MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltsk2g Structured version   Visualization version   GIF version

Theorem eltsk2g 10792
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
eltsk2g (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Distinct variable group:   𝑧,𝑇
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem eltsk2g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eltskg 10791 . 2 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
2 nfra1 3283 . . . . . . 7 𝑧𝑧𝑇 𝒫 𝑧𝑇
3 pweq 4613 . . . . . . . . . . . 12 (𝑧 = 𝑤 → 𝒫 𝑧 = 𝒫 𝑤)
43sseq1d 4014 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝒫 𝑧𝑇 ↔ 𝒫 𝑤𝑇))
54rspccva 3620 . . . . . . . . . 10 ((∀𝑧𝑇 𝒫 𝑧𝑇𝑤𝑇) → 𝒫 𝑤𝑇)
65adantlr 715 . . . . . . . . 9 (((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) ∧ 𝑤𝑇) → 𝒫 𝑤𝑇)
7 vpwex 5376 . . . . . . . . . . 11 𝒫 𝑧 ∈ V
87elpw 4603 . . . . . . . . . 10 (𝒫 𝑧 ∈ 𝒫 𝑤 ↔ 𝒫 𝑧𝑤)
9 ssel 3976 . . . . . . . . . 10 (𝒫 𝑤𝑇 → (𝒫 𝑧 ∈ 𝒫 𝑤 → 𝒫 𝑧𝑇))
108, 9biimtrrid 243 . . . . . . . . 9 (𝒫 𝑤𝑇 → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
116, 10syl 17 . . . . . . . 8 (((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) ∧ 𝑤𝑇) → (𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
1211rexlimdva 3154 . . . . . . 7 ((∀𝑧𝑇 𝒫 𝑧𝑇𝑧𝑇) → (∃𝑤𝑇 𝒫 𝑧𝑤 → 𝒫 𝑧𝑇))
132, 12ralimdaa 3259 . . . . . 6 (∀𝑧𝑇 𝒫 𝑧𝑇 → (∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤 → ∀𝑧𝑇 𝒫 𝑧𝑇))
1413imdistani 568 . . . . 5 ((∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤) → (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇 𝒫 𝑧𝑇))
15 r19.26 3110 . . . . 5 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ↔ (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇𝑤𝑇 𝒫 𝑧𝑤))
16 r19.26 3110 . . . . 5 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ↔ (∀𝑧𝑇 𝒫 𝑧𝑇 ∧ ∀𝑧𝑇 𝒫 𝑧𝑇))
1714, 15, 163imtr4i 292 . . . 4 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) → ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇))
18 ssid 4005 . . . . . . 7 𝒫 𝑧 ⊆ 𝒫 𝑧
19 sseq2 4009 . . . . . . . 8 (𝑤 = 𝒫 𝑧 → (𝒫 𝑧𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧))
2019rspcev 3621 . . . . . . 7 ((𝒫 𝑧𝑇 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧) → ∃𝑤𝑇 𝒫 𝑧𝑤)
2118, 20mpan2 691 . . . . . 6 (𝒫 𝑧𝑇 → ∃𝑤𝑇 𝒫 𝑧𝑤)
2221anim2i 617 . . . . 5 ((𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) → (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤))
2322ralimi 3082 . . . 4 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) → ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤))
2417, 23impbii 209 . . 3 (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ↔ ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇))
2524anbi1i 624 . 2 ((∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)) ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)))
261, 25bitrdi 287 1 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ 𝒫 𝑧𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wcel 2107  wral 3060  wrex 3069  wss 3950  𝒫 cpw 4599   class class class wbr 5142  cen 8983  Tarskictsk 10789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-pow 5364
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-tsk 10790
This theorem is referenced by:  tskpw  10794  0tsk  10796  inttsk  10815  inatsk  10819
  Copyright terms: Public domain W3C validator