Proof of Theorem climleltrp
| Step | Hyp | Ref
| Expression |
| 1 | | climleltrp.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| 2 | | climleltrp.z |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 3 | 1, 2 | eleqtrdi 2845 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 4 | | uzss 12880 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 →
(ℤ≥‘𝑁) ⊆
(ℤ≥‘𝑀)) |
| 6 | 5, 2 | sseqtrrdi 4005 |
. 2
⊢ (𝜑 →
(ℤ≥‘𝑁) ⊆ 𝑍) |
| 7 | | climleltrp.k |
. . . 4
⊢
Ⅎ𝑘𝜑 |
| 8 | | climleltrp.f |
. . . 4
⊢
Ⅎ𝑘𝐹 |
| 9 | | uzssz 12878 |
. . . . 5
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 10 | 9, 3 | sselid 3961 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 11 | | eqid 2736 |
. . . 4
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
| 12 | | climleltrp.a |
. . . 4
⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| 13 | | eqidd 2737 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 14 | | climleltrp.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
| 15 | 7, 8, 10, 11, 12, 13, 14 | clim2d 45669 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑁)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) |
| 16 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑘 𝑗 ∈
(ℤ≥‘𝑁) |
| 17 | 7, 16 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) |
| 18 | | simplll 774 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → 𝜑) |
| 19 | | uzss 12880 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑁) → (ℤ≥‘𝑗) ⊆
(ℤ≥‘𝑁)) |
| 20 | 19 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) →
(ℤ≥‘𝑗) ⊆ (ℤ≥‘𝑁)) |
| 21 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ (ℤ≥‘𝑗)) |
| 22 | 20, 21 | sseldd 3964 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ (ℤ≥‘𝑁)) |
| 23 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → 𝑘 ∈ (ℤ≥‘𝑁)) |
| 24 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) |
| 25 | | climleltrp.r |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
| 26 | 13, 25 | eqeltrd 2835 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
| 27 | 26 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐹‘𝑘) ∈ ℝ) |
| 28 | | climcl 15520 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| 29 | 12, 28 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 30 | 29 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝐴 ∈ ℂ) |
| 31 | 26 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℂ) |
| 32 | 30, 31 | pncan3d 11602 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐴 + ((𝐹‘𝑘) − 𝐴)) = (𝐹‘𝑘)) |
| 33 | 32 | eqcomd 2742 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = (𝐴 + ((𝐹‘𝑘) − 𝐴))) |
| 34 | 33 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐹‘𝑘) = (𝐴 + ((𝐹‘𝑘) − 𝐴))) |
| 35 | 34, 27 | eqeltrrd 2836 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹‘𝑘) − 𝐴)) ∈ ℝ) |
| 36 | | climleltrp.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → 𝐶 ∈ ℝ) |
| 38 | 7, 8, 11, 10, 12, 25 | climreclf 45660 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 39 | 38 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℝ) |
| 40 | 27, 39 | resubcld 11670 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → ((𝐹‘𝑘) − 𝐴) ∈ ℝ) |
| 41 | 37, 40 | readdcld 11269 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹‘𝑘) − 𝐴)) ∈ ℝ) |
| 42 | 14 | rpred 13056 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 43 | 42 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → 𝑋 ∈ ℝ) |
| 44 | 37, 43 | readdcld 11269 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐶 + 𝑋) ∈ ℝ) |
| 45 | | climleltrp.l |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → 𝐴 ≤ 𝐶) |
| 47 | 39, 37, 40, 46 | leadd1dd 11856 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹‘𝑘) − 𝐴)) ≤ (𝐶 + ((𝐹‘𝑘) − 𝐴))) |
| 48 | 31 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐹‘𝑘) ∈ ℂ) |
| 49 | 30 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → 𝐴 ∈ ℂ) |
| 50 | 48, 49 | subcld 11599 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → ((𝐹‘𝑘) − 𝐴) ∈ ℂ) |
| 51 | 50 | abscld 15460 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹‘𝑘) − 𝐴)) ∈ ℝ) |
| 52 | 40 | leabsd 15438 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → ((𝐹‘𝑘) − 𝐴) ≤ (abs‘((𝐹‘𝑘) − 𝐴))) |
| 53 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) |
| 54 | 40, 51, 43, 52, 53 | lelttrd 11398 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → ((𝐹‘𝑘) − 𝐴) < 𝑋) |
| 55 | 40, 43, 37, 54 | ltadd2dd 11399 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐶 + ((𝐹‘𝑘) − 𝐴)) < (𝐶 + 𝑋)) |
| 56 | 35, 41, 44, 47, 55 | lelttrd 11398 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐴 + ((𝐹‘𝑘) − 𝐴)) < (𝐶 + 𝑋)) |
| 57 | 34, 56 | eqbrtrd 5146 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐹‘𝑘) < (𝐶 + 𝑋)) |
| 58 | 27, 57 | jca 511 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → ((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋))) |
| 59 | 18, 23, 24, 58 | syl21anc 837 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → ((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋))) |
| 60 | 59 | adantrl 716 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) → ((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋))) |
| 61 | 60 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → ((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋)))) |
| 62 | 17, 61 | ralimdaa 3247 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑁)) → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋)))) |
| 63 | 62 | reximdva 3154 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ (ℤ≥‘𝑁)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → ∃𝑗 ∈ (ℤ≥‘𝑁)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋)))) |
| 64 | 15, 63 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ (ℤ≥‘𝑁)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋))) |
| 65 | | ssrexv 4033 |
. 2
⊢
((ℤ≥‘𝑁) ⊆ 𝑍 → (∃𝑗 ∈ (ℤ≥‘𝑁)∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋)))) |
| 66 | 6, 64, 65 | sylc 65 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (𝐹‘𝑘) < (𝐶 + 𝑋))) |