![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem61 | Structured version Visualization version GIF version |
Description: This lemma proves that there exists a function 𝑔 as in the proof in [BrosowskiDeutsh] p. 92: 𝑔 is in the subalgebra, and for all 𝑡 in 𝑇, abs( f(t) - g(t) ) < 2*ε. Here 𝐹 is used to represent f in the paper, and 𝐸 is used to represent ε. For this lemma there's the further assumption that the function 𝐹 to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
stoweidlem61.1 | ⊢ Ⅎ𝑡𝐹 |
stoweidlem61.2 | ⊢ Ⅎ𝑡𝜑 |
stoweidlem61.3 | ⊢ 𝐾 = (topGen‘ran (,)) |
stoweidlem61.4 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
stoweidlem61.5 | ⊢ 𝑇 = ∪ 𝐽 |
stoweidlem61.6 | ⊢ (𝜑 → 𝑇 ≠ ∅) |
stoweidlem61.7 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
stoweidlem61.8 | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
stoweidlem61.9 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem61.10 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
stoweidlem61.11 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
stoweidlem61.12 | ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
stoweidlem61.13 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
stoweidlem61.14 | ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) |
stoweidlem61.15 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
stoweidlem61.16 | ⊢ (𝜑 → 𝐸 < (1 / 3)) |
Ref | Expression |
---|---|
stoweidlem61 | ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem61.1 | . . 3 ⊢ Ⅎ𝑡𝐹 | |
2 | stoweidlem61.2 | . . 3 ⊢ Ⅎ𝑡𝜑 | |
3 | stoweidlem61.3 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
4 | stoweidlem61.5 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
5 | stoweidlem61.7 | . . 3 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
6 | eqid 2738 | . . 3 ⊢ (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)}) | |
7 | eqid 2738 | . . 3 ⊢ (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) = (𝑗 ∈ (0...𝑛) ↦ {𝑡 ∈ 𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹‘𝑡)}) | |
8 | stoweidlem61.4 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
9 | stoweidlem61.6 | . . 3 ⊢ (𝜑 → 𝑇 ≠ ∅) | |
10 | stoweidlem61.8 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | |
11 | stoweidlem61.9 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) | |
12 | stoweidlem61.10 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) | |
13 | stoweidlem61.11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) | |
14 | stoweidlem61.12 | . . 3 ⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) | |
15 | stoweidlem61.13 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
16 | stoweidlem61.14 | . . 3 ⊢ (𝜑 → ∀𝑡 ∈ 𝑇 0 ≤ (𝐹‘𝑡)) | |
17 | stoweidlem61.15 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
18 | stoweidlem61.16 | . . 3 ⊢ (𝜑 → 𝐸 < (1 / 3)) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | stoweidlem60 44092 | . 2 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) |
20 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑡 𝑔 ∈ 𝐴 | |
21 | 2, 20 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑡(𝜑 ∧ 𝑔 ∈ 𝐴) |
22 | 17 | ad2antrr 725 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → 𝐸 ∈ ℝ+) |
23 | 3, 4, 5, 15 | fcnre 43031 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
24 | 23 | ffvelcdmda 7030 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
25 | 24 | adantlr 714 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) |
26 | 10 | sselda 3943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ 𝐶) |
27 | 3, 4, 5, 26 | fcnre 43031 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → 𝑔:𝑇⟶ℝ) |
28 | 27 | ffvelcdmda 7030 | . . . . 5 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (𝑔‘𝑡) ∈ ℝ) |
29 | simpll1 1213 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → 𝐸 ∈ ℝ+) | |
30 | simpll2 1214 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝐹‘𝑡) ∈ ℝ) | |
31 | simpll3 1215 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝑔‘𝑡) ∈ ℝ) | |
32 | simplr 768 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → 𝑗 ∈ ℝ) | |
33 | simprll 778 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡)) | |
