Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem73 Structured version   Visualization version   GIF version

Theorem fourierdlem73 45596
Description: A version of the Riemann Lebesgue lemma: as 𝑟 increases, the integral in 𝑆 goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem73.a (𝜑𝐴 ∈ ℝ)
fourierdlem73.b (𝜑𝐵 ∈ ℝ)
fourierdlem73.f (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
fourierdlem73.m (𝜑𝑀 ∈ ℕ)
fourierdlem73.qf (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem73.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem73.qm (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem73.qilt ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
fourierdlem73.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem73.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem73.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem73.g 𝐺 = (ℝ D 𝐹)
fourierdlem73.gcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem73.gbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
fourierdlem73.s 𝑆 = (𝑟 ∈ ℝ+ ↦ ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
fourierdlem73.d 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
Assertion
Ref Expression
fourierdlem73 (𝜑 → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝐷,𝑟,𝑥,𝑦   𝑖,𝐹,𝑛,𝑥   𝑥,𝐺,𝑦   𝑥,𝐿   𝑒,𝑀,𝑖,𝑛,𝑟,𝑥   𝑦,𝑀,𝑖   𝑄,𝑖,𝑛,𝑟,𝑥   𝑦,𝑄   𝑥,𝑅   𝜑,𝑒,𝑖,𝑛,𝑟,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑒,𝑖,𝑛,𝑟)   𝐵(𝑦,𝑒,𝑖,𝑛,𝑟)   𝐷(𝑒,𝑖,𝑛)   𝑄(𝑒)   𝑅(𝑦,𝑒,𝑖,𝑛,𝑟)   𝑆(𝑥,𝑦,𝑒,𝑖,𝑛,𝑟)   𝐹(𝑦,𝑒,𝑟)   𝐺(𝑒,𝑖,𝑛,𝑟)   𝐿(𝑦,𝑒,𝑖,𝑛,𝑟)

Proof of Theorem fourierdlem73
Dummy variables 𝑚 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem73.gcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
2 cncff 24833 . . . . . . . . . . . . . 14 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
31, 2syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
4 ax-resscn 11203 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℂ
54a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ℝ ⊆ ℂ)
6 fourierdlem73.qf . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
7 fourierdlem73.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
8 fourierdlem73.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ)
97, 8iccssred 13451 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
106, 9fssd 6745 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑄:(0...𝑀)⟶ℝ)
1110adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
12 elfzofz 13688 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
1312adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
1411, 13ffvelcdmd 7100 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
15 fzofzp1 13769 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
1615adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
1711, 16ffvelcdmd 7100 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
1814, 17iccssred 13451 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ ℝ)
19 limccl 25824 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ⊆ ℂ
20 fourierdlem73.r . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
2119, 20sselid 3980 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ℂ)
2221adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑅 ∈ ℂ)
23 limccl 25824 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ⊆ ℂ
24 fourierdlem73.l . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2523, 24sselid 3980 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ℂ)
2625adantr 479 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐿 ∈ ℂ)
27 fourierdlem73.f . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2827ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
297ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴 ∈ ℝ)
308ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐵 ∈ ℝ)
3114adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
3217adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
33 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
34 eliccre 44919 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
3531, 32, 33, 34syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
367rexrd 11302 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ ℝ*)
3736adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
388rexrd 11302 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ*)
3938adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
406adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
4140, 13ffvelcdmd 7100 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
42 iccgelb 13420 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝑖) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝑖))
4337, 39, 41, 42syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ≤ (𝑄𝑖))
4443adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴 ≤ (𝑄𝑖))
4531rexrd 11302 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
4632rexrd 11302 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
47 iccgelb 13420 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑥)
4845, 46, 33, 47syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑥)
4929, 31, 35, 44, 48letrd 11409 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴𝑥)
50 iccleub 13419 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ≤ (𝑄‘(𝑖 + 1)))
5145, 46, 33, 50syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ≤ (𝑄‘(𝑖 + 1)))
5236ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐴 ∈ ℝ*)
5338ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐵 ∈ ℝ*)
5440, 16ffvelcdmd 7100 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵))
5554adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵))
56 iccleub 13419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝑖 + 1)) ≤ 𝐵)
