Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem73 Structured version   Visualization version   GIF version

Theorem fourierdlem73 46287
Description: A version of the Riemann Lebesgue lemma: as 𝑟 increases, the integral in 𝑆 goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem73.a (𝜑𝐴 ∈ ℝ)
fourierdlem73.b (𝜑𝐵 ∈ ℝ)
fourierdlem73.f (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
fourierdlem73.m (𝜑𝑀 ∈ ℕ)
fourierdlem73.qf (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem73.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem73.qm (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem73.qilt ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
fourierdlem73.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem73.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem73.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem73.g 𝐺 = (ℝ D 𝐹)
fourierdlem73.gcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem73.gbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
fourierdlem73.s 𝑆 = (𝑟 ∈ ℝ+ ↦ ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
fourierdlem73.d 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
Assertion
Ref Expression
fourierdlem73 (𝜑 → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐷,𝑟,𝑥,𝑦   𝑖,𝐹,𝑛,𝑥   𝑥,𝐺,𝑦   𝑥,𝐿   𝑒,𝑀,𝑖,𝑛,𝑟,𝑥   𝑦,𝑀,𝑖   𝑄,𝑖,𝑛,𝑟,𝑥   𝑦,𝑄   𝑥,𝑅   𝜑,𝑒,𝑖,𝑛,𝑟,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑒,𝑖,𝑛,𝑟)   𝐵(𝑦,𝑒,𝑖,𝑛,𝑟)   𝐷(𝑒,𝑖,𝑛)   𝑄(𝑒)   𝑅(𝑦,𝑒,𝑖,𝑛,𝑟)   𝑆(𝑥,𝑦,𝑒,𝑖,𝑛,𝑟)   𝐹(𝑦,𝑒,𝑟)   𝐺(𝑒,𝑖,𝑛,𝑟)   𝐿(𝑦,𝑒,𝑖,𝑛,𝑟)

Proof of Theorem fourierdlem73
Dummy variables 𝑚 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem73.gcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
2 cncff 24813 . . . . . . . . . . . . . 14 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
31, 2syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
4 ax-resscn 11063 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℂ
54a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
6 fourierdlem73.qf . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
7 fourierdlem73.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
8 fourierdlem73.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
97, 8iccssred 13334 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
106, 9fssd 6668 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑄:(0...𝑀)⟶ℝ)
1110adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
12 elfzofz 13575 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
1312adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
1411, 13ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
15 fzofzp1 13664 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
1615adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
1711, 16ffvelcdmd 7018 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
1814, 17iccssred 13334 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ ℝ)
19 limccl 25803 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ⊆ ℂ
20 fourierdlem73.r . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
2119, 20sselid 3927 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ℂ)
2221adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑅 ∈ ℂ)
23 limccl 25803 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ⊆ ℂ
24 fourierdlem73.l . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2523, 24sselid 3927 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ℂ)
2625adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐿 ∈ ℂ)
27 fourierdlem73.f . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2827ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
297ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴 ∈ ℝ)
308ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐵 ∈ ℝ)
3114adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
3217adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
33 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
34 eliccre 45615 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
3531, 32, 33, 34syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
367rexrd 11162 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ ℝ*)
3736adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
388rexrd 11162 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ*)
3938adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
406adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
4140, 13ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
42 iccgelb 13302 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝑖) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝑖))
4337, 39, 41, 42syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ≤ (𝑄𝑖))
4443adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴 ≤ (𝑄𝑖))
4531rexrd 11162 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
4632rexrd 11162 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
47 iccgelb 13302 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑥)
4845, 46, 33, 47syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑥)
4929, 31, 35, 44, 48letrd 11270 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴𝑥)
50 iccleub 13301 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ≤ (𝑄‘(𝑖 + 1)))
5145, 46, 33, 50syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ≤ (𝑄‘(𝑖 + 1)))
5236ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴 ∈ ℝ*)
5338ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐵 ∈ ℝ*)
5440, 16ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵))
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵))
56 iccleub 13301 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝑖 + 1)) ≤ 𝐵)
5752, 53, 55, 56syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ≤ 𝐵)
5835, 32, 30, 51, 57letrd 11270 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥𝐵)
5929, 30, 35, 49, 58eliccd 45614 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
6028, 59ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
6126, 60ifcld 4519 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) ∈ ℂ)
6222, 61ifcld 4519 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) ∈ ℂ)
63 fourierdlem73.d . . . . . . . . . . . . . . . . 17 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
6462, 63fmptd 7047 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷:((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ)
65 tgioo4 24720 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
66 eqid 2731 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
67 iccntr 24737 . . . . . . . . . . . . . . . . 17 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
6814, 17, 67syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((int‘(topGen‘ran (,)))‘((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
695, 18, 64, 65, 66, 68dvresntr 46026 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) = (ℝ D (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
70 ioossicc 13333 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
7170sseli 3925 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
7271adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
73 fvres 6841 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
7572, 62syldan 591 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) ∈ ℂ)
7663fvmpt2 6940 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ∧ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) ∈ ℂ) → (𝐷𝑥) = if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
7772, 75, 76syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑥) = if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
7814adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
7972, 45syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
8072, 46syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
81 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
82 ioogtlb 45605 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑥)
8379, 80, 81, 82syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑥)
8478, 83gtned 11248 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ≠ (𝑄𝑖))
8584neneqd 2933 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑥 = (𝑄𝑖))
8685iffalsed 4483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
87 elioore 13275 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ)
8887adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
89 iooltub 45620 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 < (𝑄‘(𝑖 + 1)))
