Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem73 Structured version   Visualization version   GIF version

Theorem fourierdlem73 46150
Description: A version of the Riemann Lebesgue lemma: as 𝑟 increases, the integral in 𝑆 goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem73.a (𝜑𝐴 ∈ ℝ)
fourierdlem73.b (𝜑𝐵 ∈ ℝ)
fourierdlem73.f (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
fourierdlem73.m (𝜑𝑀 ∈ ℕ)
fourierdlem73.qf (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem73.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem73.qm (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem73.qilt ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
fourierdlem73.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem73.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem73.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem73.g 𝐺 = (ℝ D 𝐹)
fourierdlem73.gcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem73.gbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
fourierdlem73.s 𝑆 = (𝑟 ∈ ℝ+ ↦ ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
fourierdlem73.d 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
Assertion
Ref Expression
fourierdlem73 (𝜑 → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐷,𝑟,𝑥,𝑦   𝑖,𝐹,𝑛,𝑥   𝑥,𝐺,𝑦   𝑥,𝐿   𝑒,𝑀,𝑖,𝑛,𝑟,𝑥   𝑦,𝑀,𝑖   𝑄,𝑖,𝑛,𝑟,𝑥   𝑦,𝑄   𝑥,𝑅   𝜑,𝑒,𝑖,𝑛,𝑟,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑒,𝑖,𝑛,𝑟)   𝐵(𝑦,𝑒,𝑖,𝑛,𝑟)   𝐷(𝑒,𝑖,𝑛)   𝑄(𝑒)   𝑅(𝑦,𝑒,𝑖,𝑛,𝑟)   𝑆(𝑥,𝑦,𝑒,𝑖,𝑛,𝑟)   𝐹(𝑦,𝑒,𝑟)   𝐺(𝑒,𝑖,𝑛,𝑟)   𝐿(𝑦,𝑒,𝑖,𝑛,𝑟)

Proof of Theorem fourierdlem73
Dummy variables 𝑚 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem73.gcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
2 cncff 24762 . . . . . . . . . . . . . 14 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
31, 2syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
4 ax-resscn 11101 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℂ
54a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
6 fourierdlem73.qf . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
7 fourierdlem73.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
8 fourierdlem73.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
97, 8iccssred 13371 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
106, 9fssd 6687 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑄:(0...𝑀)⟶ℝ)
1110adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
12 elfzofz 13612 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
1312adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
1411, 13ffvelcdmd 7039 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
15 fzofzp1 13701 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
1615adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
1711, 16ffvelcdmd 7039 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
1814, 17iccssred 13371 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ ℝ)
19 limccl 25752 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ⊆ ℂ
20 fourierdlem73.r . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
2119, 20sselid 3941 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ℂ)
2221adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑅 ∈ ℂ)
23 limccl 25752 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ⊆ ℂ
24 fourierdlem73.l . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2523, 24sselid 3941 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ℂ)
2625adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐿 ∈ ℂ)
27 fourierdlem73.f . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2827ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
297ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴 ∈ ℝ)
308ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐵 ∈ ℝ)
3114adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
3217adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
33 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
34 eliccre 45476 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
3531, 32, 33, 34syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
367rexrd 11200 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ ℝ*)
3736adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
388rexrd 11200 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ*)
3938adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
406adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
4140, 13ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
42 iccgelb 13339 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝑖) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝑖))
4337, 39, 41, 42syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ≤ (𝑄𝑖))
4443adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴 ≤ (𝑄𝑖))
4531rexrd 11200 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
4632rexrd 11200 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
47 iccgelb 13339 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑥)
4845, 46, 33, 47syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑥)
4929, 31, 35, 44, 48letrd 11307 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴𝑥)
50 iccleub 13338 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ≤ (𝑄‘(𝑖 + 1)))
5145, 46, 33, 50syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ≤ (𝑄‘(𝑖 + 1)))
5236ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴 ∈ ℝ*)
5338ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐵 ∈ ℝ*)
5440, 16ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵))
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵))
56 iccleub 13338 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝑖 + 1)) ≤ 𝐵)
5752, 53, 55, 56syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ≤ 𝐵)
5835, 32, 30, 51, 57letrd 11307 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥𝐵)
5929, 30, 35, 49, 58eliccd 45475 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
6028, 59ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
6126, 60ifcld 4531 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) ∈ ℂ)
6222, 61ifcld 4531 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) ∈ ℂ)
63 fourierdlem73.d . . . . . . . . . . . . . . . . 17 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
6462, 63fmptd 7068 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷:((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ)
65 tgioo4 24669 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
66 eqid 2729 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
67 iccntr 24686 . . . . . . . . . . . . . . . . 17 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
6814, 17, 67syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((int‘(topGen‘ran (,)))‘((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
695, 18, 64, 65, 66, 68dvresntr 45889 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) = (ℝ D (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
70 ioossicc 13370 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
7170sseli 3939 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
7271adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
73 fvres 6859 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
7572, 62syldan 591 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) ∈ ℂ)
7663fvmpt2 6961 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ∧ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) ∈ ℂ) → (𝐷𝑥) = if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
7772, 75, 76syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑥) = if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
7814adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
7972, 45syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
8072, 46syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
81 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
82 ioogtlb 45466 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑥)
8379, 80, 81, 82syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑥)
8478, 83gtned 11285 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ≠ (𝑄𝑖))
8584neneqd 2930 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑥 = (𝑄𝑖))
8685iffalsed 4495 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
87 elioore 13312 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ)
8887adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