5752, 53, 55, 56syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ≤ 𝐵)
5835, 32, 30, 51, 57letrd 11409 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥𝐵)
5929, 30, 35, 49, 58eliccd 44918 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
6028, 59ffvelcdmd 7100 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
6126, 60ifcld 4578 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) ∈ ℂ)
6222, 61ifcld 4578 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) ∈ ℂ)
63 fourierdlem73.d . . . . . . . . . . . . . . . . 17 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
6462, 63fmptd 7129 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷:((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ)
65 eqid 2728 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6665tgioo2 24739 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
67 iccntr 24757 . . . . . . . . . . . . . . . . 17 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
6814, 17, 67syl2anc 582 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((int‘(topGen‘ran (,)))‘((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
695, 18, 64, 66, 65, 68dvresntr 45335 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) = (ℝ D (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
70 ioossicc 13450 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
7170sseli 3978 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
7271adantl 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
73 fvres 6921 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
7572, 62syldan 589 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) ∈ ℂ)
7663fvmpt2 7021 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ∧ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) ∈ ℂ) → (𝐷𝑥) = if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
7772, 75, 76syl2anc 582 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑥) = if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))))
7814adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
7972, 45syldan 589 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
8072, 46syldan 589 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
81 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
82 ioogtlb 44909 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑥)
8379, 80, 81, 82syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑥)
8478, 83gtned 11387 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ≠ (𝑄𝑖))
8584neneqd 2942 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑥 = (𝑄𝑖))
8685iffalsed 4543 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
87 elioore 13394 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ)
8887adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
89 iooltub 44924 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 < (𝑄‘(𝑖 + 1)))
9079, 80, 81, 89syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 < (𝑄‘(𝑖 + 1)))
9188, 90ltned 11388 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ≠ (𝑄‘(𝑖 + 1)))
9291neneqd 2942 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ¬ 𝑥 = (𝑄‘(𝑖 + 1)))
9392iffalsed 4543 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = (𝐹𝑥))
9477, 86, 933eqtrrd 2773 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹𝑥) = (𝐷𝑥))
9574, 94eqtr2d 2769 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥))
9695ralrimiva 3143 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥))
97 ffn 6727 . . . . . . . . . . . . . . . . . . . 20 (𝐷:((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ → 𝐷 Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
9864, 97syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
99 ffn 6727 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹:(𝐴[,]𝐵)⟶ℂ → 𝐹 Fn (𝐴[,]𝐵))
10027, 99syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 Fn (𝐴[,]𝐵))
101100adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹 Fn (𝐴[,]𝐵))
102 simpr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
10337, 39, 40, 102fourierdlem8 45532 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
104 fnssres 6683 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn (𝐴[,]𝐵) ∧ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) → (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
105101, 103, 104syl2anc 582 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
10670a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
107 fvreseq 7054 . . . . . . . . . . . . . . . . . . 19 (((𝐷 Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ∧ (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) Fn ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥)))
10898, 105, 106, 107syl21anc 836 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(𝐷𝑥) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑥)))
10996, 108mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
110106resabs1d 6017 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
111109, 110eqtrd 2768 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
112111oveq2d 7442 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐷 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
11327adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
1149adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐴[,]𝐵) ⊆ ℝ)
115106, 18sstrd 3992 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
11665, 66dvres 25860 . . . . . . . . . . . . . . . . 17 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
1175, 113, 114, 115, 116syl22anc 837 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
118 fourierdlem73.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (ℝ D 𝐹)
119118eqcomi 2737 . . . . . . . . . . . . . . . . . 18 (ℝ D 𝐹) = 𝐺
