![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdaa | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.) |
Ref | Expression |
---|---|
ralimdaa.1 | ⊢ Ⅎ𝑥𝜑 |
ralimdaa.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdaa | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdaa.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ralimdaa.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
3 | 2 | ex 413 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
4 | 1, 3 | ralrimi 3254 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
5 | ralim 3086 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1785 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-nf 1786 df-ral 3062 |
This theorem is referenced by: ralbida 3267 eltsk2g 10742 ptcnplem 23116 poimirlem26 36502 allbutfifvre 44377 climleltrp 44378 fnlimabslt 44381 limsupub2 44514 liminflbuz2 44517 xlimmnfvlem1 44534 xlimmnfvlem2 44535 xlimpnfvlem1 44538 xlimpnfvlem2 44539 stoweidlem61 44763 stoweid 44765 fourierdlem73 44881 smflimlem2 45474 |
Copyright terms: Public domain | W3C validator |