Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climleltrp Structured version   Visualization version   GIF version

Theorem climleltrp 41833
Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climleltrp.k 𝑘𝜑
climleltrp.f 𝑘𝐹
climleltrp.z 𝑍 = (ℤ𝑀)
climleltrp.n (𝜑𝑁𝑍)
climleltrp.r ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
climleltrp.a (𝜑𝐹𝐴)
climleltrp.c (𝜑𝐶 ∈ ℝ)
climleltrp.l (𝜑𝐴𝐶)
climleltrp.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
climleltrp (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹   𝑗,𝑁,𝑘   𝑗,𝑋,𝑘   𝑗,𝑍   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem climleltrp
StepHypRef Expression
1 climleltrp.n . . . . 5 (𝜑𝑁𝑍)
2 climleltrp.z . . . . 5 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2920 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
4 uzss 12253 . . . 4 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
53, 4syl 17 . . 3 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
65, 2sseqtrrdi 4015 . 2 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
7 climleltrp.k . . . 4 𝑘𝜑
8 climleltrp.f . . . 4 𝑘𝐹
9 uzssz 12252 . . . . 5 (ℤ𝑀) ⊆ ℤ
109, 3sseldi 3962 . . . 4 (𝜑𝑁 ∈ ℤ)
11 eqid 2818 . . . 4 (ℤ𝑁) = (ℤ𝑁)
12 climleltrp.a . . . 4 (𝜑𝐹𝐴)
13 eqidd 2819 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = (𝐹𝑘))
14 climleltrp.x . . . 4 (𝜑𝑋 ∈ ℝ+)
157, 8, 10, 11, 12, 13, 14clim2d 41830 . . 3 (𝜑 → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
16 nfv 1906 . . . . . 6 𝑘 𝑗 ∈ (ℤ𝑁)
177, 16nfan 1891 . . . . 5 𝑘(𝜑𝑗 ∈ (ℤ𝑁))
18 simplll 771 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝜑)
19 uzss 12253 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑁) → (ℤ𝑗) ⊆ (ℤ𝑁))
2019ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑗) ⊆ (ℤ𝑁))
21 simpr 485 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
2220, 21sseldd 3965 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑁))
2322adantr 481 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝑘 ∈ (ℤ𝑁))
24 simpr 485 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
25 climleltrp.r . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2613, 25eqeltrd 2910 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2726adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) ∈ ℝ)
28 climcl 14844 . . . . . . . . . . . . . . 15 (𝐹𝐴𝐴 ∈ ℂ)
2912, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
3029adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ∈ ℂ)
3126recnd 10657 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℂ)
3230, 31pncan3d 10988 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐴 + ((𝐹𝑘) − 𝐴)) = (𝐹𝑘))
3332eqcomd 2824 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = (𝐴 + ((𝐹𝑘) − 𝐴)))
3433adantr 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) = (𝐴 + ((𝐹𝑘) − 𝐴)))
3534, 27eqeltrrd 2911 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) ∈ ℝ)
36 climleltrp.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
3736ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐶 ∈ ℝ)
387, 8, 11, 10, 12, 25climreclf 41821 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
3938ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℝ)
4027, 39resubcld 11056 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
4137, 40readdcld 10658 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹𝑘) − 𝐴)) ∈ ℝ)
4214rpred 12419 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ)
4342ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝑋 ∈ ℝ)
4437, 43readdcld 10658 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + 𝑋) ∈ ℝ)
45 climleltrp.l . . . . . . . . . . . . 13 (𝜑𝐴𝐶)
4645ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴𝐶)
4739, 37, 40, 46leadd1dd 11242 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) ≤ (𝐶 + ((𝐹𝑘) − 𝐴)))
4831adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) ∈ ℂ)
4930adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℂ)
5048, 49subcld 10985 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
5150abscld 14784 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
5240leabsd 14762 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ≤ (abs‘((𝐹𝑘) − 𝐴)))
53 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
5440, 51, 43, 52, 53lelttrd 10786 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) < 𝑋)
5540, 43, 37, 54ltadd2dd 10787 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹𝑘) − 𝐴)) < (𝐶 + 𝑋))
5635, 41, 44, 47, 55lelttrd 10786 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) < (𝐶 + 𝑋))
5734, 56eqbrtrd 5079 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) < (𝐶 + 𝑋))
5827, 57jca 512 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
5918, 23, 24, 58syl21anc 833 . . . . . . 7 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
6059adantrl 712 . . . . . 6 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
6160ex 413 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6217, 61ralimdaa 3214 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑁)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6362reximdva 3271 . . 3 (𝜑 → (∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6415, 63mpd 15 . 2 (𝜑 → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
65 ssrexv 4031 . 2 ((ℤ𝑁) ⊆ 𝑍 → (∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
666, 64, 65sylc 65 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wnf 1775  wcel 2105  wnfc 2958  wral 3135  wrex 3136  wss 3933   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524   + caddc 10528   < clt 10663  cle 10664  cmin 10858  cz 11969  cuz 12231  +crp 12377  abscabs 14581  cli 14829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834
This theorem is referenced by:  smflimlem2  42925
  Copyright terms: Public domain W3C validator