| Step | Hyp | Ref
| Expression |
| 1 | | eltskg 10791 |
. 2
⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |
| 2 | | nfra1 3283 |
. . . . . . 7
⊢
Ⅎ𝑧∀𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 |
| 3 | | pweq 4613 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → 𝒫 𝑧 = 𝒫 𝑤) |
| 4 | 3 | sseq1d 4014 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (𝒫 𝑧 ⊆ 𝑇 ↔ 𝒫 𝑤 ⊆ 𝑇)) |
| 5 | 4 | rspccva 3620 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑤 ∈ 𝑇) → 𝒫 𝑤 ⊆ 𝑇) |
| 6 | 5 | adantlr 715 |
. . . . . . . . 9
⊢
(((∀𝑧 ∈
𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ 𝑤 ∈ 𝑇) → 𝒫 𝑤 ⊆ 𝑇) |
| 7 | | vpwex 5376 |
. . . . . . . . . . 11
⊢ 𝒫
𝑧 ∈ V |
| 8 | 7 | elpw 4603 |
. . . . . . . . . 10
⊢
(𝒫 𝑧 ∈
𝒫 𝑤 ↔
𝒫 𝑧 ⊆ 𝑤) |
| 9 | | ssel 3976 |
. . . . . . . . . 10
⊢
(𝒫 𝑤 ⊆
𝑇 → (𝒫 𝑧 ∈ 𝒫 𝑤 → 𝒫 𝑧 ∈ 𝑇)) |
| 10 | 8, 9 | biimtrrid 243 |
. . . . . . . . 9
⊢
(𝒫 𝑤 ⊆
𝑇 → (𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑇)) |
| 11 | 6, 10 | syl 17 |
. . . . . . . 8
⊢
(((∀𝑧 ∈
𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑧 ∈ 𝑇) ∧ 𝑤 ∈ 𝑇) → (𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑇)) |
| 12 | 11 | rexlimdva 3154 |
. . . . . . 7
⊢
((∀𝑧 ∈
𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑧 ∈ 𝑇) → (∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑇)) |
| 13 | 2, 12 | ralimdaa 3259 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑇 𝒫 𝑧 ⊆ 𝑇 → (∀𝑧 ∈ 𝑇 ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 → ∀𝑧 ∈ 𝑇 𝒫 𝑧 ∈ 𝑇)) |
| 14 | 13 | imdistani 568 |
. . . . 5
⊢
((∀𝑧 ∈
𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝑇 ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) → (∀𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝑇 𝒫 𝑧 ∈ 𝑇)) |
| 15 | | r19.26 3110 |
. . . . 5
⊢
(∀𝑧 ∈
𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ↔ (∀𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝑇 ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤)) |
| 16 | | r19.26 3110 |
. . . . 5
⊢
(∀𝑧 ∈
𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇) ↔ (∀𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀𝑧 ∈ 𝑇 𝒫 𝑧 ∈ 𝑇)) |
| 17 | 14, 15, 16 | 3imtr4i 292 |
. . . 4
⊢
(∀𝑧 ∈
𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) → ∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇)) |
| 18 | | ssid 4005 |
. . . . . . 7
⊢ 𝒫
𝑧 ⊆ 𝒫 𝑧 |
| 19 | | sseq2 4009 |
. . . . . . . 8
⊢ (𝑤 = 𝒫 𝑧 → (𝒫 𝑧 ⊆ 𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧)) |
| 20 | 19 | rspcev 3621 |
. . . . . . 7
⊢
((𝒫 𝑧 ∈
𝑇 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) |
| 21 | 18, 20 | mpan2 691 |
. . . . . 6
⊢
(𝒫 𝑧 ∈
𝑇 → ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) |
| 22 | 21 | anim2i 617 |
. . . . 5
⊢
((𝒫 𝑧
⊆ 𝑇 ∧ 𝒫
𝑧 ∈ 𝑇) → (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤)) |
| 23 | 22 | ralimi 3082 |
. . . 4
⊢
(∀𝑧 ∈
𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇) → ∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤)) |
| 24 | 17, 23 | impbii 209 |
. . 3
⊢
(∀𝑧 ∈
𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ↔ ∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇)) |
| 25 | 24 | anbi1i 624 |
. 2
⊢
((∀𝑧 ∈
𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)) ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇))) |
| 26 | 1, 25 | bitrdi 287 |
1
⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) |