34 | simprlr 779 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) | |
35 | simprrr 781 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)) | |
36 | simprrl 780 | . . . . . . 7 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)) | |
37 | 29, 30, 31, 32, 33, 34, 35, 36 | stoweidlem13 44045 | . . . . . 6 ⊢ ((((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡)))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
38 | 37 | rexlimdva2 3153 | . . . . 5 ⊢ ((𝐸 ∈ ℝ+ ∧ (𝐹‘𝑡) ∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
39 | 22, 25, 28, 38 | syl3anc 1372 | . . . 4 ⊢ (((𝜑 ∧ 𝑔 ∈ 𝐴) ∧ 𝑡 ∈ 𝑇) → (∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
40 | 21, 39 | ralimdaa 3242 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝐴) → (∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
41 | 40 | reximdva 3164 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 ∃𝑗 ∈ ℝ ((((𝑗 − (4 / 3)) · 𝐸) < (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)) ∧ ((𝑔‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸) ∧ ((𝑗 − (4 / 3)) · 𝐸) < (𝑔‘𝑡))) → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸))) |
42 | 19, 41 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < (2 · 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2886 ≠ wne 2942 ∀wral 3063 ∃wrex 3072 {crab 3406 ⊆ wss 3909 ∅c0 4281 ∪ cuni 4864 class class class wbr 5104 ↦ cmpt 5187 ran crn 5632 ‘cfv 6492 (class class class)co 7350 ℝcr 10984 0cc0 10985 1c1 10986 + caddc 10988 · cmul 10990 < clt 11123 ≤ cle 11124 − cmin 11319 / cdiv 11746 2c2 12142 3c3 12143 4c4 12144 ℝ+crp 12845 (,)cioo 13194 ...cfz 13354 abscabs 15054 topGenctg 17255 Cn ccn 22503 Compccmp 22665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 ax-inf2 9511 ax-cnex 11041 ax-resscn 11042 ax-1cn 11043 ax-icn 11044 ax-addcl 11045 ax-addrcl 11046 ax-mulcl 11047 ax-mulrcl 11048 ax-mulcom 11049 ax-addass 11050 ax-mulass 11051 ax-distr 11052 ax-i2m1 11053 ax-1ne0 11054 ax-1rid 11055 ax-rnegex 11056 ax-rrecex 11057 ax-cnre 11058 ax-pre-lttri 11059 ax-pre-lttrn 11060 ax-pre-ltadd 11061 ax-pre-mulgt0 11062 ax-pre-sup 11063 ax-mulf 11065 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-iin 4956 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6250 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-f1 6497 df-fo 6498 df-f1o 6499 df-fv 6500 df-isom 6501 df-riota 7306 df-ov 7353 df-oprab 7354 df-mpo 7355 df-of 7608 df-om 7794 df-1st 7912 df-2nd 7913 df-supp 8061 df-frecs 8180 df-wrecs 8211 df-recs 8285 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8582 df-map 8701 df-pm 8702 df-ixp 8770 df-en 8818 df-dom 8819 df-sdom 8820 df-fin 8821 df-fsupp 9240 df-fi 9281 df-sup 9312 df-inf 9313 df-oi 9380 df-card 9809 df-pnf 11125 df-mnf 11126 df-xr 11127 df-ltxr 11128 df-le 11129 df-sub 11321 df-neg 11322 df-div 11747 df-nn 12088 df-2 12150 df-3 12151 df-4 12152 df-5 12153 df-6 12154 df-7 12155 df-8 12156 df-9 12157 df-n0 12348 df-z 12434 df-dec 12553 df-uz 12698 df-q 12804 df-rp 12846 df-xneg 12963 df-xadd 12964 df-xmul 12965 df-ioo 13198 df-ioc 13199 df-ico 13200 df-icc 13201 df-fz 13355 df-fzo 13498 df-fl 13627 df-seq 13837 df-exp 13898 df-hash 14160 df-cj 14919 df-re 14920 df-im 14921 df-sqrt 15055 df-abs 15056 df-clim 15306 df-rlim 15307 df-sum 15507 df-struct 16955 df-sets 16972 df-slot 16990 df-ndx 17002 df-base 17020 df-ress 17049 df-plusg 17082 df-mulr 17083 df-starv 17084 df-sca 17085 df-vsca 17086 df-ip 17087 df-tset 17088 df-ple 17089 df-ds 17091 df-unif 17092 df-hom 17093 df-cco 17094 df-rest 17240 df-topn 17241 df-0g 17259 df-gsum 17260 df-topgen 17261 df-pt 17262 df-prds 17265 df-xrs 17320 df-qtop 17325 df-imas 17326 df-xps 17328 df-mre 17402 df-mrc 17403 df-acs 17405 df-mgm 18433 df-sgrp 18482 df-mnd 18493 df-submnd 18538 df-mulg 18808 df-cntz 19032 df-cmn 19499 df-psmet 20717 df-xmet 20718 df-met 20719 df-bl 20720 df-mopn 20721 df-cnfld 20726 df-top 22171 df-topon 22188 df-topsp 22210 df-bases 22224 df-cld 22298 df-cn 22506 df-cnp 22507 df-cmp 22666 df-tx 22841 df-hmeo 23034 df-xms 23601 df-ms 23602 df-tms 23603 |
This theorem is referenced by: stoweidlem62 44094 |
Copyright terms: Public domain | W3C validator |