| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem61 | Structured version Visualization version GIF version | ||
| Description: This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem61.1 | ⊢ Ⅎ𝑡𝐹 |
| stoweidlem61.2 | ⊢ Ⅎ𝑡𝜑 |
| stoweidlem61.3 | ⊢ 𝐾 = (topGen‘ran (,)) |
| stoweidlem61.4 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| stoweidlem61.5 | ⊢ 𝑇 = ∪ 𝐽 |
| stoweidlem61.6 | ⊢ (𝜑 → 𝑇 ≠ ∅) |
| stoweidlem61.7 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
| stoweidlem61.8 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| stoweidlem61.9 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
| stoweidlem61.10 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
| stoweidlem61.11 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
| stoweidlem61.12 | ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
| stoweidlem61.13 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
| stoweidlem61.14 | ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) |
| stoweidlem61.15 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| stoweidlem61.16 | ⊢ (𝜑 → 𝐸 < (1 / 3)) |
| Ref | Expression |
|---|---|
| stoweidlem61 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoweidlem61.1 | . . 3 ⊢ Ⅎ𝑡𝐹 | |
| 2 | stoweidlem61.2 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
| 3 | stoweidlem61.3 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 4 | stoweidlem61.5 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
| 5 | stoweidlem61.7 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
| 6 | eqid 2730 | . . 3 ⊢ (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) | |
| 7 | eqid 2730 | . . 3 ⊢ (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) | |
| 8 | stoweidlem61.4 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
| 9 | stoweidlem61.6 | . . 3 ⊢ (𝜑 → 𝑇 ≠ ∅) | |
| 10 | stoweidlem61.8 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
| 11 | stoweidlem61.9 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
| 12 | stoweidlem61.10 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
| 13 | stoweidlem61.11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
| 14 | stoweidlem61.12 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) | |
| 15 | stoweidlem61.13 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
| 16 | stoweidlem61.14 | . . 3 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) | |
| 17 | stoweidlem61.15 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
| 18 | stoweidlem61.16 | . . 3 ⊢ (𝜑 → 𝐸 < (1 / 3)) | |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | stoweidlem60 46065 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) |
| 20 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑡 𝑔 ∈ 𝐴 | |
| 21 | 2, 20 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑡(𝜑 ∧ 𝑔 ∈ 𝐴) |
| 22 | 17 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝐸 ∈ ℝ+) |
| 23 | 3, 4, 5, 15 | fcnre 45026 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| 24 | 23 | ffvelcdmda 7059 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
| 25 | 24 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
| 26 | 10 | sselda 3949 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ 𝐶) |
| 27 | 3, 4, 5, 26 | fcnre 45026 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → 𝑔:𝑇⟶ℝ) |
| 28 | 27 | ffvelcdmda 7059 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝑔‘𝑡) ∈ ℝ) |
| 29 | simpll1 1213 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → 𝐸 ∈ ℝ+) | |
| 30 | simpll2 1214 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝐹‘𝑡) ∈ ℝ) | |
| 31 | simpll3 1215 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝑔‘𝑡) ∈ ℝ) | |
| 32 | simplr 768 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → 𝑗 ∈ ℝ) | |
| 33 | simprll 778 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡)) | |
| 34 | simprlr 779 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) | |
| 35 | simprrr 781 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)) | |
| 36 | simprrl 780 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)) | |
| 37 | 29, 30, 31, 32, 33, 34, 35, 36 | stoweidlem13 46018 | . . . . . 6 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
| 38 | 37 | rexlimdva2 3137 | . . . . 5 ⊢ ((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
| 39 | 22, 25, 28, 38 | syl3anc 1373 | . . . 4 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
| 40 | 21, 39 | ralimdaa 3239 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → (∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
| 41 | 40 | reximdva 3147 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
| 42 | 19, 41 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 ⊆ wss 3917 ∅c0 4299 ∪ cuni 4874 class class class wbr 5110 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 2c2 12248 3c3 12249 4c4 12250 ℝ+crp 12958 (,)cioo 13313 ...cfz 13475 abscabs 15207 topGenctg 17407 Cn ccn 23118 Compccmp 23280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-cn 23121 df-cnp 23122 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 |
| This theorem is referenced by: stoweidlem62 46067 |
| Copyright terms: Public domain | W3C validator |