Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem61 | Structured version Visualization version GIF version |
Description: This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem61.1 | ⊢ Ⅎ𝑡𝐹 |
stoweidlem61.2 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem61.3 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem61.4 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
stoweidlem61.5 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem61.6 | ⊢ (𝜑 → 𝑇 ≠ ∅) |
stoweidlem61.7 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem61.8 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
stoweidlem61.9 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem61.10 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem61.11 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
stoweidlem61.12 | ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
stoweidlem61.13 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
stoweidlem61.14 | ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) |
stoweidlem61.15 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
stoweidlem61.16 | ⊢ (𝜑 → 𝐸 < (1 / 3)) |
Ref | Expression |
---|---|
stoweidlem61 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem61.1 | . . 3 ⊢ Ⅎ𝑡𝐹 | |
2 | stoweidlem61.2 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
3 | stoweidlem61.3 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
4 | stoweidlem61.5 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
5 | stoweidlem61.7 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
6 | eqid 2738 | . . 3 ⊢ (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) | |
7 | eqid 2738 | . . 3 ⊢ (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) | |
8 | stoweidlem61.4 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
9 | stoweidlem61.6 | . . 3 ⊢ (𝜑 → 𝑇 ≠ ∅) | |
10 | stoweidlem61.8 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
11 | stoweidlem61.9 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
12 | stoweidlem61.10 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
13 | stoweidlem61.11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
14 | stoweidlem61.12 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) | |
15 | stoweidlem61.13 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
16 | stoweidlem61.14 | . . 3 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) | |
17 | stoweidlem61.15 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
18 | stoweidlem61.16 | . . 3 ⊢ (𝜑 → 𝐸 < (1 / 3)) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | stoweidlem60 43491 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) |
20 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑡 𝑔 ∈ 𝐴 | |
21 | 2, 20 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑡(𝜑 ∧ 𝑔 ∈ 𝐴) |
22 | 17 | ad2antrr 722 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝐸 ∈ ℝ+) |
23 | 3, 4, 5, 15 | fcnre 42457 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
24 | 23 | ffvelrnda 6943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
25 | 24 | adantlr 711 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
26 | 10 | sselda 3917 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ 𝐶) |
27 | 3, 4, 5, 26 | fcnre 42457 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → 𝑔:𝑇⟶ℝ) |
28 | 27 | ffvelrnda 6943 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝑔‘𝑡) ∈ ℝ) |
29 | simpll1 1210 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → 𝐸 ∈ ℝ+) | |
30 | simpll2 1211 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝐹‘𝑡) ∈ ℝ) | |
31 | simpll3 1212 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝑔‘𝑡) ∈ ℝ) | |
32 | simplr 765 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → 𝑗 ∈ ℝ) | |
33 | simprll 775 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡)) | |
34 | simprlr 776 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) | |
35 | simprrr 778 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)) | |
36 | simprrl 777 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)) | |
37 | 29, 30, 31, 32, 33, 34, 35, 36 | stoweidlem13 43444 | . . . . . 6 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
38 | 37 | rexlimdva2 3215 | . . . . 5 ⊢ ((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
39 | 22, 25, 28, 38 | syl3anc 1369 | . . . 4 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
40 | 21, 39 | ralimdaa 3140 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → (∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
41 | 40 | reximdva 3202 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
42 | 19, 41 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 2c2 11958 3c3 11959 4c4 11960 ℝ+crp 12659 (,)cioo 13008 ...cfz 13168 abscabs 14873 topGenctg 17065 Cn ccn 22283 Compccmp 22445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-cn 22286 df-cnp 22287 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 |
This theorem is referenced by: stoweidlem62 43493 |
Copyright terms: Public domain | W3C validator |