MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdaa Structured version   Visualization version   GIF version

Theorem ralimdaa 3238
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.)
Hypotheses
Ref Expression
ralimdaa.1 𝑥𝜑
ralimdaa.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralimdaa (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ralimdaa
StepHypRef Expression
1 ralimdaa.1 . . 3 𝑥𝜑
2 ralimdaa.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 412 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 3ralrimi 3235 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
5 ralim 3069 . 2 (∀𝑥𝐴 (𝜓𝜒) → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
64, 5syl 17 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045
This theorem is referenced by:  ralbida  3248  eltsk2g  10704  ptcnplem  23508  poimirlem26  37640  allbutfifvre  45673  climleltrp  45674  fnlimabslt  45677  limsupub2  45810  liminflbuz2  45813  xlimmnfvlem1  45830  xlimmnfvlem2  45831  xlimpnfvlem1  45834  xlimpnfvlem2  45835  stoweidlem61  46059  stoweid  46061  fourierdlem73  46177  smflimlem2  46770
  Copyright terms: Public domain W3C validator