89 iooltub 45481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 < (𝑄‘(𝑖 + 1)))
9079, 80, 81, 89syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 < (𝑄‘(𝑖 + 1)))
9188, 90ltned 11286 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ≠ (𝑄‘(𝑖 + 1)))
9291neneqd 2930 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑥 = (𝑄‘(𝑖 + 1)))
9392iffalsed 4495 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9477, 86, 933eqtrrd 2769 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹𝑥) = (𝐷𝑥))
9574, 94eqtr2d 2765 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥))
9695ralrimiva 3125 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥))
97 ffn 6670 . . . . . . . . . . . . . . . . . . . 20 (𝐷:((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ → 𝐷 Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
9864, 97syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
99 ffn 6670 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:(𝐴[,]𝐵)⟶ℂ → 𝐹 Fn (𝐴[,]𝐵))
10027, 99syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 Fn (𝐴[,]𝐵))
101100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹 Fn (𝐴[,]𝐵))
102 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
10337, 39, 40, 102fourierdlem8 46086 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
104 fnssres 6623 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn (𝐴[,]𝐵) ∧ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) → (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
105101, 103, 104syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
10670a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
107 fvreseq 6994 . . . . . . . . . . . . . . . . . . 19 (((𝐷 Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ∧ (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥)))
10898, 105, 106, 107syl21anc 837 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥)))
10996, 108mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
110106resabs1d 5968 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
111109, 110eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
112111oveq2d 7385 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
11327adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
1149adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐴[,]𝐵) ⊆ ℝ)
115106, 18sstrd 3954 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
11666, 65dvres 25788 . . . . . . . . . . . . . . . . 17 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
1175, 113, 114, 115, 116syl22anc 838 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
118 fourierdlem73.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (ℝ D 𝐹)
119118eqcomi 2738 . . . . . . . . . . . . . . . . . 18 (ℝ D 𝐹) = 𝐺
120119a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐹) = 𝐺)
121 iooretop 24629 . . . . . . . . . . . . . . . . . 18 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ (topGen‘ran (,))
122 retop 24625 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) ∈ Top
123 uniretop 24626 . . . . . . . . . . . . . . . . . . . 20 ℝ = (topGen‘ran (,))
124123isopn3 22929 . . . . . . . . . . . . . . . . . . 19 (((topGen‘ran (,)) ∈ Top ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
125122, 115, 124sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
126121, 125mpbii 233 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
127120, 126reseq12d 5940 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
128117, 127eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
12969, 112, 1283eqtrd 2768 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
130129feq1d 6652 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐷):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ))
1313, 130mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
132131feqmptd 6911 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)))
133132, 129eqtr3d 2766 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
134 ioombl 25442 . . . . . . . . . . . 12 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ dom vol
135134a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ dom vol)
136 fourierdlem73.qilt . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
13714, 17, 136ltled 11298 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
138 volioo 25446 . . . . . . . . . . . . 13 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ ∧ (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1))) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘(𝑖 + 1)) − (𝑄𝑖)))
13914, 17, 137, 138syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘(𝑖 + 1)) − (𝑄𝑖)))
14017, 14resubcld 11582 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − (𝑄𝑖)) ∈ ℝ)
141139, 140eqeltrd 2828 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ ℝ)
142 fourierdlem73.gbd . . . . . . . . . . . . 13 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
143142adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
144 nfv 1914 . . . . . . . . . . . . . . . 16 𝑥((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ)
145 nfra1 3259 . . . . . . . . . . . . . . . 16 𝑥𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦
146144, 145nfan 1899 . . . . . . . . . . . . . . 15 𝑥(((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
147 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
148 fdm 6679 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1493, 148syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
150149adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
151147, 150eleqtrd 2830 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
152 fvres 6859 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐺𝑥))
153151, 152syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐺𝑥))
154153fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐺𝑥)))
155154ad4ant14 752 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐺𝑥)))
156 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
157 ssdmres 5973 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺 ↔ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
158149, 157sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
159158sselda 3943 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐺)
160151, 159syldan 591 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ dom 𝐺)
161160adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ dom 𝐺)
162 rsp 3223 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → (𝑥 ∈ dom 𝐺 → (abs‘(𝐺𝑥)) ≤ 𝑦))
163156, 161, 162sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘(𝐺𝑥)) ≤ 𝑦)
164163adantllr 719 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘(𝐺𝑥)) ≤ 𝑦)
165155, 164eqbrtrd 5124 . . . . . . . . . . . . . . . 16 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦)
166165ex 412 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦))
167146, 166ralrimi 3233 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦)
168167ex 412 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) → (∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦))
169168reximdva 3146 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦))
170143, 169mpd 15 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦)
171135, 141, 1, 170cnbdibl 45933 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ 𝐿1)
172133, 171eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ 𝐿1)
173172adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ 𝐿1)
174134a1i 11 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ dom vol)
175141adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ ℝ)
176133, 1eqeltrd 2828 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
177176adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
178 coscn 26331 . . . . . . . . . . . . . 14 cos ∈ (ℂ–cn→ℂ)
179178a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → cos ∈ (ℂ–cn→ℂ))
180 ioosscn 13345 . . . . . . . . . . . . . . . 16 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
181180a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
182 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → 𝑟 ∈ ℝ)
183182recnd 11178 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → 𝑟 ∈ ℂ)
184 ssid 3966 . . . . . . . . . . . . . . . 16 ℂ ⊆ ℂ
185184a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ℂ ⊆ ℂ)
186181, 183, 185constcncfg 45843 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
187180a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
