Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem61 | Structured version Visualization version GIF version |
Description: This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem61.1 | ⊢ Ⅎ𝑡𝐹 |
stoweidlem61.2 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem61.3 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem61.4 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
stoweidlem61.5 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem61.6 | ⊢ (𝜑 → 𝑇 ≠ ∅) |
stoweidlem61.7 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem61.8 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
stoweidlem61.9 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem61.10 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem61.11 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
stoweidlem61.12 | ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
stoweidlem61.13 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
stoweidlem61.14 | ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) |
stoweidlem61.15 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
stoweidlem61.16 | ⊢ (𝜑 → 𝐸 < (1 / 3)) |
Ref | Expression |
---|---|
stoweidlem61 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem61.1 | . . 3 ⊢ Ⅎ𝑡𝐹 | |
2 | stoweidlem61.2 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
3 | stoweidlem61.3 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
4 | stoweidlem61.5 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
5 | stoweidlem61.7 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
6 | eqid 2738 | . . 3 ⊢ (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) | |
7 | eqid 2738 | . . 3 ⊢ (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) | |
8 | stoweidlem61.4 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
9 | stoweidlem61.6 | . . 3 ⊢ (𝜑 → 𝑇 ≠ ∅) | |
10 | stoweidlem61.8 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
11 | stoweidlem61.9 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
12 | stoweidlem61.10 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
13 | stoweidlem61.11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
14 | stoweidlem61.12 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) | |
15 | stoweidlem61.13 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
16 | stoweidlem61.14 | . . 3 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) | |
17 | stoweidlem61.15 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
18 | stoweidlem61.16 | . . 3 ⊢ (𝜑 → 𝐸 < (1 / 3)) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | stoweidlem60 43143 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) |
20 | nfv 1921 | . . . . 5 ⊢ Ⅎ𝑡 𝑔 ∈ 𝐴 | |
21 | 2, 20 | nfan 1906 | . . . 4 ⊢ Ⅎ𝑡(𝜑 ∧ 𝑔 ∈ 𝐴) |
22 | 17 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝐸 ∈ ℝ+) |
23 | 3, 4, 5, 15 | fcnre 42106 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
24 | 23 | ffvelrnda 6861 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
25 | 24 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
26 | 10 | sselda 3877 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ 𝐶) |
27 | 3, 4, 5, 26 | fcnre 42106 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → 𝑔:𝑇⟶ℝ) |
28 | 27 | ffvelrnda 6861 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝑔‘𝑡) ∈ ℝ) |
29 | simpll1 1213 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → 𝐸 ∈ ℝ+) | |
30 | simpll2 1214 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝐹‘𝑡) ∈ ℝ) | |
31 | simpll3 1215 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝑔‘𝑡) ∈ ℝ) | |
32 | simplr 769 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → 𝑗 ∈ ℝ) | |
33 | simprll 779 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡)) | |
34 | simprlr 780 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) | |
35 | simprrr 782 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)) | |
36 | simprrl 781 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)) | |
37 | 29, 30, 31, 32, 33, 34, 35, 36 | stoweidlem13 43096 | . . . . . 6 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
38 | 37 | rexlimdva2 3197 | . . . . 5 ⊢ ((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
39 | 22, 25, 28, 38 | syl3anc 1372 | . . . 4 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
40 | 21, 39 | ralimdaa 3129 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → (∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
41 | 40 | reximdva 3184 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
42 | 19, 41 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 Ⅎwnf 1790 ∈ wcel 2114 Ⅎwnfc 2879 ≠ wne 2934 ∀wral 3053 ∃wrex 3054 {crab 3057 ⊆ wss 3843 ∅c0 4211 ∪ cuni 4796 class class class wbr 5030 ↦ cmpt 5110 ran crn 5526 ‘cfv 6339 (class class class)co 7170 ℝcr 10614 0cc0 10615 1c1 10616 + caddc 10618 · cmul 10620 < clt 10753 ≤ cle 10754 − cmin 10948 / cdiv 11375 2c2 11771 3c3 11772 4c4 11773 ℝ+crp 12472 (,)cioo 12821 ...cfz 12981 abscabs 14683 topGenctg 16814 Cn ccn 21975 Compccmp 22137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-mulf 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-er 8320 df-map 8439 df-pm 8440 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-fi 8948 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-ioo 12825 df-ioc 12826 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-fl 13253 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-rlim 14936 df-sum 15136 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-sca 16684 df-vsca 16685 df-ip 16686 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-hom 16692 df-cco 16693 df-rest 16799 df-topn 16800 df-0g 16818 df-gsum 16819 df-topgen 16820 df-pt 16821 df-prds 16824 df-xrs 16878 df-qtop 16883 df-imas 16884 df-xps 16886 df-mre 16960 df-mrc 16961 df-acs 16963 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-submnd 18073 df-mulg 18343 df-cntz 18565 df-cmn 19026 df-psmet 20209 df-xmet 20210 df-met 20211 df-bl 20212 df-mopn 20213 df-cnfld 20218 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-cld 21770 df-cn 21978 df-cnp 21979 df-cmp 22138 df-tx 22313 df-hmeo 22506 df-xms 23073 df-ms 23074 df-tms 23075 |
This theorem is referenced by: stoweidlem62 43145 |
Copyright terms: Public domain | W3C validator |