Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infnsuprnmpt Structured version   Visualization version   GIF version

Theorem infnsuprnmpt 45251
Description: The indexed infimum of real numbers is the negative of the indexed supremum of the negative values. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infnsuprnmpt.x 𝑥𝜑
infnsuprnmpt.a (𝜑𝐴 ≠ ∅)
infnsuprnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
infnsuprnmpt.l (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
Assertion
Ref Expression
infnsuprnmpt (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem infnsuprnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infnsuprnmpt.x . . . 4 𝑥𝜑
2 eqid 2730 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 infnsuprnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 45197 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 infnsuprnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6220 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 infnsuprnmpt.l . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
87rnmptlb 45244 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
9 infrenegsup 12173 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
104, 6, 8, 9syl3anc 1373 . 2 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
11 eqid 2730 . . . . . . . . 9 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
12 rabidim2 45103 . . . . . . . . . . . 12 (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} → -𝑤 ∈ ran (𝑥𝐴𝐵))
1312adantl 481 . . . . . . . . . . 11 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → -𝑤 ∈ ran (𝑥𝐴𝐵))
14 negex 11426 . . . . . . . . . . . 12 -𝑤 ∈ V
152elrnmpt 5925 . . . . . . . . . . . 12 (-𝑤 ∈ V → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1614, 15ax-mp 5 . . . . . . . . . . 11 (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵)
1713, 16sylib 218 . . . . . . . . . 10 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → ∃𝑥𝐴 -𝑤 = 𝐵)
18 nfcv 2892 . . . . . . . . . . . . 13 𝑥𝑤
1918nfneg 11424 . . . . . . . . . . . . . . 15 𝑥-𝑤
20 nfmpt1 5209 . . . . . . . . . . . . . . . 16 𝑥(𝑥𝐴𝐵)
2120nfrn 5919 . . . . . . . . . . . . . . 15 𝑥ran (𝑥𝐴𝐵)
2219, 21nfel 2907 . . . . . . . . . . . . . 14 𝑥-𝑤 ∈ ran (𝑥𝐴𝐵)
23 nfcv 2892 . . . . . . . . . . . . . 14 𝑥
2422, 23nfrabw 3446 . . . . . . . . . . . . 13 𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
2518, 24nfel 2907 . . . . . . . . . . . 12 𝑥 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
261, 25nfan 1899 . . . . . . . . . . 11 𝑥(𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
27 rabidim1 3431 . . . . . . . . . . . . 13 (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} → 𝑤 ∈ ℝ)
2827adantl 481 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → 𝑤 ∈ ℝ)
29 negeq 11420 . . . . . . . . . . . . . . . 16 (-𝑤 = 𝐵 → --𝑤 = -𝐵)
3029eqcomd 2736 . . . . . . . . . . . . . . 15 (-𝑤 = 𝐵 → -𝐵 = --𝑤)
31303ad2ant3 1135 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤)
32 simp1r 1199 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → 𝑤 ∈ ℝ)
33 recn 11165 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
3433negnegd 11531 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → --𝑤 = 𝑤)
3532, 34syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤)
3631, 35eqtr2d 2766 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵)
37363exp 1119 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ) → (𝑥𝐴 → (-𝑤 = 𝐵𝑤 = -𝐵)))
3828, 37syldan 591 . . . . . . . . . . 11 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → (𝑥𝐴 → (-𝑤 = 𝐵𝑤 = -𝐵)))
3926, 38reximdai 3240 . . . . . . . . . 10 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → (∃𝑥𝐴 -𝑤 = 𝐵 → ∃𝑥𝐴 𝑤 = -𝐵))
4017, 39mpd 15 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → ∃𝑥𝐴 𝑤 = -𝐵)
41 simpr 484 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
4211, 40, 41elrnmptd 5930 . . . . . . . 8 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵))
4342ex 412 . . . . . . 7 (𝜑 → (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
44 vex 3454 . . . . . . . . . . . . 13 𝑤 ∈ V
4511elrnmpt 5925 . . . . . . . . . . . . 13 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4644, 45ax-mp 5 . . . . . . . . . . . 12 (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) ↔ ∃𝑥𝐴 𝑤 = -𝐵)
4746biimpi 216 . . . . . . . . . . 11 (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) → ∃𝑥𝐴 𝑤 = -𝐵)
4847adantl 481 . . . . . . . . . 10 ((𝜑𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)) → ∃𝑥𝐴 𝑤 = -𝐵)
4918, 23nfel 2907 . . . . . . . . . . . . 13 𝑥 𝑤 ∈ ℝ
5049, 22nfan 1899 . . . . . . . . . . . 12 𝑥(𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵))
51 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → 𝑤 = -𝐵)
523renegcld 11612 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
53523adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝐵 ∈ ℝ)
5451, 53eqeltrd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑤 = -𝐵) → 𝑤 ∈ ℝ)
55 simp2 1137 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑤 = -𝐵) → 𝑥𝐴)
5651negeqd 11422 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 = --𝐵)
573recnd 11209 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
5857negnegd 11531 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → --𝐵 = 𝐵)
59583adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑤 = -𝐵) → --𝐵 = 𝐵)
6056, 59eqtrd 2765 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 = 𝐵)
61 rspe 3228 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ∧ -𝑤 = 𝐵) → ∃𝑥𝐴 -𝑤 = 𝐵)
6255, 60, 61syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → ∃𝑥𝐴 -𝑤 = 𝐵)
6314a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 ∈ V)
642, 62, 63elrnmptd 5930 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 ∈ ran (𝑥𝐴𝐵))
6554, 64jca 511 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑤 = -𝐵) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
66653exp 1119 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴 → (𝑤 = -𝐵 → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))))
671, 50, 66rexlimd 3245 . . . . . . . . . . 11 (𝜑 → (∃𝑥𝐴 𝑤 = -𝐵 → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵))))
6867imp 406 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑥𝐴 𝑤 = -𝐵) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
6948, 68syldan 591 . . . . . . . . 9 ((𝜑𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
70 rabid 3430 . . . . . . . . 9 (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
7169, 70sylibr 234 . . . . . . . 8 ((𝜑𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
7271ex 412 . . . . . . 7 (𝜑 → (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}))
7343, 72impbid 212 . . . . . 6 (𝜑 → (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
7473alrimiv 1927 . . . . 5 (𝜑 → ∀𝑤(𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
75 nfrab1 3429 . . . . . 6 𝑤{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
76 nfcv 2892 . . . . . 6 𝑤ran (𝑥𝐴 ↦ -𝐵)
7775, 76cleqf 2921 . . . . 5 ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝐵) ↔ ∀𝑤(𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
7874, 77sylibr 234 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝐵))
7978supeq1d 9404 . . 3 (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
8079negeqd 11422 . 2 (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
81 eqidd 2731 . 2 (𝜑 → -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
8210, 80, 813eqtrd 2769 1 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wnf 1783  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  ran crn 5642  supcsup 9398  infcinf 9399  cr 11074   < clt 11215  cle 11216  -cneg 11413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  smfinflem  46822
  Copyright terms: Public domain W3C validator