Step | Hyp | Ref
| Expression |
1 | | infnsuprnmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
2 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
3 | | infnsuprnmpt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
4 | 1, 2, 3 | rnmptssd 42735 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
5 | | infnsuprnmpt.a |
. . . 4
⊢ (𝜑 → 𝐴 ≠ ∅) |
6 | 1, 3, 2, 5 | rnmptn0 6147 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
7 | | infnsuprnmpt.l |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) |
8 | 7 | rnmptlb 42788 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) |
9 | | infrenegsup 11958 |
. . 3
⊢ ((ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑦 ≤ 𝑧) → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < )) |
10 | 4, 6, 8, 9 | syl3anc 1370 |
. 2
⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < )) |
11 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ -𝐵) = (𝑥 ∈ 𝐴 ↦ -𝐵) |
12 | | rabidim2 42652 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} → -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
13 | 12 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) → -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
14 | | negex 11219 |
. . . . . . . . . . . 12
⊢ -𝑤 ∈ V |
15 | 2 | elrnmpt 5865 |
. . . . . . . . . . . 12
⊢ (-𝑤 ∈ V → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵)) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵) |
17 | 13, 16 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) → ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵) |
18 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝑤 |
19 | 18 | nfneg 11217 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥-𝑤 |
20 | | nfmpt1 5182 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
21 | 20 | nfrn 5861 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
22 | 19, 21 | nfel 2921 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
23 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥ℝ |
24 | 22, 23 | nfrabw 3318 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} |
25 | 18, 24 | nfel 2921 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} |
26 | 1, 25 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝜑 ∧ 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
27 | | rabidim1 3312 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} → 𝑤 ∈ ℝ) |
28 | 27 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) → 𝑤 ∈ ℝ) |
29 | | negeq 11213 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑤 = 𝐵 → --𝑤 = -𝐵) |
30 | 29 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (-𝑤 = 𝐵 → -𝐵 = --𝑤) |
31 | 30 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴 ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤) |
32 | | simp1r 1197 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴 ∧ -𝑤 = 𝐵) → 𝑤 ∈ ℝ) |
33 | | recn 10961 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℂ) |
34 | 33 | negnegd 11323 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℝ → --𝑤 = 𝑤) |
35 | 32, 34 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴 ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤) |
36 | 31, 35 | eqtr2d 2779 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴 ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵) |
37 | 36 | 3exp 1118 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (𝑥 ∈ 𝐴 → (-𝑤 = 𝐵 → 𝑤 = -𝐵))) |
38 | 28, 37 | syldan 591 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) → (𝑥 ∈ 𝐴 → (-𝑤 = 𝐵 → 𝑤 = -𝐵))) |
39 | 26, 38 | reximdai 3244 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) → (∃𝑥 ∈ 𝐴 -𝑤 = 𝐵 → ∃𝑥 ∈ 𝐴 𝑤 = -𝐵)) |
40 | 17, 39 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) → ∃𝑥 ∈ 𝐴 𝑤 = -𝐵) |
41 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
42 | 11, 40, 41 | elrnmptd 5870 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
43 | 42 | ex 413 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
44 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑤 ∈ V |
45 | 11 | elrnmpt 5865 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑤 = -𝐵)) |
46 | 44, 45 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑤 = -𝐵) |
47 | 46 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵) → ∃𝑥 ∈ 𝐴 𝑤 = -𝐵) |
48 | 47 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵)) → ∃𝑥 ∈ 𝐴 𝑤 = -𝐵) |
49 | 18, 23 | nfel 2921 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑤 ∈ ℝ |
50 | 49, 22 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
51 | | simp3 1137 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → 𝑤 = -𝐵) |
52 | 3 | renegcld 11402 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
53 | 52 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → -𝐵 ∈ ℝ) |
54 | 51, 53 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → 𝑤 ∈ ℝ) |
55 | | simp2 1136 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → 𝑥 ∈ 𝐴) |
56 | 51 | negeqd 11215 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → -𝑤 = --𝐵) |
57 | 3 | recnd 11003 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
58 | 57 | negnegd 11323 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → --𝐵 = 𝐵) |
59 | 58 | 3adant3 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → --𝐵 = 𝐵) |
60 | 56, 59 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → -𝑤 = 𝐵) |
61 | | rspe 3237 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 ∧ -𝑤 = 𝐵) → ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵) |
62 | 55, 60, 61 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵) |
63 | 14 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → -𝑤 ∈ V) |
64 | 2, 62, 63 | elrnmptd 5870 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
65 | 54, 64 | jca 512 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = -𝐵) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵))) |
66 | 65 | 3exp 1118 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑤 = -𝐵 → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵))))) |
67 | 1, 50, 66 | rexlimd 3250 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑤 = -𝐵 → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
68 | 67 | imp 407 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 𝑤 = -𝐵) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵))) |
69 | 48, 68 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵)) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵))) |
70 | | rabid 3310 |
. . . . . . . . 9
⊢ (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ↔ (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵))) |
71 | 69, 70 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵)) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
72 | 71 | ex 413 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)})) |
73 | 43, 72 | impbid 211 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ↔ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
74 | 73 | alrimiv 1930 |
. . . . 5
⊢ (𝜑 → ∀𝑤(𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ↔ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
75 | | nfrab1 3317 |
. . . . . 6
⊢
Ⅎ𝑤{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} |
76 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑤ran
(𝑥 ∈ 𝐴 ↦ -𝐵) |
77 | 75, 76 | cleqf 2938 |
. . . . 5
⊢ ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} = ran (𝑥 ∈ 𝐴 ↦ -𝐵) ↔ ∀𝑤(𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ↔ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
78 | 74, 77 | sylibr 233 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} = ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
79 | 78 | supeq1d 9205 |
. . 3
⊢ (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < ) = sup(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |
80 | 79 | negeqd 11215 |
. 2
⊢ (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < ) = -sup(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |
81 | | eqidd 2739 |
. 2
⊢ (𝜑 → -sup(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < ) = -sup(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |
82 | 10, 80, 81 | 3eqtrd 2782 |
1
⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -sup(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |