MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltsk2g Structured version   Visualization version   GIF version

Theorem eltsk2g 10680
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
eltsk2g (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Distinct variable group:   𝑧,𝑇
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem eltsk2g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eltskg 10679 . 2 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
2 nfra1 3259 . . . . . . 7 𝑧𝑧𝑇 𝒫 𝑧𝑇
3 pweq 4573 . . . . . . . . . . . 12 (𝑧 = 𝑤 → 𝒫 𝑧 = 𝒫 𝑤)
43sseq1d 3975 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝒫 𝑧𝑇 ↔ 𝒫 𝑤𝑇))
54rspccva 3584 . . . . . . . . . 10 ((∀𝑧𝑇 𝒫 𝑧𝑇𝑤𝑇) → 𝒫 𝑤𝑇)
65adantlr 715 . . . . . . . . 9 (((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) ∧ 𝑤𝑇) → 𝒫 𝑤𝑇)
7 vpwex 5327 . . . . . . . . . . 11 𝒫 𝑧 ∈ V
87elpw 4563 . . . . . . . . . 10 (𝒫 𝑧 ∈ 𝒫 𝑤 ↔ 𝒫 𝑧𝑤)
9 ssel 3937 . . . . . . . . . 10 (𝒫 𝑤𝑇 → (𝒫 𝑧 ∈ 𝒫 𝑤 → 𝒫 𝑧𝑇))
108, 9biimtrrid 243 . . . . . . . . 9 (𝒫 𝑤𝑇 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
116, 10syl 17 . . . . . . . 8 (((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) ∧ 𝑤𝑇) → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
1211rexlimdva 3134 . . . . . . 7 ((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) → (∃𝑤𝑇 𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
132, 12ralimdaa 3236 . . . . . 6 (∀𝑧𝑇 𝒫 𝑧𝑇 → (∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤 → ∀𝑧𝑇 𝒫 𝑧𝑇))
1413imdistani 568 . . . . 5 ((∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤) → (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇 𝒫 𝑧𝑇))
15 r19.26 3091 . . . . 5 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ↔ (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤))
16 r19.26 3091 . . . . 5 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ↔ (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇 𝒫 𝑧𝑇))
1714, 15, 163imtr4i 292 . . . 4 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) → ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇))
18 ssid 3966 . . . . . . 7 𝒫 𝑧 ⊆ 𝒫 𝑧
19 sseq2 3970 . . . . . . . 8 (𝑤 = 𝒫 𝑧 → (𝒫 𝑧𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧))
2019rspcev 3585 . . . . . . 7 ((𝒫 𝑧𝑇 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤𝑇 𝒫 𝑧𝑤)
2118, 20mpan2 691 . . . . . 6 (𝒫 𝑧𝑇 → ∃𝑤𝑇 𝒫 𝑧𝑤)
2221anim2i 617 . . . . 5 ((𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) → (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤))
2322ralimi 3066 . . . 4 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) → ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤))
2417, 23impbii 209 . . 3 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ↔ ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇))
2524anbi1i 624 . 2 ((∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)) ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)))
261, 25bitrdi 287 1 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wcel 2109  wral 3044  wrex 3053  wss 3911  𝒫 cpw 4559   class class class wbr 5102  cen 8892  Tarskictsk 10677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-pow 5315
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-tsk 10678
This theorem is referenced by:  tskpw  10682  0tsk  10684  inttsk  10703  inatsk  10707
  Copyright terms: Public domain W3C validator