MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdaa Structured version   Visualization version   GIF version

Theorem ralimdaa 3240
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.)
Hypotheses
Ref Expression
ralimdaa.1 𝑥𝜑
ralimdaa.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralimdaa (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ralimdaa
StepHypRef Expression
1 ralimdaa.1 . . 3 𝑥𝜑
2 ralimdaa.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 414 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 3ralrimi 3237 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
5 ralim 3086 . 2 (∀𝑥𝐴 (𝜓𝜒) → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
64, 5syl 17 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wnf 1785  wcel 2106  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1782  df-nf 1786  df-ral 3063
This theorem is referenced by:  ralbida  3250  eltsk2g  10613  ptcnplem  22878  poimirlem26  35957  allbutfifvre  43602  climleltrp  43603  fnlimabslt  43606  limsupub2  43739  liminflbuz2  43742  xlimmnfvlem1  43759  xlimmnfvlem2  43760  xlimpnfvlem1  43763  xlimpnfvlem2  43764  stoweidlem61  43988  stoweid  43990  fourierdlem73  44106  smflimlem2  44697
  Copyright terms: Public domain W3C validator