120119a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐹) = 𝐺)
121 iooretop 24702 . . . . . . . . . . . . . . . . . 18 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ (topGen‘ran (,))
122 retop 24698 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) ∈ Top
123 uniretop 24699 . . . . . . . . . . . . . . . . . . . 20 ℝ = (topGen‘ran (,))
124123isopn3 22990 . . . . . . . . . . . . . . . . . . 19 (((topGen‘ran (,)) ∈ Top ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
125122, 115, 124sylancr 585 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
126121, 125mpbii 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
127120, 126reseq12d 5990 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
128117, 127eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
12969, 112, 1283eqtrd 2772 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
130129feq1d 6712 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐷):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ↔ (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ))
1313, 130mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
132131feqmptd 6972 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)))
133132, 129eqtr3d 2770 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
134 ioombl 25514 . . . . . . . . . . . 12 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ dom vol
135134a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ dom vol)
136 fourierdlem73.qilt . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
13714, 17, 136ltled 11400 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
138 volioo 25518 . . . . . . . . . . . . 13 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ ∧ (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1))) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘(𝑖 + 1)) − (𝑄𝑖)))
13914, 17, 137, 138syl3anc 1368 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘(𝑖 + 1)) − (𝑄𝑖)))
14017, 14resubcld 11680 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − (𝑄𝑖)) ∈ ℝ)
141139, 140eqeltrd 2829 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ ℝ)
142 fourierdlem73.gbd . . . . . . . . . . . . 13 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
143142adantr 479 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
144 nfv 1909 . . . . . . . . . . . . . . . 16 𝑥((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ)
145 nfra1 3279 . . . . . . . . . . . . . . . 16 𝑥𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦
146144, 145nfan 1894 . . . . . . . . . . . . . . 15 𝑥(((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
147 simpr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
148 fdm 6736 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1493, 148syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
150149adantr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
151147, 150eleqtrd 2831 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
152 fvres 6921 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐺𝑥))
153151, 152syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐺𝑥))
154153fveq2d 6906 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐺𝑥)))
155154ad4ant14 750 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = (abs‘(𝐺𝑥)))
156 simplr 767 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
157 ssdmres 6022 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺 ↔ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
158149, 157sylibr 233 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐺)
159158sselda 3982 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐺)
160151, 159syldan 589 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ dom 𝐺)
161160adantlr 713 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → 𝑥 ∈ dom 𝐺)
162 rsp 3242 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → (𝑥 ∈ dom 𝐺 → (abs‘(𝐺𝑥)) ≤ 𝑦))
163156, 161, 162sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘(𝐺𝑥)) ≤ 𝑦)
164163adantllr 717 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘(𝐺𝑥)) ≤ 𝑦)
165155, 164eqbrtrd 5174 . . . . . . . . . . . . . . . 16 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦)
166165ex 411 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦))
167146, 166ralrimi 3252 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦)
168167ex 411 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) → (∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦))
169168reximdva 3165 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦))
170143, 169mpd 15 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ dom (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))(abs‘((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) ≤ 𝑦)
171135, 141, 1, 170cnbdibl 45379 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ 𝐿1)
172133, 171eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ 𝐿1)
173172adantr 479 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ 𝐿1)
174134a1i 11 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ dom vol)
175141adantr 479 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (vol‘((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ ℝ)
176133, 1eqeltrd 2829 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
177176adantr 479 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((ℝ D 𝐷)‘𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
178 coscn 26402 . . . . . . . . . . . . . 14 cos ∈ (ℂ–cn→ℂ)
179178a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → cos ∈ (ℂ–cn→ℂ))
180 ioosscn 13426 . . . . . . . . . . . . . . . 16 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
181180a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