9079, 80, 81, 89syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 < (𝑄‘(𝑖 + 1)))
9188, 90ltned 11249 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ≠ (𝑄‘(𝑖 + 1)))
9291neneqd 2933 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑥 = (𝑄‘(𝑖 + 1)))
9392iffalsed 4483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9477, 86, 933eqtrrd 2771 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹𝑥) = (𝐷𝑥))
9574, 94eqtr2d 2767 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥))
9695ralrimiva 3124 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥))
97 ffn 6651 . . . . . . . . . . . . . . . . . . . 20 (𝐷:((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ → 𝐷 Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
9864, 97syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
99 ffn 6651 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:(𝐴[,]𝐵)⟶ℂ → 𝐹 Fn (𝐴[,]𝐵))
10027, 99syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 Fn (𝐴[,]𝐵))
101100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹 Fn (𝐴[,]𝐵))
102 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
10337, 39, 40, 102fourierdlem8 46223 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
104 fnssres 6604 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn (𝐴[,]𝐵) ∧ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) → (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
105101, 103, 104syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
10670a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
107 fvreseq 6973 . . . . . . . . . . . . . . . . . . 19 (((𝐷 Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ∧ (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥)))
10898, 105, 106, 107syl21anc 837 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥)))
10996, 108mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
110106resabs1d 5956 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
111109, 110eqtrd 2766 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
112111oveq2d 7362 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
11327adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
1149adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐴[,]𝐵) ⊆ ℝ)
115106, 18sstrd 3940 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
11666, 65dvres 25839 . . . . . . . . . . . . . . . . 17 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
1175, 113, 114, 115, 116syl22anc 838 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
118 fourierdlem73.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (ℝ D 𝐹)
119118eqcomi 2740 . . . . . . . . . . . . . . . . . 18 (ℝ D 𝐹) = 𝐺
120119a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐹) = 𝐺)
121 iooretop 24680 . . . . . . . . . . . . . . . . . 18 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ (topGen‘ran (,))
122 retop 24676 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) ∈ Top
123 uniretop 24677 . . . . . . . . . . . . . . . . . . . 20 ℝ = (topGen‘ran (,))
124123isopn3 22981 . . . . . . . . . . . . . . . . . . 19 (((topGen‘ran (,)) ∈ Top ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
125122, 115, 124sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
126121, 125mpbii 233 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
127120, 126reseq12d 5928 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
128117, 127eqtrd 2766 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
12969, 112, 1283eqtrd 2770 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
130129feq1d 6633 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐷):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ))
1313, 130mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
132131feqmptd 6890 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)))
133132, 129eqtr3d 2768 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
134 ioombl 25493 . . . . . . . . . . . 12 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ dom vol
135134a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ dom vol)
136 fourierdlem73.qilt . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
13714, 17, 136ltled 11261 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
138 volioo 25497 . . . . . . . . . . . . 13 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ ∧ (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1))) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘(𝑖 + 1)) − (𝑄𝑖)))
13914, 17, 137, 138syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘(𝑖 + 1)) − (𝑄𝑖)))
14017, 14resubcld 11545 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − (𝑄𝑖)) ∈ ℝ)
141139, 140eqeltrd 2831 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ ℝ)
142 fourierdlem73.gbd . . . . . . . . . . . . 13 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
143142adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
144 nfv 1915 . . . . . . . . . . . . . . . 16 𝑥((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ)
145 nfra1 3256 . . . . . . . . . . . . . . . 16 𝑥𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦
146144, 145nfan 1900 . . . . . . . . . . . . . . 15 𝑥(((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
147 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
148 fdm 6660 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1493, 148syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
150149adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
151147, 150eleqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
152 fvres 6841 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐺𝑥))
153151, 152syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐺𝑥))
154153fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐺𝑥)))
155154ad4ant14 752 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐺𝑥)))
156 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
157 ssdmres 5961 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺 ↔ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
158149, 157sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
159158sselda 3929 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐺)
160151, 159syldan 591 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ dom 𝐺)
161160adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ dom 𝐺)
162 rsp 3220 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → (𝑥 ∈ dom 𝐺 → (abs‘(𝐺𝑥)) ≤ 𝑦))
163156, 161, 162sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘(𝐺𝑥)) ≤ 𝑦)
164163adantllr 719 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘(𝐺𝑥)) ≤ 𝑦)
165155, 164eqbrtrd 5111 . . . . . . . . . . . . . . . 16 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦)
166165ex 412 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦))
167146, 166ralrimi 3230 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦)
168167ex 412 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) → (∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦))
169168reximdva 3145 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦))
170143, 169mpd 15 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦)
171135, 141, 1, 170cnbdibl 46070 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ 𝐿1)
172133, 171eqeltrd 2831 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ 𝐿1)
173172adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ 𝐿1)
174134a1i 11 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ dom vol)
175141adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ ℝ)
176133, 1eqeltrd 2831 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
177176adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
178 coscn 26382 . . . . . . . . . . . . . 14 cos ∈ (ℂ–cn→ℂ)
179178a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → cos ∈ (ℂ–cn→ℂ))
180 ioosscn 13308 . . . . . . . . . . . . . . . 16 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
181180a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
182 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → 𝑟 ∈ ℝ)
183182recnd 11140 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → 𝑟 ∈ ℂ)
184 ssid 3952 . . . . . . . . . . . . . . . 16 ℂ ⊆ ℂ
185184a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ℂ ⊆ ℂ)
186181, 183, 185constcncfg 45980 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
187180a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