188184a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℂ ⊆ ℂ)
189187, 188idcncfg 45844 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
190189ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
191186, 190mulcncf 25322 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
192179, 191cncfmpt1f 24783 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (cos‘(𝑟 · 𝑥))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
193192negcncfg 45852 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ -(cos‘(𝑟 · 𝑥))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
194177, 193mulcncf 25322 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
195 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑖 ∈ (0..^𝑀))
196195, 145nfan 1899 . . . . . . . . . . . . . . . 16 𝑥((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
197129fveq1d 6842 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐷)‘𝑥) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))
198197, 152sylan9eq 2784 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) = (𝐺𝑥))
199198fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐷)‘𝑥)) = (abs‘(𝐺𝑥)))
200199adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐷)‘𝑥)) = (abs‘(𝐺𝑥)))
201 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
202159adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐺)
203201, 202, 162sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑥)) ≤ 𝑦)
204200, 203eqbrtrd 5124 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
205204ex 412 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦))
206196, 205ralrimi 3233 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
207206ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦))
208207reximdv 3148 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦))
209143, 208mpd 15 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
210209adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
211 eqidd 2730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))))
212 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((ℝ D 𝐷)‘𝑥) = ((ℝ D 𝐷)‘𝑧))
213 eleq1w 2811 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑧 → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
214213anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
215 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
216212, 215eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (((ℝ D 𝐷)‘𝑥) = (𝐺𝑥) ↔ ((ℝ D 𝐷)‘𝑧) = (𝐺𝑧)))
217214, 216imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) = (𝐺𝑥)) ↔ (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑧) = (𝐺𝑧))))
218217, 198chvarvv 1989 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑧) = (𝐺𝑧))
219212, 218sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → ((ℝ D 𝐷)‘𝑥) = (𝐺𝑧))
220 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (𝑟 · 𝑥) = (𝑟 · 𝑧))
221220fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (cos‘(𝑟 · 𝑥)) = (cos‘(𝑟 · 𝑧)))
222221negeqd 11391 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → -(cos‘(𝑟 · 𝑥)) = -(cos‘(𝑟 · 𝑧)))
223222adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → -(cos‘(𝑟 · 𝑥)) = -(cos‘(𝑟 · 𝑧)))
224219, 223oveq12d 7387 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) = ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))))
225224adantllr 719 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) = ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))))
226 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
227 fvres 6859 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑧) = (𝐺𝑧))
228227adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑧) = (𝐺𝑧))
2293ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑧) ∈ ℂ)
230228, 229eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺𝑧) ∈ ℂ)
231230adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺𝑧) ∈ ℂ)
232 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ)
233 elioore 13312 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑧 ∈ ℝ)
234233adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ℝ)
235232, 234remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑧) ∈ ℝ)
236235recnd 11178 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑧) ∈ ℂ)
237236coscld 16075 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (cos‘(𝑟 · 𝑧)) ∈ ℂ)
238237negcld 11496 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑧)) ∈ ℂ)
239238adantll 714 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑧)) ∈ ℂ)
240231, 239mulcld 11170 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))) ∈ ℂ)
241211, 225, 226, 240fvmptd 6957 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧) = ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))))
242241fveq2d 6844 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) = (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))))
243242ad4ant14 752 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) = (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))))
244240abscld 15381 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ∈ ℝ)
245244ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ∈ ℝ)
246231abscld 15381 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ∈ ℝ)
247246ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ∈ ℝ)
248 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑦 ∈ ℝ)
249239abscld 15381 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) ∈ ℝ)
250 1red 11151 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 1 ∈ ℝ)
251231absge0d 15389 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ≤ (abs‘(𝐺𝑧)))
252237absnegd 15394 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) = (abs‘(cos‘(𝑟 · 𝑧))))
253 abscosbd 45250 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 · 𝑧) ∈ ℝ → (abs‘(cos‘(𝑟 · 𝑧))) ≤ 1)
254235, 253syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(cos‘(𝑟 · 𝑧))) ≤ 1)
255252, 254eqbrtrd 5124 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) ≤ 1)
256255adantll 714 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) ≤ 1)
257249, 250, 246, 251, 256lemul2ad 12099 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘(𝐺𝑧)) · (abs‘-(cos‘(𝑟 · 𝑧)))) ≤ ((abs‘(𝐺𝑧)) · 1))
258231, 239absmuld 15399 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) = ((abs‘(𝐺𝑧)) · (abs‘-(cos‘(𝑟 · 𝑧)))))
259246recnd 11178 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ∈ ℂ)
260259mulridd 11167 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘(𝐺𝑧)) · 1) = (abs‘(𝐺𝑧)))
261260eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) = ((abs‘(𝐺𝑧)) · 1))
262257, 258, 2613brtr4d 5134 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ≤ (abs‘(𝐺𝑧)))
263262ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ≤ (abs‘(𝐺𝑧)))
264 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
265 nfra1 3259 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦
266195, 265nfan 1899 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
267199eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑥)) = (abs‘((ℝ D 𝐷)‘𝑥)))
268267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (abs‘(𝐺𝑥)) = (abs‘((ℝ D 𝐷)‘𝑥)))
269 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
270268, 269eqbrtrd 5124 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (abs‘(𝐺𝑥)) ≤ 𝑦)
271270ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → (abs‘(𝐺𝑥)) ≤ 𝑦))
272271adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → (abs‘(𝐺𝑥)) ≤ 𝑦))
273266, 272ralimdaa 3236 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑥)) ≤ 𝑦))
274264, 273mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑥)) ≤ 𝑦)
275215fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (abs‘(𝐺𝑥)) = (abs‘(𝐺𝑧)))
276275breq1d 5112 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → ((abs‘(𝐺𝑥)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑦))
277276cbvralvw 3213 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑥)) ≤ 𝑦 ↔ ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑧)) ≤ 𝑦)
278274, 277sylib 218 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑧)) ≤ 𝑦)
279278ad4ant14 752 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑧)) ≤ 𝑦)
280279r19.21bi 3227 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ≤ 𝑦)
281245, 247, 248, 263, 280letrd 11307 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ≤ 𝑦)
282243, 281eqbrtrd 5124 . . . . . . . . . . . . . . 15 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