182 simpr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → 𝑟 ∈ ℝ)
183182recnd 11280 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → 𝑟 ∈ ℂ)
184 ssid 4004 . . . . . . . . . . . . . . . 16 ℂ ⊆ ℂ
185184a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ℂ ⊆ ℂ)
186181, 183, 185constcncfg 45289 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
187180a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
188184a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ℂ ⊆ ℂ)
189187, 188idcncfg 45290 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
190189ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
191186, 190mulcncf 25394 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
192179, 191cncfmpt1f 24854 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (cos‘(𝑟 · 𝑥))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
193192negcncfg 45298 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ -(cos‘(𝑟 · 𝑥))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
194177, 193mulcncf 25394 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
195 nfv 1909 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑖 ∈ (0..^𝑀))
196195, 145nfan 1894 . . . . . . . . . . . . . . . 16 𝑥((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
197129fveq1d 6904 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐷)‘𝑥) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))
198197, 152sylan9eq 2788 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) = (𝐺𝑥))
199198fveq2d 6906 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐷)‘𝑥)) = (abs‘(𝐺𝑥)))
200199adantlr 713 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐷)‘𝑥)) = (abs‘(𝐺𝑥)))
201 simplr 767 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦)
202159adantlr 713 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ dom 𝐺)
203201, 202, 162sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑥)) ≤ 𝑦)
204200, 203eqbrtrd 5174 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
205204ex 411 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦))
206196, 205ralrimi 3252 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
207206ex 411 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦))
208207reximdv 3167 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑦 ∈ ℝ ∀𝑥 ∈ dom 𝐺(abs‘(𝐺𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦))
209143, 208mpd 15 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
210209adantr 479 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
211 eqidd 2729 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))))
212 fveq2 6902 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → ((ℝ D 𝐷)‘𝑥) = ((ℝ D 𝐷)‘𝑧))
213 eleq1w 2812 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑧 → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
214213anbi2d 628 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↔ ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))))
215 fveq2 6902 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
216212, 215eqeq12d 2744 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (((ℝ D 𝐷)‘𝑥) = (𝐺𝑥) ↔ ((ℝ D 𝐷)‘𝑧) = (𝐺𝑧)))
217214, 216imbi12d 343 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) = (𝐺𝑥)) ↔ (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑧) = (𝐺𝑧))))
218217, 198chvarvv 1994 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑧) = (𝐺𝑧))
219212, 218sylan9eqr 2790 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → ((ℝ D 𝐷)‘𝑥) = (𝐺𝑧))
220 oveq2 7434 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (𝑟 · 𝑥) = (𝑟 · 𝑧))
221220fveq2d 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (cos‘(𝑟 · 𝑥)) = (cos‘(𝑟 · 𝑧)))
222221negeqd 11492 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → -(cos‘(𝑟 · 𝑥)) = -(cos‘(𝑟 · 𝑧)))
223222adantl 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → -(cos‘(𝑟 · 𝑥)) = -(cos‘(𝑟 · 𝑧)))
224219, 223oveq12d 7444 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) = ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))))
225224adantllr 717 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑥 = 𝑧) → (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) = ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))))
226 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
227 fvres 6921 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑧) = (𝐺𝑧))
228227adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑧) = (𝐺𝑧))
2293ffvelcdmda 7099 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑧) ∈ ℂ)
230228, 229eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺𝑧) ∈ ℂ)
231230adantlr 713 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐺𝑧) ∈ ℂ)
232 simpl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ)
233 elioore 13394 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑧 ∈ ℝ)
234233adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑧 ∈ ℝ)
235232, 234remulcld 11282 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑧) ∈ ℝ)
236235recnd 11280 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑧) ∈ ℂ)
237236coscld 16115 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (cos‘(𝑟 · 𝑧)) ∈ ℂ)
238237negcld 11596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑧)) ∈ ℂ)
239238adantll 712 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑧)) ∈ ℂ)
240231, 239mulcld 11272 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))) ∈ ℂ)
241211, 225, 226, 240fvmptd 7017 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧) = ((𝐺𝑧) · -(cos‘(𝑟 · 𝑧))))
242241fveq2d 6906 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) = (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))))
