![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem61 | Structured version Visualization version GIF version |
Description: This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem61.1 | ⊢ Ⅎ𝑡𝐹 |
stoweidlem61.2 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem61.3 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem61.4 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
stoweidlem61.5 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem61.6 | ⊢ (𝜑 → 𝑇 ≠ ∅) |
stoweidlem61.7 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem61.8 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
stoweidlem61.9 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem61.10 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem61.11 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
stoweidlem61.12 | ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
stoweidlem61.13 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
stoweidlem61.14 | ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) |
stoweidlem61.15 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
stoweidlem61.16 | ⊢ (𝜑 → 𝐸 < (1 / 3)) |
Ref | Expression |
---|---|
stoweidlem61 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem61.1 | . . 3 ⊢ Ⅎ𝑡𝐹 | |
2 | stoweidlem61.2 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
3 | stoweidlem61.3 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
4 | stoweidlem61.5 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
5 | stoweidlem61.7 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
6 | eqid 2740 | . . 3 ⊢ (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) | |
7 | eqid 2740 | . . 3 ⊢ (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) | |
8 | stoweidlem61.4 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
9 | stoweidlem61.6 | . . 3 ⊢ (𝜑 → 𝑇 ≠ ∅) | |
10 | stoweidlem61.8 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
11 | stoweidlem61.9 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
12 | stoweidlem61.10 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
13 | stoweidlem61.11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
14 | stoweidlem61.12 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) | |
15 | stoweidlem61.13 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
16 | stoweidlem61.14 | . . 3 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) | |
17 | stoweidlem61.15 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
18 | stoweidlem61.16 | . . 3 ⊢ (𝜑 → 𝐸 < (1 / 3)) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | stoweidlem60 45981 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) |
20 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑡 𝑔 ∈ 𝐴 | |
21 | 2, 20 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑡(𝜑 ∧ 𝑔 ∈ 𝐴) |
22 | 17 | ad2antrr 725 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝐸 ∈ ℝ+) |
23 | 3, 4, 5, 15 | fcnre 44925 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
24 | 23 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
25 | 24 | adantlr 714 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
26 | 10 | sselda 4008 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ 𝐶) |
27 | 3, 4, 5, 26 | fcnre 44925 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → 𝑔:𝑇⟶ℝ) |
28 | 27 | ffvelcdmda 7118 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝑔‘𝑡) ∈ ℝ) |
29 | simpll1 1212 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → 𝐸 ∈ ℝ+) | |
30 | simpll2 1213 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝐹‘𝑡) ∈ ℝ) | |
31 | simpll3 1214 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝑔‘𝑡) ∈ ℝ) | |
32 | simplr 768 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → 𝑗 ∈ ℝ) | |
33 | simprll 778 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡)) | |
34 | simprlr 779 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) | |
35 | simprrr 781 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)) | |
36 | simprrl 780 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)) | |
37 | 29, 30, 31, 32, 33, 34, 35, 36 | stoweidlem13 45934 | . . . . . 6 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
38 | 37 | rexlimdva2 3163 | . . . . 5 ⊢ ((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
39 | 22, 25, 28, 38 | syl3anc 1371 | . . . 4 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
40 | 21, 39 | ralimdaa 3266 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → (∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
41 | 40 | reximdva 3174 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
42 | 19, 41 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 ≤ cle 11325 − cmin 11520 / cdiv 11947 2c2 12348 3c3 12349 4c4 12350 ℝ+crp 13057 (,)cioo 13407 ...cfz 13567 abscabs 15283 topGenctg 17497 Cn ccn 23253 Compccmp 23415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-cn 23256 df-cnp 23257 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 |
This theorem is referenced by: stoweidlem62 45983 |
Copyright terms: Public domain | W3C validator |