283282ralrimiva 3125 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
284131ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) ∈ ℂ)
285284adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) ∈ ℂ)
286 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ)
28787adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
288286, 287remulcld 11180 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℝ)
289288recnd 11178 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
290289coscld 16075 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (cos‘(𝑟 · 𝑥)) ∈ ℂ)
291290negcld 11496 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑥)) ∈ ℂ)
292291adantll 714 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑥)) ∈ ℂ)
293285, 292mulcld 11170 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) ∈ ℂ)
294293ralrimiva 3125 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) ∈ ℂ)
295 dmmptg 6203 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) ∈ ℂ → dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
296294, 295syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
297296ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
298283, 297raleqtrrdv 3300 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
299298ex 412 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦))
300299reximdva 3146 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦))
301210, 300mpd 15 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
302174, 175, 194, 301cnbdibl 45933 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) ∈ 𝐿1)
303302adantlr 715 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) ∈ 𝐿1)
304284adantlr 715 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) ∈ ℂ)
305 simpr 484 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → 𝑟 ∈ ℂ)
306180sseli 3939 . . . . . . . . . . 11 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℂ)
307306ad2antlr 727 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → 𝑥 ∈ ℂ)
308305, 307mulcld 11170 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → (𝑟 · 𝑥) ∈ ℂ)
309308coscld 16075 . . . . . . . 8 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → (cos‘(𝑟 · 𝑥)) ∈ ℂ)
310288ancoms 458 . . . . . . . . . 10 ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑟 ∈ ℝ) → (𝑟 · 𝑥) ∈ ℝ)
311 abscosbd 45250 . . . . . . . . . 10 ((𝑟 · 𝑥) ∈ ℝ → (abs‘(cos‘(𝑟 · 𝑥))) ≤ 1)
312310, 311syl 17 . . . . . . . . 9 ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · 𝑥))) ≤ 1)
313312adantll 714 . . . . . . . 8 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · 𝑥))) ≤ 1)
31463a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))))
31514adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) ∈ ℝ)
316136adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
317 eqcom 2736 . . . . . . . . . . . . . . . . . 18 ((𝑄‘(𝑖 + 1)) = 𝑥𝑥 = (𝑄‘(𝑖 + 1)))
318317biimpri 228 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑄‘(𝑖 + 1)) → (𝑄‘(𝑖 + 1)) = 𝑥)
319318adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) = 𝑥)
320316, 319breqtrd 5128 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) < 𝑥)
321315, 320gtned 11285 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ≠ (𝑄𝑖))
322321neneqd 2930 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → ¬ 𝑥 = (𝑄𝑖))
323322iffalsed 4495 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
324 iftrue 4490 . . . . . . . . . . . . 13 (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = 𝐿)
325324adantl 481 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = 𝐿)
326323, 325eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = 𝐿)
32717leidd 11720 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ≤ (𝑄‘(𝑖 + 1)))
32814, 17, 17, 137, 327eliccd 45475 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
329314, 326, 328, 24fvmptd 6957 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) = 𝐿)
330329, 25eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ℂ)
331330adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ℂ)
332 eqid 2729 . . . . . . . 8 (abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) = (abs‘(𝐷‘(𝑄‘(𝑖 + 1))))
333 iftrue 4490 . . . . . . . . . . . 12 (𝑥 = (𝑄𝑖) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = 𝑅)
334333adantl 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄𝑖)) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = 𝑅)
33514rexrd 11200 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
33617rexrd 11200 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
337 lbicc2 13401 . . . . . . . . . . . 12 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1))) → (𝑄𝑖) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
338335, 336, 137, 337syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
339314, 334, 338, 20fvmptd 6957 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) = 𝑅)
340339, 21eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ ℂ)
341340adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝐷‘(𝑄𝑖)) ∈ ℂ)
342 eqid 2729 . . . . . . . 8 (abs‘(𝐷‘(𝑄𝑖))) = (abs‘(𝐷‘(𝑄𝑖)))
343 eqid 2729 . . . . . . . 8 ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥
344 simpr 484 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
345 fourierdlem73.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
346345nnrpd 12969 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ+)
347346adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑀 ∈ ℝ+)
348344, 347rpdivcld 12988 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℝ+)
349348adantlr 715 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℝ+)
350 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → 𝑟 ∈ ℂ)
35117recnd 11178 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
352351ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
353350, 352mulcld 11170 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℂ)
354353coscld 16075 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) ∈ ℂ)
35517adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
356182, 355remulcld 11180 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℝ)
357 abscosbd 45250 . . . . . . . . . 10 ((𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℝ → (abs‘(cos‘(𝑟 · (𝑄‘(𝑖 + 1))))) ≤ 1)
358356, 357syl 17 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄‘(𝑖 + 1))))) ≤ 1)
359358adantlr 715 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄‘(𝑖 + 1))))) ≤ 1)
36014recnd 11178 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
361360ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑄𝑖) ∈ ℂ)
362350, 361mulcld 11170 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑟 · (𝑄𝑖)) ∈ ℂ)
363362coscld 16075 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (cos‘(𝑟 · (𝑄𝑖))) ∈ ℂ)
36414adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑄𝑖) ∈ ℝ)
365182, 364remulcld 11180 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑟 · (𝑄𝑖)) ∈ ℝ)
366 abscosbd 45250 . . . . . . . . . 10 ((𝑟 · (𝑄𝑖)) ∈ ℝ → (abs‘(cos‘(𝑟 · (𝑄𝑖)))) ≤ 1)
367365, 366syl 17 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄𝑖)))) ≤ 1)
368367adantlr 715 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄𝑖)))) ≤ 1)
369 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → ((ℝ D 𝐷)‘𝑧) = ((ℝ D 𝐷)‘𝑥))
370369fveq2d 6844 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (abs‘((ℝ D 𝐷)‘𝑧)) = (abs‘((ℝ D 𝐷)‘𝑥)))
371370cbvitgv 25654 . . . . . . . . . . . . 13 ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥
372371oveq2i 7380 . . . . . . . . . . . 12 (((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) = (((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥)
373372oveq1i 7379 . . . . . . . . . . 11 ((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) = ((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀))
374373oveq1i 7379 . . . . . . . . . 10 (((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) + 1) = (((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀)) + 1)
375374fveq2i 6843 . . . . . . . . 9 (⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) + 1)) = (⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀)) + 1))
376375oveq1i 7379 . . . . . . . 8 ((⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) + 1)) + 1) = ((⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀)) + 1)) + 1)
377173, 303, 304, 309, 313, 331, 332, 341, 342, 343, 349, 354, 359, 363, 368, 376fourierdlem47 46124 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀))