243242ad4ant14 750 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) = (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))))
244240abscld 15423 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ∈ ℝ)
245244ad4ant14 750 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ∈ ℝ)
246231abscld 15423 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ∈ ℝ)
247246ad4ant14 750 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ∈ ℝ)
248 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑦 ∈ ℝ)
249239abscld 15423 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) ∈ ℝ)
250 1red 11253 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 1 ∈ ℝ)
251231absge0d 15431 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 0 ≤ (abs‘(𝐺𝑧)))
252237absnegd 15436 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) = (abs‘(cos‘(𝑟 · 𝑧))))
253 abscosbd 44689 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 · 𝑧) ∈ ℝ → (abs‘(cos‘(𝑟 · 𝑧))) ≤ 1)
254235, 253syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(cos‘(𝑟 · 𝑧))) ≤ 1)
255252, 254eqbrtrd 5174 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ ℝ ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) ≤ 1)
256255adantll 712 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘-(cos‘(𝑟 · 𝑧))) ≤ 1)
257249, 250, 246, 251, 256lemul2ad 12192 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘(𝐺𝑧)) · (abs‘-(cos‘(𝑟 · 𝑧)))) ≤ ((abs‘(𝐺𝑧)) · 1))
258231, 239absmuld 15441 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) = ((abs‘(𝐺𝑧)) · (abs‘-(cos‘(𝑟 · 𝑧)))))
259246recnd 11280 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ∈ ℂ)
260259mulridd 11269 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘(𝐺𝑧)) · 1) = (abs‘(𝐺𝑧)))
261260eqcomd 2734 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) = ((abs‘(𝐺𝑧)) · 1))
262257, 258, 2613brtr4d 5184 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ≤ (abs‘(𝐺𝑧)))
263262ad4ant14 750 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ≤ (abs‘(𝐺𝑧)))
264 simpr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
265 nfra1 3279 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦
266195, 265nfan 1894 . . . . . . . . . . . . . . . . . . . . . 22 𝑥((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
267199eqcomd 2734 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑥)) = (abs‘((ℝ D 𝐷)‘𝑥)))
268267adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (abs‘(𝐺𝑥)) = (abs‘((ℝ D 𝐷)‘𝑥)))
269 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
270268, 269eqbrtrd 5174 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ (abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (abs‘(𝐺𝑥)) ≤ 𝑦)
271270ex 411 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → (abs‘(𝐺𝑥)) ≤ 𝑦))
272271adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → (abs‘(𝐺𝑥)) ≤ 𝑦))
273266, 272ralimdaa 3255 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑥)) ≤ 𝑦))
274264, 273mpd 15 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑥)) ≤ 𝑦)
275215fveq2d 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑧 → (abs‘(𝐺𝑥)) = (abs‘(𝐺𝑧)))
276275breq1d 5162 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → ((abs‘(𝐺𝑥)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑦))
277276cbvralvw 3232 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑥)) ≤ 𝑦 ↔ ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑧)) ≤ 𝑦)
278274, 277sylib 217 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑧)) ≤ 𝑦)
279278ad4ant14 750 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐺𝑧)) ≤ 𝑦)
280279r19.21bi 3246 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘(𝐺𝑧)) ≤ 𝑦)
281245, 247, 248, 263, 280letrd 11409 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝐺𝑧) · -(cos‘(𝑟 · 𝑧)))) ≤ 𝑦)
282243, 281eqbrtrd 5174 . . . . . . . . . . . . . . 15 ((((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
283282ralrimiva 3143 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
284131ffvelcdmda 7099 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) ∈ ℂ)
285284adantlr 713 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) ∈ ℂ)
286 simpl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ)
28787adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
288286, 287remulcld 11282 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℝ)
289288recnd 11280 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
290289coscld 16115 . . . . . . . . . . . . . . . . . . . . 21 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (cos‘(𝑟 · 𝑥)) ∈ ℂ)
291290negcld 11596 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ ℝ ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑥)) ∈ ℂ)
292291adantll 712 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -(cos‘(𝑟 · 𝑥)) ∈ ℂ)
293285, 292mulcld 11272 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) ∈ ℂ)
294293ralrimiva 3143 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) ∈ ℂ)
295 dmmptg 6251 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))) ∈ ℂ → dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
296294, 295syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
297296ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
298297raleqdv 3323 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → (∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦 ↔ ∀𝑧 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦))
299283, 298mpbird 256 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
300299ex 411 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦))
301300reximdva 3165 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦))
302210, 301mpd 15 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))(abs‘((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥))))‘𝑧)) ≤ 𝑦)