188184a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℂ ⊆ ℂ)
189187, 188idcncfg 45981 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
190189ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
191186, 190mulcncf 25373 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
192179, 191cncfmpt1f 24834 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (cos‘(𝑟 · 𝑥))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
193192negcncfg 45989 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ -(cos‘(𝑟 · 𝑥))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
194177, 193mulcncf 25373 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
195 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑖 ∈ (0..^𝑀))
196195, 145nfan 1900 . . . . . . . . . . . . . . . 16 𝑥((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
197129fveq1d 6824 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐷)‘𝑥) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))
198197, 152sylan9eq 2786 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) = (𝐺𝑥))
199198fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐷)‘𝑥)) = (abs‘(𝐺𝑥)))
200199adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐷)‘𝑥)) = (abs‘(𝐺𝑥)))
201 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
202159adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐺)
203201, 202, 162sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑥)) ≤ 𝑦)
204200, 203eqbrtrd 5111 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
205204ex 412 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦))
206196, 205ralrimi 3230 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
207206ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦))
208207reximdv 3147 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦))
209143, 208mpd 15 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
210209adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
211 eqidd 2732 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))))
212 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((ℝ D 𝐷)‘𝑥) = ((ℝ D 𝐷)‘𝑧))
213 eleq1w 2814 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑧 → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
214213anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
215 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
216212, 215eqeq12d 2747 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (((ℝ D 𝐷)‘𝑥) = (𝐺𝑥) ↔ ((ℝ D 𝐷)‘𝑧) = (𝐺𝑧)))
217214, 216imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) = (𝐺𝑥)) ↔ (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑧) = (𝐺𝑧))))
218217, 198chvarvv 1990 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑧) = (𝐺𝑧))
219212, 218sylan9eqr 2788 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → ((ℝ D 𝐷)‘𝑥) = (𝐺𝑧))
220 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (𝑟 · 𝑥) = (𝑟 · 𝑧))
221220fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (cos‘(𝑟 · 𝑥)) = (cos‘(𝑟 · 𝑧)))
222221negeqd 11354 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → -(cos‘(𝑟 · 𝑥)) = -(cos‘(𝑟 · 𝑧)))
223222adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → -(cos‘(𝑟 · 𝑥)) = -(cos‘(𝑟 · 𝑧)))
224219, 223oveq12d 7364 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) = ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))))
225224adantllr 719 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) = ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))))
226 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
227 fvres 6841 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑧) = (𝐺𝑧))
228227adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑧) = (𝐺𝑧))
2293ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑧) ∈ ℂ)
230228, 229eqeltrrd 2832 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺𝑧) ∈ ℂ)
231230adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺𝑧) ∈ ℂ)
232 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ)
233 elioore 13275 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑧 ∈ ℝ)
234233adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ℝ)
235232, 234remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑧) ∈ ℝ)
236235recnd 11140 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑧) ∈ ℂ)
237236coscld 16040 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (cos‘(𝑟 · 𝑧)) ∈ ℂ)
238237negcld 11459 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑧)) ∈ ℂ)
239238adantll 714 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑧)) ∈ ℂ)
240231, 239mulcld 11132 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))) ∈ ℂ)
241211, 225, 226, 240fvmptd 6936 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧) = ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))))
242241fveq2d 6826 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) = (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))))
243242ad4ant14 752 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) = (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))))
244240abscld 15346 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ∈ ℝ)
245244ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ∈ ℝ)
246231abscld 15346 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ∈ ℝ)
247246ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ∈ ℝ)
248 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑦 ∈ ℝ)
249239abscld 15346 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) ∈ ℝ)
250 1red 11113 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 1 ∈ ℝ)
251231absge0d 15354 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ≤ (abs‘(𝐺𝑧)))
252237absnegd 15359 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) = (abs‘(cos‘(𝑟 · 𝑧))))
253 abscosbd 45390 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 · 𝑧) ∈ ℝ → (abs‘(cos‘(𝑟 · 𝑧))) ≤ 1)
254235, 253syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(cos‘(𝑟 · 𝑧))) ≤ 1)
255252, 254eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) ≤ 1)
256255adantll 714 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) ≤ 1)
257249, 250, 246, 251, 256lemul2ad 12062 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘(𝐺𝑧)) · (abs‘-(cos‘(𝑟 · 𝑧)))) ≤ ((abs‘(𝐺𝑧)) · 1))
258231, 239absmuld 15364 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) = ((abs‘(𝐺𝑧)) · (abs‘-(cos‘(𝑟 · 𝑧)))))
259246recnd 11140 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ∈ ℂ)
260259mulridd 11129 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘(𝐺𝑧)) · 1) = (abs‘(𝐺𝑧)))
261260eqcomd 2737 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) = ((abs‘(𝐺𝑧)) · 1))
262257, 258, 2613brtr4d 5121 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ≤ (abs‘(𝐺𝑧)))
263262ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ≤ (abs‘(𝐺𝑧)))
264 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
265 nfra1 3256 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦
266195, 265nfan 1900 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
267199eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑥)) = (abs‘((ℝ D 𝐷)‘𝑥)))
268267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (abs‘(𝐺𝑥)) = (abs‘((ℝ D 𝐷)‘𝑥)))
269 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
270268, 269eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (abs‘(𝐺𝑥)) ≤ 𝑦)
271270ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → (abs‘(𝐺𝑥)) ≤ 𝑦))
272271adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → (abs‘(𝐺𝑥)) ≤ 𝑦))
273266, 272ralimdaa 3233 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑥)) ≤ 𝑦))
274264, 273mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑥)) ≤ 𝑦)
275215fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (abs‘(𝐺𝑥)) = (abs‘(𝐺𝑧)))
276275breq1d 5099 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → ((abs‘(𝐺𝑥)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑦))
277276cbvralvw 3210 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑥)) ≤ 𝑦 ↔ ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑧)) ≤ 𝑦)
278274, 277sylib 218 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑧)) ≤ 𝑦)
279278ad4ant14 752 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑧)) ≤ 𝑦)
280279r19.21bi 3224 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ≤ 𝑦)
281245, 247, 248, 263, 280letrd 11270 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ≤ 𝑦)
282243, 281eqbrtrd 5111 . . . . . . . . . . . . . . 15 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
