| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdaa | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.) (Proof shortened by Wolf Lammen, 29-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralimdaa.1 | ⊢ Ⅎ𝑥𝜑 |
| ralimdaa.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdaa | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdaa.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralimdaa.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 4 | 1, 3 | ralrimi 3233 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 5 | ralim 3069 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 |
| This theorem is referenced by: ralbida 3246 eltsk2g 10680 ptcnplem 23484 poimirlem26 37613 allbutfifvre 45646 climleltrp 45647 fnlimabslt 45650 limsupub2 45783 liminflbuz2 45786 xlimmnfvlem1 45803 xlimmnfvlem2 45804 xlimpnfvlem1 45807 xlimpnfvlem2 45808 stoweidlem61 46032 stoweid 46034 fourierdlem73 46150 smflimlem2 46743 |
| Copyright terms: Public domain | W3C validator |