Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infnsuprnmpt Structured version   Visualization version   GIF version

Theorem infnsuprnmpt 42796
Description: The indexed infimum of real numbers is the negative of the indexed supremum of the negative values. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infnsuprnmpt.x 𝑥𝜑
infnsuprnmpt.a (𝜑𝐴 ≠ ∅)
infnsuprnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
infnsuprnmpt.l (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
Assertion
Ref Expression
infnsuprnmpt (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem infnsuprnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infnsuprnmpt.x . . . 4 𝑥𝜑
2 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 infnsuprnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 42735 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 infnsuprnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6147 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 infnsuprnmpt.l . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
87rnmptlb 42788 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
9 infrenegsup 11958 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
104, 6, 8, 9syl3anc 1370 . 2 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
11 eqid 2738 . . . . . . . . 9 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
12 rabidim2 42652 . . . . . . . . . . . 12 (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} → -𝑤 ∈ ran (𝑥𝐴𝐵))
1312adantl 482 . . . . . . . . . . 11 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → -𝑤 ∈ ran (𝑥𝐴𝐵))
14 negex 11219 . . . . . . . . . . . 12 -𝑤 ∈ V
152elrnmpt 5865 . . . . . . . . . . . 12 (-𝑤 ∈ V → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1614, 15ax-mp 5 . . . . . . . . . . 11 (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵)
1713, 16sylib 217 . . . . . . . . . 10 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → ∃𝑥𝐴 -𝑤 = 𝐵)
18 nfcv 2907 . . . . . . . . . . . . 13 𝑥𝑤
1918nfneg 11217 . . . . . . . . . . . . . . 15 𝑥-𝑤
20 nfmpt1 5182 . . . . . . . . . . . . . . . 16 𝑥(𝑥𝐴𝐵)
2120nfrn 5861 . . . . . . . . . . . . . . 15 𝑥ran (𝑥𝐴𝐵)
2219, 21nfel 2921 . . . . . . . . . . . . . 14 𝑥-𝑤 ∈ ran (𝑥𝐴𝐵)
23 nfcv 2907 . . . . . . . . . . . . . 14 𝑥
2422, 23nfrabw 3318 . . . . . . . . . . . . 13 𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
2518, 24nfel 2921 . . . . . . . . . . . 12 𝑥 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
261, 25nfan 1902 . . . . . . . . . . 11 𝑥(𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
27 rabidim1 3312 . . . . . . . . . . . . 13 (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} → 𝑤 ∈ ℝ)
2827adantl 482 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → 𝑤 ∈ ℝ)
29 negeq 11213 . . . . . . . . . . . . . . . 16 (-𝑤 = 𝐵 → --𝑤 = -𝐵)
3029eqcomd 2744 . . . . . . . . . . . . . . 15 (-𝑤 = 𝐵 → -𝐵 = --𝑤)
31303ad2ant3 1134 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤)
32 simp1r 1197 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → 𝑤 ∈ ℝ)
33 recn 10961 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
3433negnegd 11323 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → --𝑤 = 𝑤)
3532, 34syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤)
3631, 35eqtr2d 2779 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵)
37363exp 1118 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ) → (𝑥𝐴 → (-𝑤 = 𝐵𝑤 = -𝐵)))
3828, 37syldan 591 . . . . . . . . . . 11 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → (𝑥𝐴 → (-𝑤 = 𝐵𝑤 = -𝐵)))
3926, 38reximdai 3244 . . . . . . . . . 10 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → (∃𝑥𝐴 -𝑤 = 𝐵 → ∃𝑥𝐴 𝑤 = -𝐵))
4017, 39mpd 15 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → ∃𝑥𝐴 𝑤 = -𝐵)
41 simpr 485 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
4211, 40, 41elrnmptd 5870 . . . . . . . 8 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵))
4342ex 413 . . . . . . 7 (𝜑 → (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
44 vex 3436 . . . . . . . . . . . . 13 𝑤 ∈ V
4511elrnmpt 5865 . . . . . . . . . . . . 13 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4644, 45ax-mp 5 . . . . . . . . . . . 12 (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) ↔ ∃𝑥𝐴 𝑤 = -𝐵)
4746biimpi 215 . . . . . . . . . . 11 (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) → ∃𝑥𝐴 𝑤 = -𝐵)
4847adantl 482 . . . . . . . . . 10 ((𝜑𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)) → ∃𝑥𝐴 𝑤 = -𝐵)
4918, 23nfel 2921 . . . . . . . . . . . . 13 𝑥 𝑤 ∈ ℝ
5049, 22nfan 1902 . . . . . . . . . . . 12 𝑥(𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵))
51 simp3 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → 𝑤 = -𝐵)
523renegcld 11402 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
53523adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝐵 ∈ ℝ)
5451, 53eqeltrd 2839 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑤 = -𝐵) → 𝑤 ∈ ℝ)
55 simp2 1136 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑤 = -𝐵) → 𝑥𝐴)
5651negeqd 11215 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 = --𝐵)
573recnd 11003 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
5857negnegd 11323 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → --𝐵 = 𝐵)
59583adant3 1131 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑤 = -𝐵) → --𝐵 = 𝐵)
6056, 59eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 = 𝐵)
61 rspe 3237 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ∧ -𝑤 = 𝐵) → ∃𝑥𝐴 -𝑤 = 𝐵)
6255, 60, 61syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → ∃𝑥𝐴 -𝑤 = 𝐵)
6314a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 ∈ V)
642, 62, 63elrnmptd 5870 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 ∈ ran (𝑥𝐴𝐵))
6554, 64jca 512 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑤 = -𝐵) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
66653exp 1118 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴 → (𝑤 = -𝐵 → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))))
671, 50, 66rexlimd 3250 . . . . . . . . . . 11 (𝜑 → (∃𝑥𝐴 𝑤 = -𝐵 → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵))))
6867imp 407 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑥𝐴 𝑤 = -𝐵) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
6948, 68syldan 591 . . . . . . . . 9 ((𝜑𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
70 rabid 3310 . . . . . . . . 9 (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
7169, 70sylibr 233 . . . . . . . 8 ((𝜑𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
7271ex 413 . . . . . . 7 (𝜑 → (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}))
7343, 72impbid 211 . . . . . 6 (𝜑 → (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
7473alrimiv 1930 . . . . 5 (𝜑 → ∀𝑤(𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
75 nfrab1 3317 . . . . . 6 𝑤{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
76 nfcv 2907 . . . . . 6 𝑤ran (𝑥𝐴 ↦ -𝐵)
7775, 76cleqf 2938 . . . . 5 ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝐵) ↔ ∀𝑤(𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
7874, 77sylibr 233 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝐵))
7978supeq1d 9205 . . 3 (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
8079negeqd 11215 . 2 (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
81 eqidd 2739 . 2 (𝜑 → -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
8210, 80, 813eqtrd 2782 1 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wnf 1786  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157  ran crn 5590  supcsup 9199  infcinf 9200  cr 10870   < clt 11009  cle 11010  -cneg 11206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208
This theorem is referenced by:  smfinflem  44350
  Copyright terms: Public domain W3C validator