378 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝜑)
379 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑖 ∈ (0..^𝑀))
380 elioore 13312 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (𝑚(,)+∞) → 𝑟 ∈ ℝ)
381380adantl 481 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ ℝ)
382 0red 11153 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 0 ∈ ℝ)
383 nnre 12169 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
384383adantr 480 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑚 ∈ ℝ)
385 nngt0 12193 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 0 < 𝑚)
386385adantr 480 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 0 < 𝑚)
387384rexrd 11200 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑚 ∈ ℝ*)
388 pnfxr 11204 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
389388a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → +∞ ∈ ℝ*)
390 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ (𝑚(,)+∞))
391 ioogtlb 45466 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑚(,)+∞)) → 𝑚 < 𝑟)
392387, 389, 390, 391syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑚 < 𝑟)
393382, 384, 381, 386, 392lttrd 11311 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 0 < 𝑟)
394381, 393elrpd 12968 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ ℝ+)
395394adantll 714 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ ℝ+)
39614adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (𝑄𝑖) ∈ ℝ)
39717adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
39864ffvelcdmda 7038 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐷𝑥) ∈ ℂ)
399398adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐷𝑥) ∈ ℂ)
400 rpcn 12938 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
401400ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
40235recnd 11178 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
403402adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
404401, 403mulcld 11170 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
405404sincld 16074 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
406399, 405mulcld 11170 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
407396, 397, 406itgioo 25693 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
408137adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
40964feqmptd 6911 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐷𝑥)))
410 iftrue 4490 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = 𝐿)
411324, 410eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
412411adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
413 iffalse 4493 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))
414413adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))
41545ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) ∈ ℝ*)
41646ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
41735ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ)
41814ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → (𝑄𝑖) ∈ ℝ)
41935adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → 𝑥 ∈ ℝ)
42048adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → (𝑄𝑖) ≤ 𝑥)
421 neqne 2933 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑥 = (𝑄𝑖) → 𝑥 ≠ (𝑄𝑖))
422421adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → 𝑥 ≠ (𝑄𝑖))
423418, 419, 420, 422leneltd 11304 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → (𝑄𝑖) < 𝑥)
424423adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) < 𝑥)
42535adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ)
42617ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
42751adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ≤ (𝑄‘(𝑖 + 1)))
428317biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑄‘(𝑖 + 1)) = 𝑥𝑥 = (𝑄‘(𝑖 + 1)))
429428necon3bi 2951 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑥 = (𝑄‘(𝑖 + 1)) → (𝑄‘(𝑖 + 1)) ≠ 𝑥)
430429adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ≠ 𝑥)
431425, 426, 427, 430leneltd 11304 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 < (𝑄‘(𝑖 + 1)))
432431adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 < (𝑄‘(𝑖 + 1)))
433415, 416, 417, 424, 432eliood 45469 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
434 fvres 6859 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
435433, 434syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
436 iffalse 4493 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = (𝐹𝑥))
437436eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 = (𝑄‘(𝑖 + 1)) → (𝐹𝑥) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
438437adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝐹𝑥) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
439414, 435, 4383eqtrrd 2769 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
440412, 439pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
441440ifeq2da 4517 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))
442441mpteq2dva 5195 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))))
443314, 409, 4423eqtr3d 2772 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐷𝑥)) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))))
444 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))
445 fourierdlem73.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
446195, 444, 14, 17, 445, 24, 20cncfiooicc 45865 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
447443, 446eqeltrd 2828 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐷𝑥)) ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
448409, 447eqeltrd 2828 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
449448adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
450 eqid 2729 . . . . . . . . . . . . . . 15 (ℝ D 𝐷) = (ℝ D 𝐷)
451129, 1eqeltrd 2828 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
452451adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (ℝ D 𝐷) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
453209adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
454 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
455396, 397, 408, 449, 450, 452, 453, 454fourierdlem39 46117 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥))
456407, 455eqtr3d 2766 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥))
457378, 379, 395, 456syl21anc 837 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥))
458457fveq2d 6844 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)))
459458breq1d 5112 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ((abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ (abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
460459ralbidva 3154 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
461460rexbidva 3155 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
462461adantr 480 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
463377, 462mpbird 257 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
464463an32s 652 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
46594oveq1d 7384 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) = ((𝐷𝑥) · (sin‘(𝑟 · 𝑥))))
466465itgeq2dv 25659 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
467466eqcomd 2735 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
468467adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
46914adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (𝑄𝑖) ∈ ℝ)
47017adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
471398adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐷𝑥) ∈ ℂ)
472380recnd 11178 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (𝑚(,)+∞) → 𝑟 ∈ ℂ)
473472ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
474402adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
475473, 474mulcld 11170 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
476475sincld 16074 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
477471, 476mulcld 11170 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
478469, 470, 477itgioo 25693 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
47960adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
480479, 476mulcld 11170 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
481469, 470, 480itgioo 25693 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
482468, 478, 4813eqtr3d 2772 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