283282ralrimiva 3124 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
284131ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) ∈ ℂ)
285284adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) ∈ ℂ)
286 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ)
28787adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
288286, 287remulcld 11142 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℝ)
289288recnd 11140 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
290289coscld 16040 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (cos‘(𝑟 · 𝑥)) ∈ ℂ)
291290negcld 11459 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑥)) ∈ ℂ)
292291adantll 714 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑥)) ∈ ℂ)
293285, 292mulcld 11132 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) ∈ ℂ)
294293ralrimiva 3124 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) ∈ ℂ)
295 dmmptg 6189 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) ∈ ℂ → dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
296294, 295syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
297296ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
298283, 297raleqtrrdv 3296 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
299298ex 412 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦))
300299reximdva 3145 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦))
301210, 300mpd 15 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
302174, 175, 194, 301cnbdibl 46070 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) ∈ 𝐿1)
303302adantlr 715 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) ∈ 𝐿1)
304284adantlr 715 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) ∈ ℂ)
305 simpr 484 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → 𝑟 ∈ ℂ)
306180sseli 3925 . . . . . . . . . . 11 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℂ)
307306ad2antlr 727 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → 𝑥 ∈ ℂ)
308305, 307mulcld 11132 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → (𝑟 · 𝑥) ∈ ℂ)
309308coscld 16040 . . . . . . . 8 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → (cos‘(𝑟 · 𝑥)) ∈ ℂ)
310288ancoms 458 . . . . . . . . . 10 ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑟 ∈ ℝ) → (𝑟 · 𝑥) ∈ ℝ)
311 abscosbd 45390 . . . . . . . . . 10 ((𝑟 · 𝑥) ∈ ℝ → (abs‘(cos‘(𝑟 · 𝑥))) ≤ 1)
312310, 311syl 17 . . . . . . . . 9 ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · 𝑥))) ≤ 1)
313312adantll 714 . . . . . . . 8 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · 𝑥))) ≤ 1)
31463a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))))
31514adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) ∈ ℝ)
316136adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
317 eqcom 2738 . . . . . . . . . . . . . . . . . 18 ((𝑄‘(𝑖 + 1)) = 𝑥𝑥 = (𝑄‘(𝑖 + 1)))
318317biimpri 228 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑄‘(𝑖 + 1)) → (𝑄‘(𝑖 + 1)) = 𝑥)
319318adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) = 𝑥)
320316, 319breqtrd 5115 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) < 𝑥)
321315, 320gtned 11248 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ≠ (𝑄𝑖))
322321neneqd 2933 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → ¬ 𝑥 = (𝑄𝑖))
323322iffalsed 4483 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
324 iftrue 4478 . . . . . . . . . . . . 13 (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = 𝐿)
325324adantl 481 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = 𝐿)
326323, 325eqtrd 2766 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = 𝐿)
32717leidd 11683 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ≤ (𝑄‘(𝑖 + 1)))
32814, 17, 17, 137, 327eliccd 45614 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
329314, 326, 328, 24fvmptd 6936 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) = 𝐿)
330329, 25eqeltrd 2831 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ℂ)
331330adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ℂ)
332 eqid 2731 . . . . . . . 8 (abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) = (abs‘(𝐷‘(𝑄‘(𝑖 + 1))))
333 iftrue 4478 . . . . . . . . . . . 12 (𝑥 = (𝑄𝑖) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = 𝑅)
334333adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄𝑖)) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = 𝑅)
33514rexrd 11162 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
33617rexrd 11162 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
337 lbicc2 13364 . . . . . . . . . . . 12 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1))) → (𝑄𝑖) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
338335, 336, 137, 337syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
339314, 334, 338, 20fvmptd 6936 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) = 𝑅)
340339, 21eqeltrd 2831 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ ℂ)
341340adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝐷‘(𝑄𝑖)) ∈ ℂ)
342 eqid 2731 . . . . . . . 8 (abs‘(𝐷‘(𝑄𝑖))) = (abs‘(𝐷‘(𝑄𝑖)))
343 eqid 2731 . . . . . . . 8 ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥
344 simpr 484 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
345 fourierdlem73.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
346345nnrpd 12932 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ+)
347346adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑀 ∈ ℝ+)
348344, 347rpdivcld 12951 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℝ+)
349348adantlr 715 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℝ+)
350 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → 𝑟 ∈ ℂ)
35117recnd 11140 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
352351ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
353350, 352mulcld 11132 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℂ)
354353coscld 16040 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) ∈ ℂ)
35517adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
356182, 355remulcld 11142 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℝ)
357 abscosbd 45390 . . . . . . . . . 10 ((𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℝ → (abs‘(cos‘(𝑟 · (𝑄‘(𝑖 + 1))))) ≤ 1)
358356, 357syl 17 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄‘(𝑖 + 1))))) ≤ 1)
359358adantlr 715 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄‘(𝑖 + 1))))) ≤ 1)
36014recnd 11140 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
361360ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑄𝑖) ∈ ℂ)
362350, 361mulcld 11132 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑟 · (𝑄𝑖)) ∈ ℂ)
363362coscld 16040 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (cos‘(𝑟 · (𝑄𝑖))) ∈ ℂ)
36414adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑄𝑖) ∈ ℝ)
365182, 364remulcld 11142 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑟 · (𝑄𝑖)) ∈ ℝ)
366 abscosbd 45390 . . . . . . . . . 10 ((𝑟 · (𝑄𝑖)) ∈ ℝ → (abs‘(cos‘(𝑟 · (𝑄𝑖)))) ≤ 1)
367365, 366syl 17 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄𝑖)))) ≤ 1)
368367adantlr 715 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄𝑖)))) ≤ 1)
369 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → ((ℝ D 𝐷)‘𝑧) = ((ℝ D 𝐷)‘𝑥))
370369fveq2d 6826 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (abs‘((ℝ D 𝐷)‘𝑧)) = (abs‘((ℝ D 𝐷)‘𝑥)))
371370cbvitgv 25705 . . . . . . . . . . . . 13 ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥
372371oveq2i 7357 . . . . . . . . . . . 12 (((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) = (((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥)
373372oveq1i 7356 . . . . . . . . . . 11 ((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) = ((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀))
374373oveq1i 7356 . . . . . . . . . 10 (((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) + 1) = (((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀)) + 1)
375374fveq2i 6825 . . . . . . . . 9 (⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) + 1)) = (⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀)) + 1))
376375oveq1i 7356 . . . . . . . 8 ((⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) + 1)) + 1) = ((⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀)) + 1)) + 1)
377173, 303, 304, 309, 313, 331, 332, 341, 342, 343, 349, 354, 359, 363, 368, 376fourierdlem47 46261 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀))
