MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdaa Structured version   Visualization version   GIF version

Theorem ralimdaa 3257
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.)
Hypotheses
Ref Expression
ralimdaa.1 𝑥𝜑
ralimdaa.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralimdaa (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ralimdaa
StepHypRef Expression
1 ralimdaa.1 . . 3 𝑥𝜑
2 ralimdaa.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 413 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 3ralrimi 3254 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
5 ralim 3086 . 2 (∀𝑥𝐴 (𝜓𝜒) → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
64, 5syl 17 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1785  wcel 2106  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-nf 1786  df-ral 3062
This theorem is referenced by:  ralbida  3267  eltsk2g  10742  ptcnplem  23116  poimirlem26  36502  allbutfifvre  44377  climleltrp  44378  fnlimabslt  44381  limsupub2  44514  liminflbuz2  44517  xlimmnfvlem1  44534  xlimmnfvlem2  44535  xlimpnfvlem1  44538  xlimpnfvlem2  44539  stoweidlem61  44763  stoweid  44765  fourierdlem73  44881  smflimlem2  45474
  Copyright terms: Public domain W3C validator