483482fveq2d 6844 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
484483breq1d 5112 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ((abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
485484ralbidva 3154 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
486485adantlr 715 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
487486rexbidv 3157 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
488464, 487mpbid 232 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
489488ralrimiva 3125 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
490489ralrimiva 3125 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
491 nfv 1914 . . . . . . 7 𝑖(𝜑𝑒 ∈ ℝ+)
492 nfra1 3259 . . . . . . 7 𝑖𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
493491, 492nfan 1899 . . . . . 6 𝑖((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
494 nfv 1914 . . . . . . 7 𝑟(𝜑𝑒 ∈ ℝ+)
495 nfcv 2891 . . . . . . . 8 𝑟(0..^𝑀)
496 nfcv 2891 . . . . . . . . 9 𝑟
497 nfra1 3259 . . . . . . . . 9 𝑟𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
498496, 497nfrexw 3284 . . . . . . . 8 𝑟𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
499495, 498nfralw 3283 . . . . . . 7 𝑟𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
500494, 499nfan 1899 . . . . . 6 𝑟((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
501 nfmpt1 5201 . . . . . 6 𝑖(𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < ))
502 fzofi 13915 . . . . . . 7 (0..^𝑀) ∈ Fin
503502a1i 11 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (0..^𝑀) ∈ Fin)
504 simpr 484 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
505 eqid 2729 . . . . . 6 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)} = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}
506 eqid 2729 . . . . . 6 (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < )) = (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < ))
507 eqid 2729 . . . . . 6 sup(ran (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < )), ℝ, < ) = sup(ran (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < )), ℝ, < )
508493, 500, 501, 503, 504, 505, 506, 507fourierdlem31 46109 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
509 simpr 484 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
510 nfv 1914 . . . . . . . 8 𝑛(𝜑𝑒 ∈ ℝ+)
511 nfre1 3260 . . . . . . . 8 𝑛𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
512510, 511nfan 1899 . . . . . . 7 𝑛((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
513 nfv 1914 . . . . . . . . . . 11 𝑟 𝑛 ∈ ℕ
514 nfra1 3259 . . . . . . . . . . 11 𝑟𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
515494, 513, 514nf3an 1901 . . . . . . . . . 10 𝑟((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
516 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝜑)
517 elioore 13312 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ (𝑛(,)+∞) → 𝑟 ∈ ℝ)
518517adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℝ)
519 0red 11153 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 0 ∈ ℝ)
520 nnre 12169 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
521520adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑛 ∈ ℝ)
522 nngt0 12193 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 0 < 𝑛)
523522adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 0 < 𝑛)
524521rexrd 11200 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑛 ∈ ℝ*)
525388a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → +∞ ∈ ℝ*)
526 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ (𝑛(,)+∞))
527 ioogtlb 45466 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑛(,)+∞)) → 𝑛 < 𝑟)
528524, 525, 526, 527syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑛 < 𝑟)
529519, 521, 518, 523, 528lttrd 11311 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 0 < 𝑟)
530518, 529elrpd 12968 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℝ+)
531530adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℝ+)
5327adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝐴 ∈ ℝ)
5338adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝐵 ∈ ℝ)
53427ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
535534adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
536400ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑟 ∈ ℂ)
5379sselda 3943 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
538537recnd 11178 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
539538adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
540536, 539mulcld 11170 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑟 · 𝑥) ∈ ℂ)
541540sincld 16074 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
542535, 541mulcld 11170 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
543532, 533, 542itgioo 25693 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫(𝐴[,]𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
544 fourierdlem73.q0 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄‘0) = 𝐴)
545544eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 = (𝑄‘0))
546 fourierdlem73.qm . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄𝑀) = 𝐵)
547546eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 = (𝑄𝑀))
548545, 547oveq12d 7387 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
549548adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
550549itgeq1d 45928 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → ∫(𝐴[,]𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄‘0)[,](𝑄𝑀))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
551 0zd 12517 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 0 ∈ ℤ)
552 nnuz 12812 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
553 0p1e1 12279 . . . . . . . . . . . . . . . . . . . . . . 23 (0 + 1) = 1
554553fveq2i 6843 . . . . . . . . . . . . . . . . . . . . . 22 (ℤ‘(0 + 1)) = (ℤ‘1)
555552, 554eqtr4i 2755 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘(0 + 1))
556345, 555eleqtrdi 2838 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ (ℤ‘(0 + 1)))
557556adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ (ℤ‘(0 + 1)))
55810adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝑄:(0...𝑀)⟶ℝ)
559136adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
560 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
561548eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) = (𝐴[,]𝐵))
562561adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → ((𝑄‘0)[,](𝑄𝑀)) = (𝐴[,]𝐵))
563560, 562eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ (𝐴[,]𝐵))
564563adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ (𝐴[,]𝐵))
565564, 542syldan 591 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
56614adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
56717adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
568106, 103sstrd 3954 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
569113, 568feqresmpt 6912 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)))
570569, 445eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
571570adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
572 sincn 26330 . . . . . . . . . . . . . . . . . . . . . . . 24 sin ∈ (ℂ–cn→ℂ)
573572a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → sin ∈ (ℂ–cn→ℂ))
574180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑟 ∈ ℝ+) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
575400adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
576184a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑟 ∈ ℝ+) → ℂ ⊆ ℂ)
577574, 575, 576constcncfg 45843 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
578189adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
579577, 578mulcncf 25322 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
580579adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
581573, 580cncfmpt1f 24783 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
582571, 581mulcncf 25322 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
583 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥))
584 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥)))
585 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))))
58627ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
58736ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐴 ∈ ℝ*)
58838ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐵 ∈ ℝ*)
5896ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
