Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem61 Structured version   Visualization version   GIF version

Theorem stoweidlem61 46076
Description: This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem61.1 𝑡𝐹
stoweidlem61.2 𝑡𝜑
stoweidlem61.3 𝐾 = (topGen‘ran (,))
stoweidlem61.4 (𝜑𝐽 ∈ Comp)
stoweidlem61.5 𝑇 = 𝐽
stoweidlem61.6 (𝜑𝑇 ≠ ∅)
stoweidlem61.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem61.8 (𝜑𝐴𝐶)
stoweidlem61.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem61.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem61.11 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem61.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem61.13 (𝜑𝐹𝐶)
stoweidlem61.14 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
stoweidlem61.15 (𝜑𝐸 ∈ ℝ+)
stoweidlem61.16 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem61 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
Distinct variable groups:   𝑓,𝑔,𝑞,𝑟,𝑡,𝑥,𝐴   𝑓,𝐸,𝑔,𝑞,𝑟,𝑡,𝑥   𝑓,𝐹,𝑔,𝑞,𝑟,𝑥   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑞,𝑟,𝑡,𝑥   𝜑,𝑓,𝑔,𝑞,𝑟,𝑥   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞)   𝐹(𝑡)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem61
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem61.1 . . 3 𝑡𝐹
2 stoweidlem61.2 . . 3 𝑡𝜑
3 stoweidlem61.3 . . 3 𝐾 = (topGen‘ran (,))
4 stoweidlem61.5 . . 3 𝑇 = 𝐽
5 stoweidlem61.7 . . 3 𝐶 = (𝐽 Cn 𝐾)
6 eqid 2737 . . 3 (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
7 eqid 2737 . . 3 (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
8 stoweidlem61.4 . . 3 (𝜑𝐽 ∈ Comp)
9 stoweidlem61.6 . . 3 (𝜑𝑇 ≠ ∅)
10 stoweidlem61.8 . . 3 (𝜑𝐴𝐶)
11 stoweidlem61.9 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem61.10 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
13 stoweidlem61.11 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
14 stoweidlem61.12 . . 3 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
15 stoweidlem61.13 . . 3 (𝜑𝐹𝐶)
16 stoweidlem61.14 . . 3 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
17 stoweidlem61.15 . . 3 (𝜑𝐸 ∈ ℝ+)
18 stoweidlem61.16 . . 3 (𝜑𝐸 < (1 / 3))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18stoweidlem60 46075 . 2 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
20 nfv 1914 . . . . 5 𝑡 𝑔𝐴
212, 20nfan 1899 . . . 4 𝑡(𝜑𝑔𝐴)
2217ad2antrr 726 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ+)
233, 4, 5, 15fcnre 45030 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
2423ffvelcdmda 7104 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2524adantlr 715 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2610sselda 3983 . . . . . . 7 ((𝜑𝑔𝐴) → 𝑔𝐶)
273, 4, 5, 26fcnre 45030 . . . . . 6 ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ)
2827ffvelcdmda 7104 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (𝑔𝑡) ∈ ℝ)
29 simpll1 1213 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → 𝐸 ∈ ℝ+)
30 simpll2 1214 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝐹𝑡) ∈ ℝ)
31 simpll3 1215 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝑔𝑡) ∈ ℝ)
32 simplr 769 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → 𝑗 ∈ ℝ)
33 simprll 779 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡))
34 simprlr 780 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
35 simprrr 782 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))
36 simprrl 781 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
3729, 30, 31, 32, 33, 34, 35, 36stoweidlem13 46028 . . . . . 6 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
3837rexlimdva2 3157 . . . . 5 ((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
3922, 25, 28, 38syl3anc 1373 . . . 4 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4021, 39ralimdaa 3260 . . 3 ((𝜑𝑔𝐴) → (∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∀𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4140reximdva 3168 . 2 (𝜑 → (∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4219, 41mpd 15 1 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  wne 2940  wral 3061  wrex 3070  {crab 3436  wss 3951  c0 4333   cuni 4907   class class class wbr 5143  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  3c3 12322  4c4 12323  +crp 13034  (,)cioo 13387  ...cfz 13547  abscabs 15273  topGenctg 17482   Cn ccn 23232  Compccmp 23394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332
This theorem is referenced by:  stoweidlem62  46077
  Copyright terms: Public domain W3C validator