Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climleltrp Structured version   Visualization version   GIF version

Theorem climleltrp 45597
Description: The limit of complex number sequence 𝐹 is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climleltrp.k 𝑘𝜑
climleltrp.f 𝑘𝐹
climleltrp.z 𝑍 = (ℤ𝑀)
climleltrp.n (𝜑𝑁𝑍)
climleltrp.r ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
climleltrp.a (𝜑𝐹𝐴)
climleltrp.c (𝜑𝐶 ∈ ℝ)
climleltrp.l (𝜑𝐴𝐶)
climleltrp.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
climleltrp (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹   𝑗,𝑁,𝑘   𝑗,𝑋,𝑘   𝑗,𝑍   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem climleltrp
StepHypRef Expression
1 climleltrp.n . . . . 5 (𝜑𝑁𝑍)
2 climleltrp.z . . . . 5 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2854 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
4 uzss 12926 . . . 4 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
53, 4syl 17 . . 3 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
65, 2sseqtrrdi 4060 . 2 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
7 climleltrp.k . . . 4 𝑘𝜑
8 climleltrp.f . . . 4 𝑘𝐹
9 uzssz 12924 . . . . 5 (ℤ𝑀) ⊆ ℤ
109, 3sselid 4006 . . . 4 (𝜑𝑁 ∈ ℤ)
11 eqid 2740 . . . 4 (ℤ𝑁) = (ℤ𝑁)
12 climleltrp.a . . . 4 (𝜑𝐹𝐴)
13 eqidd 2741 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = (𝐹𝑘))
14 climleltrp.x . . . 4 (𝜑𝑋 ∈ ℝ+)
157, 8, 10, 11, 12, 13, 14clim2d 45594 . . 3 (𝜑 → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
16 nfv 1913 . . . . . 6 𝑘 𝑗 ∈ (ℤ𝑁)
177, 16nfan 1898 . . . . 5 𝑘(𝜑𝑗 ∈ (ℤ𝑁))
18 simplll 774 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝜑)
19 uzss 12926 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑁) → (ℤ𝑗) ⊆ (ℤ𝑁))
2019ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑗) ⊆ (ℤ𝑁))
21 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
2220, 21sseldd 4009 . . . . . . . . 9 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑁))
2322adantr 480 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝑘 ∈ (ℤ𝑁))
24 simpr 484 . . . . . . . 8 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
25 climleltrp.r . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2613, 25eqeltrd 2844 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
2726adantr 480 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) ∈ ℝ)
28 climcl 15545 . . . . . . . . . . . . . . 15 (𝐹𝐴𝐴 ∈ ℂ)
2912, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
3029adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ∈ ℂ)
3126recnd 11318 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℂ)
3230, 31pncan3d 11650 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐴 + ((𝐹𝑘) − 𝐴)) = (𝐹𝑘))
3332eqcomd 2746 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = (𝐴 + ((𝐹𝑘) − 𝐴)))
3433adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) = (𝐴 + ((𝐹𝑘) − 𝐴)))
3534, 27eqeltrrd 2845 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) ∈ ℝ)
36 climleltrp.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℝ)
3736ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐶 ∈ ℝ)
387, 8, 11, 10, 12, 25climreclf 45585 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
3938ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℝ)
4027, 39resubcld 11718 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℝ)
4137, 40readdcld 11319 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹𝑘) − 𝐴)) ∈ ℝ)
4214rpred 13099 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ)
4342ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝑋 ∈ ℝ)
4437, 43readdcld 11319 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + 𝑋) ∈ ℝ)
45 climleltrp.l . . . . . . . . . . . . 13 (𝜑𝐴𝐶)
4645ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴𝐶)
4739, 37, 40, 46leadd1dd 11904 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) ≤ (𝐶 + ((𝐹𝑘) − 𝐴)))
4831adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) ∈ ℂ)
4930adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℂ)
5048, 49subcld 11647 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
5150abscld 15485 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
5240leabsd 15463 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) ≤ (abs‘((𝐹𝑘) − 𝐴)))
53 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
5440, 51, 43, 52, 53lelttrd 11448 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) − 𝐴) < 𝑋)
5540, 43, 37, 54ltadd2dd 11449 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹𝑘) − 𝐴)) < (𝐶 + 𝑋))
5635, 41, 44, 47, 55lelttrd 11448 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹𝑘) − 𝐴)) < (𝐶 + 𝑋))
5734, 56eqbrtrd 5188 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) < (𝐶 + 𝑋))
5827, 57jca 511 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝑁)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
5918, 23, 24, 58syl21anc 837 . . . . . . 7 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
6059adantrl 715 . . . . . 6 ((((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
6160ex 412 . . . . 5 (((𝜑𝑗 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6217, 61ralimdaa 3266 . . . 4 ((𝜑𝑗 ∈ (ℤ𝑁)) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6362reximdva 3174 . . 3 (𝜑 → (∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
6415, 63mpd 15 . 2 (𝜑 → ∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
65 ssrexv 4078 . 2 ((ℤ𝑁) ⊆ 𝑍 → (∃𝑗 ∈ (ℤ𝑁)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋))))
666, 64, 65sylc 65 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) < (𝐶 + 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cz 12639  cuz 12903  +crp 13057  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535
This theorem is referenced by:  smflimlem2  46693
  Copyright terms: Public domain W3C validator