378 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝜑)
379 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑖 ∈ (0..^𝑀))
380 elioore 13275 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (𝑚(,)+∞) → 𝑟 ∈ ℝ)
381380adantl 481 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ ℝ)
382 0red 11115 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 0 ∈ ℝ)
383 nnre 12132 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
384383adantr 480 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑚 ∈ ℝ)
385 nngt0 12156 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 0 < 𝑚)
386385adantr 480 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 0 < 𝑚)
387384rexrd 11162 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑚 ∈ ℝ*)
388 pnfxr 11166 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
389388a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → +∞ ∈ ℝ*)
390 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ (𝑚(,)+∞))
391 ioogtlb 45605 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑚(,)+∞)) → 𝑚 < 𝑟)
392387, 389, 390, 391syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑚 < 𝑟)
393382, 384, 381, 386, 392lttrd 11274 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 0 < 𝑟)
394381, 393elrpd 12931 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ ℝ+)
395394adantll 714 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ ℝ+)
39614adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (𝑄𝑖) ∈ ℝ)
39717adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
39864ffvelcdmda 7017 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐷𝑥) ∈ ℂ)
399398adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐷𝑥) ∈ ℂ)
400 rpcn 12901 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
401400ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
40235recnd 11140 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
403402adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
404401, 403mulcld 11132 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
405404sincld 16039 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
406399, 405mulcld 11132 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
407396, 397, 406itgioo 25744 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
408137adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
40964feqmptd 6890 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐷𝑥)))
410 iftrue 4478 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = 𝐿)
411324, 410eqtr4d 2769 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
412411adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
413 iffalse 4481 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))
414413adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))
41545ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) ∈ ℝ*)
41646ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
41735ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ)
41814ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → (𝑄𝑖) ∈ ℝ)
41935adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → 𝑥 ∈ ℝ)
42048adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → (𝑄𝑖) ≤ 𝑥)
421 neqne 2936 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑥 = (𝑄𝑖) → 𝑥 ≠ (𝑄𝑖))
422421adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → 𝑥 ≠ (𝑄𝑖))
423418, 419, 420, 422leneltd 11267 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → (𝑄𝑖) < 𝑥)
424423adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) < 𝑥)
42535adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ)
42617ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
42751adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ≤ (𝑄‘(𝑖 + 1)))
428317biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑄‘(𝑖 + 1)) = 𝑥𝑥 = (𝑄‘(𝑖 + 1)))
429428necon3bi 2954 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑥 = (𝑄‘(𝑖 + 1)) → (𝑄‘(𝑖 + 1)) ≠ 𝑥)
430429adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ≠ 𝑥)
431425, 426, 427, 430leneltd 11267 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 < (𝑄‘(𝑖 + 1)))
432431adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 < (𝑄‘(𝑖 + 1)))
433415, 416, 417, 424, 432eliood 45608 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
434 fvres 6841 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
435433, 434syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
436 iffalse 4481 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = (𝐹𝑥))
437436eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 = (𝑄‘(𝑖 + 1)) → (𝐹𝑥) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
438437adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝐹𝑥) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
439414, 435, 4383eqtrrd 2771 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
440412, 439pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
441440ifeq2da 4505 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))
442441mpteq2dva 5182 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))))
443314, 409, 4423eqtr3d 2774 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐷𝑥)) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))))
444 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))
445 fourierdlem73.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
446195, 444, 14, 17, 445, 24, 20cncfiooicc 46002 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
447443, 446eqeltrd 2831 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐷𝑥)) ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
448409, 447eqeltrd 2831 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
449448adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
450 eqid 2731 . . . . . . . . . . . . . . 15 (ℝ D 𝐷) = (ℝ D 𝐷)
451129, 1eqeltrd 2831 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
452451adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (ℝ D 𝐷) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
453209adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
454 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
455396, 397, 408, 449, 450, 452, 453, 454fourierdlem39 46254 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥))
456407, 455eqtr3d 2768 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥))
457378, 379, 395, 456syl21anc 837 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥))
458457fveq2d 6826 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)))
459458breq1d 5099 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ((abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ (abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
460459ralbidva 3153 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
461460rexbidva 3154 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
462461adantr 480 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
463377, 462mpbird 257 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
464463an32s 652 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
46594oveq1d 7361 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) = ((𝐷𝑥) · (sin‘(𝑟 · 𝑥))))
466465itgeq2dv 25710 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
467466eqcomd 2737 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
468467adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
46914adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (𝑄𝑖) ∈ ℝ)
47017adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
471398adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐷𝑥) ∈ ℂ)
472380recnd 11140 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (𝑚(,)+∞) → 𝑟 ∈ ℂ)
473472ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
474402adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
475473, 474mulcld 11132 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
476475sincld 16039 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
477471, 476mulcld 11132 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
478469, 470, 477itgioo 25744 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
47960adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
480479, 476mulcld 11132 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
481469, 470, 480itgioo 25744 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
482468, 478, 4813eqtr3d 2774 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
