝑍 ↦ (𝑥 ∈ (𝐸𝑘) ↦ sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
103, 4, 5, 6, 7, 8, 9smflimsuplem7 45542 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ })
11 rabidim1 3454 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
12 eliun 5002 . . . . . . . 8 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1311, 12sylib 217 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1413, 7eleq2s 2852 . . . . . 6 (𝑥𝐷 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1514adantl 483 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
16 nfv 1918 . . . . . 6 𝑛(𝜑𝑥𝐷)
17 nfv 1918 . . . . . 6 𝑛(lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))
18 nfv 1918 . . . . . . . . . . 11 𝑘((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
19 nfv 1918 . . . . . . . . . . . 12 𝑚(𝜑𝑥𝐷)
20 nfv 1918 . . . . . . . . . . . 12 𝑚 𝑛𝑍
21 nfcv 2904 . . . . . . . . . . . . 13 𝑚𝑥
22 nfii1 5033 . . . . . . . . . . . . 13 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2321, 22nfel 2918 . . . . . . . . . . . 12 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2419, 20, 23nf3an 1905 . . . . . . . . . . 11 𝑚((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
253adantr 482 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝑀 ∈ ℤ)
26253ad2ant1 1134 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑀 ∈ ℤ)
275adantr 482 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝑆 ∈ SAlg)
28273ad2ant1 1134 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑆 ∈ SAlg)
296adantr 482 . . . . . . . . . . . 12 ((𝜑𝑥𝐷) → 𝐹:𝑍⟶(SMblFn‘𝑆))
30293ad2ant1 1134 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝐹:𝑍⟶(SMblFn‘𝑆))
31 rabidim2 43791 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
3231, 7eleq2s 2852 . . . . . . . . . . . . . . 15 (𝑥𝐷 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
33 fveq2 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑦 → (𝐹𝑚) = (𝐹𝑦))
3433fveq1d 6894 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑦)‘𝑥))
3534cbvmptv 5262 . . . . . . . . . . . . . . . . . 18 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑦𝑍 ↦ ((𝐹𝑦)‘𝑥))
36 fveq2 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
3736fveq1d 6894 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((𝐹𝑧)‘𝑥) = ((𝐹𝑦)‘𝑥))
3837cbvmptv 5262 . . . . . . . . . . . . . . . . . 18 (𝑧𝑍 ↦ ((𝐹𝑧)‘𝑥)) = (𝑦𝑍 ↦ ((𝐹𝑦)‘𝑥))
39 fveq2 6892 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
4039fveq1d 6894 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑤 → ((𝐹𝑧)‘𝑥) = ((𝐹𝑤)‘𝑥))
4140cbvmptv 5262 . . . . . . . . . . . . . . . . . 18 (𝑧𝑍 ↦ ((𝐹𝑧)‘𝑥)) = (𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))
4235, 38, 413eqtr2i 2767 . . . . . . . . . . . . . . . . 17 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))
4342fveq2i 6895 . . . . . . . . . . . . . . . 16 (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥)))
4443eleq1i 2825 . . . . . . . . . . . . . . 15 ((lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4532, 44sylib 217 . . . . . . . . . . . . . 14 (𝑥𝐷 → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4645adantl 483 . . . . . . . . . . . . 13 ((𝜑𝑥𝐷) → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
47463ad2ant1 1134 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑤𝑍 ↦ ((𝐹𝑤)‘𝑥))) ∈ ℝ)
4847, 44sylibr 233 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
49 simp2 1138 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛𝑍)
50 simp3 1139 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
5118, 24, 26, 4, 28, 30, 8, 9, 48, 49, 50smflimsuplem5 45540 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘 ∈ (ℤ𝑛) ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))))
52 fvexd 6907 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ∈ V)
534fvexi 6906 . . . . . . . . . . . 12 𝑍 ∈ V
5453a1i 11 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑍 ∈ V)
554, 49eluzelz2d 44123 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ ℤ)
56 eqid 2733 . . . . . . . . . . 11 (ℤ𝑛) = (ℤ𝑛)
5755uzidd 12838 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ (ℤ𝑛))
5857uzssd 44118 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ (ℤ𝑛))
594, 49uzssd2 44127 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ 𝑍)
60 fvexd 6907 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐻𝑘)‘𝑥) ∈ V)
6118, 52, 54, 55, 56, 58, 59, 60climeqmpt 44413 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ((𝑘 ∈ (ℤ𝑛) ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) ↔ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))))
6251, 61mpbid 231 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))))
63 simp1l 1198 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝜑)
64 nfv 1918 . . . . . . . . . . . 12 𝑚𝜑
6564, 20nfan 1903 . . . . . . . . . . 11 𝑚(𝜑𝑛𝑍)
664eluzelz2 44113 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ ℤ)
6766adantl 483 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
683adantr 482 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
69 fvexd 6907 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑥) ∈ V)
70 fvexd 6907 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
7165, 67, 68, 56, 4, 69, 70limsupequzmpt 44445 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7263, 49, 71syl2anc 585 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7362, 72breqtrd 5175 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ⇝ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7473climfvd 44414 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))
75743exp 1120 . . . . . 6 ((𝜑𝑥𝐷) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))))
7616, 17, 75rexlimd 3264 . . . . 5 ((𝜑𝑥𝐷) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
7715, 76mpd 15 . . . 4 ((𝜑𝑥𝐷) → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥))))
7810, 77mpteq12dva 5238 . . 3 (𝜑 → (𝑥𝐷 ↦ (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
792, 78eqtrd 2773 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))))
803, 4, 5, 6, 8, 9smflimsuplem3 45538 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑘 ∈ (ℤ𝑛)dom (𝐻𝑘) ∣ (𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑘𝑍 ↦ ((𝐻𝑘)‘𝑥)))) ∈ (SMblFn‘𝑆))
8179, 80eqeltrd 2834 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3071  {crab 3433  Vcvv 3475   ciun 4998   ciin 4999   class class class wbr 5149  cmpt 5232  dom cdm 5677  ran crn 5678  wf 6540  cfv 6544  supcsup 9435  cr 11109  *cxr 11247   < clt 11248  cz 12558  cuz 12822  lim supclsp 15414  cli 15428  SAlgcsalg 45024  SMblFncsmblfn 45411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cc 10430  ax-ac2 10458  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-omul 8471  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-acn 9937  df-ac 10111  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-ioo 13328  df-ioc 13329  df-ico 13330  df-fz 13485  df-fl 13757  df-ceil 13758  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-rest 17368  df-topgen 17389  df-top 22396  df-bases 22449  df-salg 45025  df-salgen 45029  df-smblfn 45412
This theorem is referenced by:  smflimsup  45544
  Copyright terms: Public domain W3C validator