MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltsk2g Structured version   Visualization version   GIF version

Theorem eltsk2g 10162
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
eltsk2g (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Distinct variable group:   𝑧,𝑇
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem eltsk2g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eltskg 10161 . 2 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
2 nfra1 3183 . . . . . . 7 𝑧𝑧𝑇 𝒫 𝑧𝑇
3 pweq 4513 . . . . . . . . . . . 12 (𝑧 = 𝑤 → 𝒫 𝑧 = 𝒫 𝑤)
43sseq1d 3946 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝒫 𝑧𝑇 ↔ 𝒫 𝑤𝑇))
54rspccva 3570 . . . . . . . . . 10 ((∀𝑧𝑇 𝒫 𝑧𝑇𝑤𝑇) → 𝒫 𝑤𝑇)
65adantlr 714 . . . . . . . . 9 (((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) ∧ 𝑤𝑇) → 𝒫 𝑤𝑇)
7 vpwex 5243 . . . . . . . . . . 11 𝒫 𝑧 ∈ V
87elpw 4501 . . . . . . . . . 10 (𝒫 𝑧 ∈ 𝒫 𝑤 ↔ 𝒫 𝑧𝑤)
9 ssel 3908 . . . . . . . . . 10 (𝒫 𝑤𝑇 → (𝒫 𝑧 ∈ 𝒫 𝑤 → 𝒫 𝑧𝑇))
108, 9syl5bir 246 . . . . . . . . 9 (𝒫 𝑤𝑇 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
116, 10syl 17 . . . . . . . 8 (((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) ∧ 𝑤𝑇) → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
1211rexlimdva 3243 . . . . . . 7 ((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) → (∃𝑤𝑇 𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
132, 12ralimdaa 3181 . . . . . 6 (∀𝑧𝑇 𝒫 𝑧𝑇 → (∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤 → ∀𝑧𝑇 𝒫 𝑧𝑇))
1413imdistani 572 . . . . 5 ((∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤) → (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇 𝒫 𝑧𝑇))
15 r19.26 3137 . . . . 5 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ↔ (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤))
16 r19.26 3137 . . . . 5 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ↔ (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇 𝒫 𝑧𝑇))
1714, 15, 163imtr4i 295 . . . 4 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) → ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇))
18 ssid 3937 . . . . . . 7 𝒫 𝑧 ⊆ 𝒫 𝑧
19 sseq2 3941 . . . . . . . 8 (𝑤 = 𝒫 𝑧 → (𝒫 𝑧𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧))
2019rspcev 3571 . . . . . . 7 ((𝒫 𝑧𝑇 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤𝑇 𝒫 𝑧𝑤)
2118, 20mpan2 690 . . . . . 6 (𝒫 𝑧𝑇 → ∃𝑤𝑇 𝒫 𝑧𝑤)
2221anim2i 619 . . . . 5 ((𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) → (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤))
2322ralimi 3128 . . . 4 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) → ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤))
2417, 23impbii 212 . . 3 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ↔ ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇))
2524anbi1i 626 . 2 ((∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)) ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)))
261, 25syl6bb 290 1 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  wcel 2111  wral 3106  wrex 3107  wss 3881  𝒫 cpw 4497   class class class wbr 5030  cen 8489  Tarskictsk 10159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-pow 5231
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-tsk 10160
This theorem is referenced by:  tskpw  10164  0tsk  10166  inttsk  10185  inatsk  10189
  Copyright terms: Public domain W3C validator