483482fveq2d 6826 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
484483breq1d 5099 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ((abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
485484ralbidva 3153 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
486485adantlr 715 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
487486rexbidv 3156 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
488464, 487mpbid 232 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
489488ralrimiva 3124 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
490489ralrimiva 3124 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
491 nfv 1915 . . . . . . 7 𝑖(𝜑𝑒 ∈ ℝ+)
492 nfra1 3256 . . . . . . 7 𝑖𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
493491, 492nfan 1900 . . . . . 6 𝑖((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
494 nfv 1915 . . . . . . 7 𝑟(𝜑𝑒 ∈ ℝ+)
495 nfcv 2894 . . . . . . . 8 𝑟(0..^𝑀)
496 nfcv 2894 . . . . . . . . 9 𝑟
497 nfra1 3256 . . . . . . . . 9 𝑟𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
498496, 497nfrexw 3280 . . . . . . . 8 𝑟𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
499495, 498nfralw 3279 . . . . . . 7 𝑟𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
500494, 499nfan 1900 . . . . . 6 𝑟((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
501 nfmpt1 5188 . . . . . 6 𝑖(𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < ))
502 fzofi 13881 . . . . . . 7 (0..^𝑀) ∈ Fin
503502a1i 11 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (0..^𝑀) ∈ Fin)
504 simpr 484 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
505 eqid 2731 . . . . . 6 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)} = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}
506 eqid 2731 . . . . . 6 (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < )) = (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < ))
507 eqid 2731 . . . . . 6 sup(ran (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < )), ℝ, < ) = sup(ran (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < )), ℝ, < )
508493, 500, 501, 503, 504, 505, 506, 507fourierdlem31 46246 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
509 simpr 484 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
510 nfv 1915 . . . . . . . 8 𝑛(𝜑𝑒 ∈ ℝ+)
511 nfre1 3257 . . . . . . . 8 𝑛𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
512510, 511nfan 1900 . . . . . . 7 𝑛((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
513 nfv 1915 . . . . . . . . . . 11 𝑟 𝑛 ∈ ℕ
514 nfra1 3256 . . . . . . . . . . 11 𝑟𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
515494, 513, 514nf3an 1902 . . . . . . . . . 10 𝑟((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
516 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝜑)
517 elioore 13275 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ (𝑛(,)+∞) → 𝑟 ∈ ℝ)
518517adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℝ)
519 0red 11115 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 0 ∈ ℝ)
520 nnre 12132 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
521520adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑛 ∈ ℝ)
522 nngt0 12156 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 0 < 𝑛)
523522adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 0 < 𝑛)
524521rexrd 11162 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑛 ∈ ℝ*)
525388a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → +∞ ∈ ℝ*)
526 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ (𝑛(,)+∞))
527 ioogtlb 45605 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑛(,)+∞)) → 𝑛 < 𝑟)
528524, 525, 526, 527syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑛 < 𝑟)
529519, 521, 518, 523, 528lttrd 11274 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 0 < 𝑟)
530518, 529elrpd 12931 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℝ+)
531530adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℝ+)
5327adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝐴 ∈ ℝ)
5338adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝐵 ∈ ℝ)
53427ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
535534adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
536400ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑟 ∈ ℂ)
5379sselda 3929 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
538537recnd 11140 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
539538adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
540536, 539mulcld 11132 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑟 · 𝑥) ∈ ℂ)
541540sincld 16039 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
542535, 541mulcld 11132 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
543532, 533, 542itgioo 25744 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫(𝐴[,]𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
544 fourierdlem73.q0 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄‘0) = 𝐴)
545544eqcomd 2737 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 = (𝑄‘0))
546 fourierdlem73.qm . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄𝑀) = 𝐵)
547546eqcomd 2737 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 = (𝑄𝑀))
548545, 547oveq12d 7364 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
549548adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
550549itgeq1d 46065 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → ∫(𝐴[,]𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄‘0)[,](𝑄𝑀))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
551 0zd 12480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 0 ∈ ℤ)
552 nnuz 12775 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
553 0p1e1 12242 . . . . . . . . . . . . . . . . . . . . . . 23 (0 + 1) = 1
554553fveq2i 6825 . . . . . . . . . . . . . . . . . . . . . 22 (ℤ‘(0 + 1)) = (ℤ‘1)
555552, 554eqtr4i 2757 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘(0 + 1))
556345, 555eleqtrdi 2841 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ (ℤ‘(0 + 1)))
557556adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ (ℤ‘(0 + 1)))
55810adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝑄:(0...𝑀)⟶ℝ)
559136adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
560 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
561548eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) = (𝐴[,]𝐵))
562561adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → ((𝑄‘0)[,](𝑄𝑀)) = (𝐴[,]𝐵))
563560, 562eleqtrd 2833 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ (𝐴[,]𝐵))
564563adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ (𝐴[,]𝐵))
565564, 542syldan 591 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
56614adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
56717adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
568106, 103sstrd 3940 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
569113, 568feqresmpt 6891 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)))
570569, 445eqeltrrd 2832 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
571570adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
572 sincn 26381 . . . . . . . . . . . . . . . . . . . . . . . 24 sin ∈ (ℂ–cn→ℂ)
573572a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → sin ∈ (ℂ–cn→ℂ))
574180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑟 ∈ ℝ+) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
575400adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
576184a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑟 ∈ ℝ+) → ℂ ⊆ ℂ)
577574, 575, 576constcncfg 45980 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
578189adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
579577, 578mulcncf 25373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
580579adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
581573, 580cncfmpt1f 24834 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
582571, 581mulcncf 25373 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
583 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥))
584 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥)))
585 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))))
58627ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
58736ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐴 ∈ ℝ*)
58838ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐵 ∈ ℝ*)
