Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climleltrp Structured version   Visualization version   GIF version

Theorem climleltrp 43107
Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climleltrp.k 𝑘𝜑
climleltrp.f 𝑘𝐹
climleltrp.z 𝑍 = (ℤ𝑀)
climleltrp.n (𝜑𝑁𝑍)
climleltrp.r ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
climleltrp.a (𝜑𝐹𝐴)
climleltrp.c (𝜑𝐶 ∈ ℝ)
climleltrp.l (𝜑𝐴𝐶)
climleltrp.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
climleltrp (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹   𝑗,𝑁,𝑘   𝑗,𝑋,𝑘   𝑗,𝑍   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem climleltrp
StepHypRef Expression
1 climleltrp.n . . . . 5 (𝜑𝑁𝑍)
2 climleltrp.z . . . . 5 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2849 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
4 uzss 12534 . . . 4 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
53, 4syl 17 . . 3 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
65, 2sseqtrrdi 3968 . 2 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
7 climleltrp.k . . . 4 𝑘𝜑
8 climleltrp.f . . . 4 𝑘𝐹
9 uzssz 12532 . . . . 5 (ℤ𝑀) ⊆ ℤ
109, 3sselid 3915 . . . 4 (𝜑𝑁 ∈ ℤ)
11 eqid 2738 . . . 4 (ℤ𝑁) = (ℤ𝑁)
12 climleltrp.a . . . 4 (𝜑𝐹𝐴)
13 eqidd 2739 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = (𝐹𝑘))
14 climleltrp.x . . . 4 (𝜑𝑋 ∈ ℝ+)
157, 8, 10, 11, 12, 13, 14clim2d 43104 . . 3 (𝜑 → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
16 nfv 1918 . . . . . 6 𝑘 𝑗 ∈ (ℤ𝑁)
177, 16nfan 1903 . . . . 5 𝑘(𝜑𝑗 ∈ (ℤ𝑁))
18 simplll 771 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝜑)
19 uzss 12534 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑁) → (ℤ𝑗) ⊆ (ℤ𝑁))
2019ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑗) ⊆ (ℤ𝑁))
21 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
2220, 21sseldd 3918 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑁))
2322adantr 480 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝑘 ∈ (ℤ𝑁))
24 simpr 484 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
25 climleltrp.r . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2613, 25eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2726adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) ∈ ℝ)
28 climcl 15136 . . . . . . . . . . . . . . 15 (𝐹𝐴𝐴 ∈ ℂ)
2912, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
3029adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ∈ ℂ)
3126recnd 10934 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℂ)
3230, 31pncan3d 11265 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐴 + ((𝐹𝑘) − 𝐴)) = (𝐹𝑘))
3332eqcomd 2744 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = (𝐴 + ((𝐹𝑘) − 𝐴)))
3433adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) = (𝐴 + ((𝐹𝑘) − 𝐴)))
3534, 27eqeltrrd 2840 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) ∈ ℝ)
36 climleltrp.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
3736ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐶 ∈ ℝ)
387, 8, 11, 10, 12, 25climreclf 43095 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
3938ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℝ)
4027, 39resubcld 11333 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
4137, 40readdcld 10935 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹𝑘) − 𝐴)) ∈ ℝ)
4214rpred 12701 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ)
4342ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝑋 ∈ ℝ)
4437, 43readdcld 10935 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + 𝑋) ∈ ℝ)
45 climleltrp.l . . . . . . . . . . . . 13 (𝜑𝐴𝐶)
4645ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴𝐶)
4739, 37, 40, 46leadd1dd 11519 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) ≤ (𝐶 + ((𝐹𝑘) − 𝐴)))
4831adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) ∈ ℂ)
4930adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℂ)
5048, 49subcld 11262 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
5150abscld 15076 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
5240leabsd 15054 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ≤ (abs‘((𝐹𝑘) − 𝐴)))
53 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
5440, 51, 43, 52, 53lelttrd 11063 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) < 𝑋)
5540, 43, 37, 54ltadd2dd 11064 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹𝑘) − 𝐴)) < (𝐶 + 𝑋))
5635, 41, 44, 47, 55lelttrd 11063 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) < (𝐶 + 𝑋))
5734, 56eqbrtrd 5092 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) < (𝐶 + 𝑋))
5827, 57jca 511 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
5918, 23, 24, 58syl21anc 834 . . . . . . 7 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
6059adantrl 712 . . . . . 6 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
6160ex 412 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6217, 61ralimdaa 3140 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑁)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6362reximdva 3202 . . 3 (𝜑 → (∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6415, 63mpd 15 . 2 (𝜑 → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
65 ssrexv 3984 . 2 ((ℤ𝑁) ⊆ 𝑍 → (∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
666, 64, 65sylc 65 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cz 12249  cuz 12511  +crp 12659  abscabs 14873  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126
This theorem is referenced by:  smflimlem2  44194
  Copyright terms: Public domain W3C validator