590 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
591587, 588, 589, 590, 72fourierdlem1 46079 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
592586, 591ffvelcdmd 7039 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
593592adantllr 719 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
594575ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
595306adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
596594, 595mulcld 11170 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
597596sincld 16074 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
598569oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
59924, 598eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
600599adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
601 rpre 12936 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
602601adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ+𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ)
60387adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ+𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
604602, 603remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ+𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℝ)
605604adantll 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℝ)
606605ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) ≠ (𝑟 · (𝑄‘(𝑖 + 1))))) → (𝑟 · 𝑥) ∈ ℝ)
607 recn 11134 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
608607sincld 16074 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℂ)
609608adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) → (sin‘𝑦) ∈ ℂ)
610 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟)
611 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥)
612 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥))
613180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
614575adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ℂ)
615567recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
616610, 613, 614, 615constlimc 45595 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) lim (𝑄‘(𝑖 + 1))))
617613, 611, 615idlimc 45597 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) lim (𝑄‘(𝑖 + 1))))
618610, 611, 612, 594, 595, 616, 617mullimc 45587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) lim (𝑄‘(𝑖 + 1))))
619 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℂ ↦ (sin‘𝑦)) = (𝑦 ∈ ℂ ↦ (sin‘𝑦))
620 sinf 16068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 sin:ℂ⟶ℂ
621620a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⊤ → sin:ℂ⟶ℂ)
622621feqmptd 6911 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⊤ → sin = (𝑦 ∈ ℂ ↦ (sin‘𝑦)))
623622, 572eqeltrrdi 2837 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → (𝑦 ∈ ℂ ↦ (sin‘𝑦)) ∈ (ℂ–cn→ℂ))
6244a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → ℝ ⊆ ℂ)
625 resincl 16084 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℝ)
626625adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⊤ ∧ 𝑦 ∈ ℝ) → (sin‘𝑦) ∈ ℝ)
627619, 623, 624, 624, 626cncfmptssg 45842 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → (𝑦 ∈ ℝ ↦ (sin‘𝑦)) ∈ (ℝ–cn→ℝ))
628627mptru 1547 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ ↦ (sin‘𝑦)) ∈ (ℝ–cn→ℝ)
629628a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑦 ∈ ℝ ↦ (sin‘𝑦)) ∈ (ℝ–cn→ℝ))
630601ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ℝ)
631630, 567remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℝ)
632 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑟 · (𝑄‘(𝑖 + 1))) → (sin‘𝑦) = (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))))
633629, 631, 632cnmptlimc 25767 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))) ∈ ((𝑦 ∈ ℝ ↦ (sin‘𝑦)) lim (𝑟 · (𝑄‘(𝑖 + 1)))))
634 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑟 · 𝑥) → (sin‘𝑦) = (sin‘(𝑟 · 𝑥)))
635 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 · 𝑥) = (𝑟 · (𝑄‘(𝑖 + 1))) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))))
636635ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) = (𝑟 · (𝑄‘(𝑖 + 1))))) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))))
637606, 609, 618, 633, 634, 636limcco 25770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) lim (𝑄‘(𝑖 + 1))))
638583, 584, 585, 593, 597, 600, 637mullimc 45587 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · (sin‘(𝑟 · (𝑄‘(𝑖 + 1))))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) lim (𝑄‘(𝑖 + 1))))
639569oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
64020, 639eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
641640adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
642605ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) ≠ (𝑟 · (𝑄𝑖)))) → (𝑟 · 𝑥) ∈ ℝ)
643566recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
644610, 613, 614, 643constlimc 45595 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) lim (𝑄𝑖)))
645613, 611, 643idlimc 45597 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) lim (𝑄𝑖)))
646610, 611, 612, 594, 595, 644, 645mullimc 45587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄𝑖)) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) lim (𝑄𝑖)))
647630, 566remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄𝑖)) ∈ ℝ)
648 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑟 · (𝑄𝑖)) → (sin‘𝑦) = (sin‘(𝑟 · (𝑄𝑖))))
649629, 647, 648cnmptlimc 25767 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄𝑖))) ∈ ((𝑦 ∈ ℝ ↦ (sin‘𝑦)) lim (𝑟 · (𝑄𝑖))))
650 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 · 𝑥) = (𝑟 · (𝑄𝑖)) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄𝑖))))
651650ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) = (𝑟 · (𝑄𝑖)))) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄𝑖))))
652642, 609, 646, 649, 634, 651limcco 25770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄𝑖))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) lim (𝑄𝑖)))
653583, 584, 585, 593, 597, 641, 652mullimc 45587 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · (sin‘(𝑟 · (𝑄𝑖)))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) lim (𝑄𝑖)))
654566, 567, 582, 638, 653iblcncfioo 45949 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ 𝐿1)
655 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝜑𝑟 ∈ ℝ+))
65659adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
657655, 656, 542syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
658566, 567, 654, 657ibliooicc 45942 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ 𝐿1)
659551, 557, 558, 559, 565, 658itgspltprt 45950 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → ∫((𝑄‘0)[,](𝑄𝑀))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
660543, 550, 6593eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
661516, 531, 660syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
662502a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ∈ Fin)
66360adantllr 719 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
664517recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 ∈ (𝑛(,)+∞) → 𝑟 ∈ ℂ)
665664adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℂ)
666665ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
667402adantllr 719 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
668666, 667mulcld 11170 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
669668sincld 16074 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
670663, 669mulcld 11170 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
671670adantl3r 750 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
672 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝜑)
673531adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ℝ+)
674 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
675672, 673, 674, 658syl21anc 837 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ 𝐿1)
676671, 675itgcl 25661 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
677662, 676fsumcl 15675 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
678661, 677eqeltrd 2828 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
679678adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
6806793adantl3 1169 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
681680abscld 15381 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
682676abscld 15381 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
683662, 682fsumrecl 15676 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