5896ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
590 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
591587, 588, 589, 590, 72fourierdlem1 46216 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
592586, 591ffvelcdmd 7018 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
593592adantllr 719 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
594575ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
595306adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
596594, 595mulcld 11132 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
597596sincld 16039 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
598569oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
59924, 598eleqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
600599adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
601 rpre 12899 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
602601adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ+𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ)
60387adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ+𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
604602, 603remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ+𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℝ)
605604adantll 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℝ)
606605ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) ≠ (𝑟 · (𝑄‘(𝑖 + 1))))) → (𝑟 · 𝑥) ∈ ℝ)
607 recn 11096 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
608607sincld 16039 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℂ)
609608adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) → (sin‘𝑦) ∈ ℂ)
610 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟)
611 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥)
612 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥))
613180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
614575adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ℂ)
615567recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
616610, 613, 614, 615constlimc 45734 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) lim (𝑄‘(𝑖 + 1))))
617613, 611, 615idlimc 45736 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) lim (𝑄‘(𝑖 + 1))))
618610, 611, 612, 594, 595, 616, 617mullimc 45726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) lim (𝑄‘(𝑖 + 1))))
619 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℂ ↦ (sin‘𝑦)) = (𝑦 ∈ ℂ ↦ (sin‘𝑦))
620 sinf 16033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 sin:ℂ⟶ℂ
621620a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⊤ → sin:ℂ⟶ℂ)
622621feqmptd 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⊤ → sin = (𝑦 ∈ ℂ ↦ (sin‘𝑦)))
623622, 572eqeltrrdi 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → (𝑦 ∈ ℂ ↦ (sin‘𝑦)) ∈ (ℂ–cn→ℂ))
6244a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → ℝ ⊆ ℂ)
625 resincl 16049 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℝ)
626625adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⊤ ∧ 𝑦 ∈ ℝ) → (sin‘𝑦) ∈ ℝ)
627619, 623, 624, 624, 626cncfmptssg 45979 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → (𝑦 ∈ ℝ ↦ (sin‘𝑦)) ∈ (ℝ–cn→ℝ))
628627mptru 1548 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ ↦ (sin‘𝑦)) ∈ (ℝ–cn→ℝ)
629628a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑦 ∈ ℝ ↦ (sin‘𝑦)) ∈ (ℝ–cn→ℝ))
630601ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ℝ)
631630, 567remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℝ)
632 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑟 · (𝑄‘(𝑖 + 1))) → (sin‘𝑦) = (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))))
633629, 631, 632cnmptlimc 25818 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))) ∈ ((𝑦 ∈ ℝ ↦ (sin‘𝑦)) lim (𝑟 · (𝑄‘(𝑖 + 1)))))
634 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑟 · 𝑥) → (sin‘𝑦) = (sin‘(𝑟 · 𝑥)))
635 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 · 𝑥) = (𝑟 · (𝑄‘(𝑖 + 1))) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))))
636635ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) = (𝑟 · (𝑄‘(𝑖 + 1))))) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))))
637606, 609, 618, 633, 634, 636limcco 25821 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) lim (𝑄‘(𝑖 + 1))))
638583, 584, 585, 593, 597, 600, 637mullimc 45726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · (sin‘(𝑟 · (𝑄‘(𝑖 + 1))))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) lim (𝑄‘(𝑖 + 1))))
639569oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
64020, 639eleqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
641640adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
642605ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) ≠ (𝑟 · (𝑄𝑖)))) → (𝑟 · 𝑥) ∈ ℝ)
643566recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
644610, 613, 614, 643constlimc 45734 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) lim (𝑄𝑖)))
645613, 611, 643idlimc 45736 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) lim (𝑄𝑖)))
646610, 611, 612, 594, 595, 644, 645mullimc 45726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄𝑖)) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) lim (𝑄𝑖)))
647630, 566remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄𝑖)) ∈ ℝ)
648 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑟 · (𝑄𝑖)) → (sin‘𝑦) = (sin‘(𝑟 · (𝑄𝑖))))
649629, 647, 648cnmptlimc 25818 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄𝑖))) ∈ ((𝑦 ∈ ℝ ↦ (sin‘𝑦)) lim (𝑟 · (𝑄𝑖))))
650 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 · 𝑥) = (𝑟 · (𝑄𝑖)) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄𝑖))))
651650ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) = (𝑟 · (𝑄𝑖)))) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄𝑖))))
652642, 609, 646, 649, 634, 651limcco 25821 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄𝑖))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) lim (𝑄𝑖)))
653583, 584, 585, 593, 597, 641, 652mullimc 45726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · (sin‘(𝑟 · (𝑄𝑖)))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) lim (𝑄𝑖)))
654566, 567, 582, 638, 653iblcncfioo 46086 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ 𝐿1)
655 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝜑𝑟 ∈ ℝ+))
65659adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
657655, 656, 542syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
658566, 567, 654, 657ibliooicc 46079 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ 𝐿1)
659551, 557, 558, 559, 565, 658itgspltprt 46087 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → ∫((𝑄‘0)[,](𝑄𝑀))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
660543, 550, 6593eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
661516, 531, 660syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
662502a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ∈ Fin)
66360adantllr 719 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
664517recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 ∈ (𝑛(,)+∞) → 𝑟 ∈ ℂ)
665664adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℂ)
666665ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
667402adantllr 719 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
668666, 667mulcld 11132 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
669668sincld 16039 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
670663, 669mulcld 11132 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
671670adantl3r 750 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
672 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝜑)
673531adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ℝ+)
674 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
675672, 673, 674, 658syl21anc 837 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ 𝐿1)
676671, 675itgcl 25712 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
677662, 676fsumcl 15640 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
678661, 677eqeltrd 2831 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
679678adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
6806793adantl3 1169 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
681680abscld 15346 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
682676abscld 15346 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
683662, 682fsumrecl 15641 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
