Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem61 Structured version   Visualization version   GIF version

Theorem stoweidlem61 42703
Description: This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem61.1 𝑡𝐹
stoweidlem61.2 𝑡𝜑
stoweidlem61.3 𝐾 = (topGen‘ran (,))
stoweidlem61.4 (𝜑𝐽 ∈ Comp)
stoweidlem61.5 𝑇 = 𝐽
stoweidlem61.6 (𝜑𝑇 ≠ ∅)
stoweidlem61.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem61.8 (𝜑𝐴𝐶)
stoweidlem61.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem61.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem61.11 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem61.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem61.13 (𝜑𝐹𝐶)
stoweidlem61.14 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
stoweidlem61.15 (𝜑𝐸 ∈ ℝ+)
stoweidlem61.16 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem61 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
Distinct variable groups:   𝑓,𝑔,𝑞,𝑟,𝑡,𝑥,𝐴   𝑓,𝐸,𝑔,𝑞,𝑟,𝑡,𝑥   𝑓,𝐹,𝑔,𝑞,𝑟,𝑥   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑞,𝑟,𝑡,𝑥   𝜑,𝑓,𝑔,𝑞,𝑟,𝑥   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞)   𝐹(𝑡)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem61
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem61.1 . . 3 𝑡𝐹
2 stoweidlem61.2 . . 3 𝑡𝜑
3 stoweidlem61.3 . . 3 𝐾 = (topGen‘ran (,))
4 stoweidlem61.5 . . 3 𝑇 = 𝐽
5 stoweidlem61.7 . . 3 𝐶 = (𝐽 Cn 𝐾)
6 eqid 2798 . . 3 (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
7 eqid 2798 . . 3 (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
8 stoweidlem61.4 . . 3 (𝜑𝐽 ∈ Comp)
9 stoweidlem61.6 . . 3 (𝜑𝑇 ≠ ∅)
10 stoweidlem61.8 . . 3 (𝜑𝐴𝐶)
11 stoweidlem61.9 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem61.10 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
13 stoweidlem61.11 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
14 stoweidlem61.12 . . 3 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
15 stoweidlem61.13 . . 3 (𝜑𝐹𝐶)
16 stoweidlem61.14 . . 3 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
17 stoweidlem61.15 . . 3 (𝜑𝐸 ∈ ℝ+)
18 stoweidlem61.16 . . 3 (𝜑𝐸 < (1 / 3))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18stoweidlem60 42702 . 2 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
20 nfv 1915 . . . . 5 𝑡 𝑔𝐴
212, 20nfan 1900 . . . 4 𝑡(𝜑𝑔𝐴)
2217ad2antrr 725 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ+)
233, 4, 5, 15fcnre 41654 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
2423ffvelrnda 6828 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2524adantlr 714 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2610sselda 3915 . . . . . . 7 ((𝜑𝑔𝐴) → 𝑔𝐶)
273, 4, 5, 26fcnre 41654 . . . . . 6 ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ)
2827ffvelrnda 6828 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (𝑔𝑡) ∈ ℝ)
29 simpll1 1209 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → 𝐸 ∈ ℝ+)
30 simpll2 1210 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝐹𝑡) ∈ ℝ)
31 simpll3 1211 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝑔𝑡) ∈ ℝ)
32 simplr 768 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → 𝑗 ∈ ℝ)
33 simprll 778 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡))
34 simprlr 779 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
35 simprrr 781 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))
36 simprrl 780 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
3729, 30, 31, 32, 33, 34, 35, 36stoweidlem13 42655 . . . . . 6 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
3837rexlimdva2 3246 . . . . 5 ((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
3922, 25, 28, 38syl3anc 1368 . . . 4 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4021, 39ralimdaa 3181 . . 3 ((𝜑𝑔𝐴) → (∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∀𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4140reximdva 3233 . 2 (𝜑 → (∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4219, 41mpd 15 1 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243   cuni 4800   class class class wbr 5030  cmpt 5110  ran crn 5520  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  3c3 11681  4c4 11682  +crp 12377  (,)cioo 12726  ...cfz 12885  abscabs 14585  topGenctg 16703   Cn ccn 21829  Compccmp 21991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-cn 21832  df-cnp 21833  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929
This theorem is referenced by:  stoweidlem62  42704
  Copyright terms: Public domain W3C validator