684683adantllr 719 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
6856843adantl3 1169 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
686 rpre 12936 . . . . . . . . . . . . . 14 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
687686ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑒 ∈ ℝ)
6886873ad2antl1 1186 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑒 ∈ ℝ)
689661fveq2d 6844 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
690662, 676fsumabs 15743 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
691689, 690eqbrtrd 5124 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
692691adantllr 719 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
6936923adantl3 1169 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
694502a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ∈ Fin)
695 0zd 12517 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ∈ ℤ)
696345nnzd 12532 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℤ)
697345nngt0d 12211 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 𝑀)
698 fzolb 13602 . . . . . . . . . . . . . . . . . 18 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
699695, 696, 697, 698syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0..^𝑀))
700 ne0i 4300 . . . . . . . . . . . . . . . . 17 (0 ∈ (0..^𝑀) → (0..^𝑀) ≠ ∅)
701699, 700syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (0..^𝑀) ≠ ∅)
702701ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ≠ ∅)
7037023ad2antl1 1186 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ≠ ∅)
704 simp1l 1198 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → 𝜑)
705704ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝜑)
706 simpll2 1214 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑛 ∈ ℕ)
707705, 706jca 511 . . . . . . . . . . . . . . . 16 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (𝜑𝑛 ∈ ℕ))
708 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑟 ∈ (𝑛(,)+∞))
709 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0..^𝑀))
710 eleq1w 2811 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
711710anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ↔ (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀))))
712 fveq2 6840 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
713 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
714713fveq2d 6844 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
715712, 714oveq12d 7387 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) = ((𝑄𝑗)[,](𝑄‘(𝑗 + 1))))
716715itgeq1d 45928 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
717716eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ ↔ ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ))
718711, 717imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ) ↔ ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)))
719718, 676chvarvv 1989 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
720707, 708, 709, 719syl21anc 837 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
721720abscld 15381 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
722348rpred 12971 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℝ)
7237223ad2ant1 1133 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (𝑒 / 𝑀) ∈ ℝ)
724723ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑒 / 𝑀) ∈ ℝ)
725 simpll3 1215 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
726 rspa 3224 . . . . . . . . . . . . . . . . . 18 ((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
727726adantr 480 . . . . . . . . . . . . . . . . 17 (((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
728716fveq2d 6844 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
729728breq1d 5112 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
730729cbvralvw 3213 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
731727, 730sylib 218 . . . . . . . . . . . . . . . 16 (((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∀𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
732 rspa 3224 . . . . . . . . . . . . . . . 16 ((∀𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
733731, 732sylancom 588 . . . . . . . . . . . . . . 15 (((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
734725, 708, 709, 733syl21anc 837 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
735694, 703, 721, 724, 734fsumlt 15742 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀))
736 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
737 oveq1 7376 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
738737fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
739736, 738oveq12d 7387 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → ((𝑄𝑗)[,](𝑄‘(𝑗 + 1))) = ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
740739itgeq1d 45928 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
741740fveq2d 6844 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
742741cbvsumv 15638 . . . . . . . . . . . . . 14 Σ𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
743742a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
744348rpcnd 12973 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℂ)
745 fsumconst 15732 . . . . . . . . . . . . . . . . 17 (((0..^𝑀) ∈ Fin ∧ (𝑒 / 𝑀) ∈ ℂ) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)))
746502, 744, 745sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)))
747345nnnn0d 12479 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ0)
748 hashfzo0 14371 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → (♯‘(0..^𝑀)) = 𝑀)
749747, 748syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘(0..^𝑀)) = 𝑀)
750749oveq1d 7384 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)) = (𝑀 · (𝑒 / 𝑀)))
751750adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)) = (𝑀 · (𝑒 / 𝑀)))
752344rpcnd 12973 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℂ)
753347rpcnd 12973 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → 𝑀 ∈ ℂ)
754347rpne0d 12976 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → 𝑀 ≠ 0)
755752, 753, 754divcan2d 11936 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → (𝑀 · (𝑒 / 𝑀)) = 𝑒)
756746, 751, 7553eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = 𝑒)
757756adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = 𝑒)
7587573ad2antl1 1186 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = 𝑒)
759735, 743, 7583brtr3d 5133 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
760681, 685, 688, 693, 759lelttrd 11308 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
761760ex 412 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (𝑟 ∈ (𝑛(,)+∞) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
762515, 761ralrimi 3233 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
7637623exp 1119 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑛 ∈ ℕ → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)))
764763adantr 480 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (𝑛 ∈ ℕ → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)))
765512, 764reximdai 3237 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
766509, 765mpd 15 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
767508, 766syldan 591 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
768767ex 412 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
769768ralimdva 3145 . 2 (𝜑 → (∀𝑒 ∈ ℝ+𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
770490, 769mpd 15 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  wss 3911  c0 4292  ifcif 4484   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  cres 5633   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  supcsup 9367  infcinf 9368  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  cuz 12769  +crp 12927  (,)cioo 13282  [,]cicc 13285  ...cfz 13444  ..^cfzo 13591  cfl 13728  chash 14271  abscabs 15176  Σcsu 15628  sincsin 16005  cosccos 16006  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21240  Topctop 22756  intcnt 22880  cnccncf 24745  volcvol 25340  𝐿1cibl 25494  citg 25495   lim climc 25739   D cdv 25740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-ovol 25341  df-vol 25342  df-mbf 25496  df-itg1 25497  df-itg2 25498  df-ibl 25499  df-itg 25500  df-0p 25547  df-limc 25743  df-dv 25744
This theorem is referenced by:  fourierdlem103  46180  fourierdlem104  46181
  Copyright terms: Public domain W3C validator