Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem61 Structured version   Visualization version   GIF version

Theorem stoweidlem61 42214
Description: This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem61.1 𝑡𝐹
stoweidlem61.2 𝑡𝜑
stoweidlem61.3 𝐾 = (topGen‘ran (,))
stoweidlem61.4 (𝜑𝐽 ∈ Comp)
stoweidlem61.5 𝑇 = 𝐽
stoweidlem61.6 (𝜑𝑇 ≠ ∅)
stoweidlem61.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem61.8 (𝜑𝐴𝐶)
stoweidlem61.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem61.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem61.11 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem61.12 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem61.13 (𝜑𝐹𝐶)
stoweidlem61.14 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
stoweidlem61.15 (𝜑𝐸 ∈ ℝ+)
stoweidlem61.16 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem61 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
Distinct variable groups:   𝑓,𝑔,𝑞,𝑟,𝑡,𝑥,𝐴   𝑓,𝐸,𝑔,𝑞,𝑟,𝑡,𝑥   𝑓,𝐹,𝑔,𝑞,𝑟,𝑥   𝑓,𝐽,𝑔,𝑟,𝑡   𝑇,𝑓,𝑔,𝑞,𝑟,𝑡,𝑥   𝜑,𝑓,𝑔,𝑞,𝑟,𝑥   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐶(𝑥,𝑡,𝑓,𝑔,𝑟,𝑞)   𝐹(𝑡)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑓,𝑔,𝑟,𝑞)

Proof of Theorem stoweidlem61
Dummy variables 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem61.1 . . 3 𝑡𝐹
2 stoweidlem61.2 . . 3 𝑡𝜑
3 stoweidlem61.3 . . 3 𝐾 = (topGen‘ran (,))
4 stoweidlem61.5 . . 3 𝑇 = 𝐽
5 stoweidlem61.7 . . 3 𝐶 = (𝐽 Cn 𝐾)
6 eqid 2825 . . 3 (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
7 eqid 2825 . . 3 (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
8 stoweidlem61.4 . . 3 (𝜑𝐽 ∈ Comp)
9 stoweidlem61.6 . . 3 (𝜑𝑇 ≠ ∅)
10 stoweidlem61.8 . . 3 (𝜑𝐴𝐶)
11 stoweidlem61.9 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
12 stoweidlem61.10 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
13 stoweidlem61.11 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
14 stoweidlem61.12 . . 3 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
15 stoweidlem61.13 . . 3 (𝜑𝐹𝐶)
16 stoweidlem61.14 . . 3 (𝜑 → ∀𝑡𝑇 0 ≤ (𝐹𝑡))
17 stoweidlem61.15 . . 3 (𝜑𝐸 ∈ ℝ+)
18 stoweidlem61.16 . . 3 (𝜑𝐸 < (1 / 3))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18stoweidlem60 42213 . 2 (𝜑 → ∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))))
20 nfv 1908 . . . . 5 𝑡 𝑔𝐴
212, 20nfan 1893 . . . 4 𝑡(𝜑𝑔𝐴)
2217ad2antrr 722 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ+)
233, 4, 5, 15fcnre 41149 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
2423ffvelrnda 6846 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2524adantlr 711 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2610sselda 3970 . . . . . . 7 ((𝜑𝑔𝐴) → 𝑔𝐶)
273, 4, 5, 26fcnre 41149 . . . . . 6 ((𝜑𝑔𝐴) → 𝑔:𝑇⟶ℝ)
2827ffvelrnda 6846 . . . . 5 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (𝑔𝑡) ∈ ℝ)
29 simpll1 1206 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → 𝐸 ∈ ℝ+)
30 simpll2 1207 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝐹𝑡) ∈ ℝ)
31 simpll3 1208 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝑔𝑡) ∈ ℝ)
32 simplr 765 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → 𝑗 ∈ ℝ)
33 simprll 775 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡))
34 simprlr 776 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸))
35 simprrr 778 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))
36 simprrl 777 . . . . . . 7 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸))
3729, 30, 31, 32, 33, 34, 35, 36stoweidlem13 42166 . . . . . 6 ((((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡)))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
3837rexlimdva2 3291 . . . . 5 ((𝐸 ∈ ℝ+ ∧ (𝐹𝑡) ∈ ℝ ∧ (𝑔𝑡) ∈ ℝ) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
3922, 25, 28, 38syl3anc 1365 . . . 4 (((𝜑𝑔𝐴) ∧ 𝑡𝑇) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4021, 39ralimdaa 3221 . . 3 ((𝜑𝑔𝐴) → (∀𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∀𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4140reximdva 3278 . 2 (𝜑 → (∃𝑔𝐴𝑡𝑇𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹𝑡) ∧ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔𝑡))) → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸)))
4219, 41mpd 15 1 (𝜑 → ∃𝑔𝐴𝑡𝑇 (abs‘((𝑔𝑡) − (𝐹𝑡))) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wnf 1777  wcel 2107  wnfc 2965  wne 3020  wral 3142  wrex 3143  {crab 3146  wss 3939  c0 4294   cuni 4836   class class class wbr 5062  cmpt 5142  ran crn 5554  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  2c2 11684  3c3 11685  4c4 11686  +crp 12382  (,)cioo 12731  ...cfz 12885  abscabs 14586  topGenctg 16703   Cn ccn 21750  Compccmp 21912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-mopn 20459  df-cnfld 20464  df-top 21420  df-topon 21437  df-topsp 21459  df-bases 21472  df-cld 21545  df-cn 21753  df-cnp 21754  df-cmp 21913  df-tx 22088  df-hmeo 22281  df-xms 22847  df-ms 22848  df-tms 22849
This theorem is referenced by:  stoweidlem62  42215
  Copyright terms: Public domain W3C validator