684683adantllr 719 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
6856843adantl3 1169 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
686 rpre 12899 . . . . . . . . . . . . . 14 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
687686ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑒 ∈ ℝ)
6886873ad2antl1 1186 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑒 ∈ ℝ)
689661fveq2d 6826 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
690662, 676fsumabs 15708 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
691689, 690eqbrtrd 5111 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
692691adantllr 719 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
6936923adantl3 1169 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
694502a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ∈ Fin)
695 0zd 12480 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ∈ ℤ)
696345nnzd 12495 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℤ)
697345nngt0d 12174 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 𝑀)
698 fzolb 13565 . . . . . . . . . . . . . . . . . 18 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
699695, 696, 697, 698syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0..^𝑀))
700 ne0i 4288 . . . . . . . . . . . . . . . . 17 (0 ∈ (0..^𝑀) → (0..^𝑀) ≠ ∅)
701699, 700syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (0..^𝑀) ≠ ∅)
702701ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ≠ ∅)
7037023ad2antl1 1186 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ≠ ∅)
704 simp1l 1198 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → 𝜑)
705704ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝜑)
706 simpll2 1214 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑛 ∈ ℕ)
707705, 706jca 511 . . . . . . . . . . . . . . . 16 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (𝜑𝑛 ∈ ℕ))
708 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑟 ∈ (𝑛(,)+∞))
709 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0..^𝑀))
710 eleq1w 2814 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
711710anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ↔ (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀))))
712 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
713 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
714713fveq2d 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
715712, 714oveq12d 7364 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) = ((𝑄𝑗)[,](𝑄‘(𝑗 + 1))))
716715itgeq1d 46065 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
717716eleq1d 2816 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ ↔ ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ))
718711, 717imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ) ↔ ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)))
719718, 676chvarvv 1990 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
720707, 708, 709, 719syl21anc 837 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
721720abscld 15346 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
722348rpred 12934 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℝ)
7237223ad2ant1 1133 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (𝑒 / 𝑀) ∈ ℝ)
724723ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑒 / 𝑀) ∈ ℝ)
725 simpll3 1215 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
726 rspa 3221 . . . . . . . . . . . . . . . . . 18 ((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
727726adantr 480 . . . . . . . . . . . . . . . . 17 (((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
728716fveq2d 6826 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
729728breq1d 5099 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
730729cbvralvw 3210 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
731727, 730sylib 218 . . . . . . . . . . . . . . . 16 (((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∀𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
732 rspa 3221 . . . . . . . . . . . . . . . 16 ((∀𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
733731, 732sylancom 588 . . . . . . . . . . . . . . 15 (((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
734725, 708, 709, 733syl21anc 837 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
735694, 703, 721, 724, 734fsumlt 15707 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀))
736 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
737 oveq1 7353 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
738737fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
739736, 738oveq12d 7364 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → ((𝑄𝑗)[,](𝑄‘(𝑗 + 1))) = ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
740739itgeq1d 46065 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
741740fveq2d 6826 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
742741cbvsumv 15603 . . . . . . . . . . . . . 14 Σ𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
743742a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
744348rpcnd 12936 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℂ)
745 fsumconst 15697 . . . . . . . . . . . . . . . . 17 (((0..^𝑀) ∈ Fin ∧ (𝑒 / 𝑀) ∈ ℂ) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)))
746502, 744, 745sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)))
747345nnnn0d 12442 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ0)
748 hashfzo0 14337 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → (♯‘(0..^𝑀)) = 𝑀)
749747, 748syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘(0..^𝑀)) = 𝑀)
750749oveq1d 7361 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)) = (𝑀 · (𝑒 / 𝑀)))
751750adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)) = (𝑀 · (𝑒 / 𝑀)))
752344rpcnd 12936 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℂ)
753347rpcnd 12936 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → 𝑀 ∈ ℂ)
754347rpne0d 12939 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → 𝑀 ≠ 0)
755752, 753, 754divcan2d 11899 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → (𝑀 · (𝑒 / 𝑀)) = 𝑒)
756746, 751, 7553eqtrd 2770 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = 𝑒)
757756adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = 𝑒)
7587573ad2antl1 1186 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = 𝑒)
759735, 743, 7583brtr3d 5120 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
760681, 685, 688, 693, 759lelttrd 11271 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
761760ex 412 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (𝑟 ∈ (𝑛(,)+∞) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
762515, 761ralrimi 3230 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
7637623exp 1119 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑛 ∈ ℕ → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)))
764763adantr 480 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (𝑛 ∈ ℕ → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)))
765512, 764reximdai 3234 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
766509, 765mpd 15 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
767508, 766syldan 591 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
768767ex 412 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
769768ralimdva 3144 . 2 (𝜑 → (∀𝑒 ∈ ℝ+𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
770490, 769mpd 15 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3897  c0 4280  ifcif 4472   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cres 5616   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  supcsup 9324  infcinf 9325  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  cuz 12732  +crp 12890  (,)cioo 13245  [,]cicc 13248  ...cfz 13407  ..^cfzo 13554  cfl 13694  chash 14237  abscabs 15141  Σcsu 15593  sincsin 15970  cosccos 15971  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21291  Topctop 22808  intcnt 22932  cnccncf 24796  volcvol 25391  𝐿1cibl 25545  citg 25546   lim climc 25790   D cdv 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-symdif 4200  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548  df-itg2 25549  df-ibl 25550  df-itg 25551  df-0p 25598  df-limc 25794  df-dv 25795
This theorem is referenced by:  fourierdlem103  46317  fourierdlem104  46318
  Copyright terms: Public domain W3C validator