303174, 175, 194, 302cnbdibl 45379 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) ∈ 𝐿1)
304303adantlr 713 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℝ) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (((ℝ D 𝐷)‘𝑥) · -(cos‘(𝑟 · 𝑥)))) ∈ 𝐿1)
305284adantlr 713 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((ℝ D 𝐷)‘𝑥) ∈ ℂ)
306 simpr 483 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → 𝑟 ∈ ℂ)
307180sseli 3978 . . . . . . . . . . 11 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℂ)
308307ad2antlr 725 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → 𝑥 ∈ ℂ)
309306, 308mulcld 11272 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → (𝑟 · 𝑥) ∈ ℂ)
310309coscld 16115 . . . . . . . 8 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℂ) → (cos‘(𝑟 · 𝑥)) ∈ ℂ)
311288ancoms 457 . . . . . . . . . 10 ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑟 ∈ ℝ) → (𝑟 · 𝑥) ∈ ℝ)
312 abscosbd 44689 . . . . . . . . . 10 ((𝑟 · 𝑥) ∈ ℝ → (abs‘(cos‘(𝑟 · 𝑥))) ≤ 1)
313311, 312syl 17 . . . . . . . . 9 ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · 𝑥))) ≤ 1)
314313adantll 712 . . . . . . . 8 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · 𝑥))) ≤ 1)
31563a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))))
31614adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) ∈ ℝ)
317136adantr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
318 eqcom 2735 . . . . . . . . . . . . . . . . . 18 ((𝑄‘(𝑖 + 1)) = 𝑥𝑥 = (𝑄‘(𝑖 + 1)))
319318biimpri 227 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑄‘(𝑖 + 1)) → (𝑄‘(𝑖 + 1)) = 𝑥)
320319adantl 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) = 𝑥)
321317, 320breqtrd 5178 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) < 𝑥)
322316, 321gtned 11387 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ≠ (𝑄𝑖))
323322neneqd 2942 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → ¬ 𝑥 = (𝑄𝑖))
324323iffalsed 4543 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
325 iftrue 4538 . . . . . . . . . . . . 13 (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = 𝐿)
326325adantl 480 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = 𝐿)
327324, 326eqtrd 2768 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = 𝐿)
32817leidd 11818 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ≤ (𝑄‘(𝑖 + 1)))
32914, 17, 17, 137, 328eliccd 44918 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
330315, 327, 329, 24fvmptd 7017 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) = 𝐿)
331330, 25eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ℂ)
332331adantr 479 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ℂ)
333 eqid 2728 . . . . . . . 8 (abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) = (abs‘(𝐷‘(𝑄‘(𝑖 + 1))))
334 iftrue 4538 . . . . . . . . . . . 12 (𝑥 = (𝑄𝑖) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = 𝑅)
335334adantl 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 = (𝑄𝑖)) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = 𝑅)
33614rexrd 11302 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
33717rexrd 11302 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
338 lbicc2 13481 . . . . . . . . . . . 12 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1))) → (𝑄𝑖) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
339336, 337, 137, 338syl3anc 1368 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
340315, 335, 339, 20fvmptd 7017 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) = 𝑅)
341340, 21eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ ℂ)
342341adantr 479 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝐷‘(𝑄𝑖)) ∈ ℂ)
343 eqid 2728 . . . . . . . 8 (abs‘(𝐷‘(𝑄𝑖))) = (abs‘(𝐷‘(𝑄𝑖)))
344 eqid 2728 . . . . . . . 8 ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥
345 simpr 483 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
346 fourierdlem73.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
347346nnrpd 13054 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ+)
348347adantr 479 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → 𝑀 ∈ ℝ+)
349345, 348rpdivcld 13073 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℝ+)
350349adantlr 713 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℝ+)
351 simpr 483 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → 𝑟 ∈ ℂ)
35217recnd 11280 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
353352ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
354351, 353mulcld 11272 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℂ)
355354coscld 16115 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) ∈ ℂ)
35617adantr 479 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
357182, 356remulcld 11282 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℝ)
358 abscosbd 44689 . . . . . . . . . 10 ((𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℝ → (abs‘(cos‘(𝑟 · (𝑄‘(𝑖 + 1))))) ≤ 1)
359357, 358syl 17 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄‘(𝑖 + 1))))) ≤ 1)
360359adantlr 713 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄‘(𝑖 + 1))))) ≤ 1)
36114recnd 11280 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
362361ad2antrr 724 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑄𝑖) ∈ ℂ)
363351, 362mulcld 11272 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (𝑟 · (𝑄𝑖)) ∈ ℂ)
364363coscld 16115 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℂ) → (cos‘(𝑟 · (𝑄𝑖))) ∈ ℂ)
36514adantr 479 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑄𝑖) ∈ ℝ)
366182, 365remulcld 11282 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (𝑟 · (𝑄𝑖)) ∈ ℝ)
367 abscosbd 44689 . . . . . . . . . 10 ((𝑟 · (𝑄𝑖)) ∈ ℝ → (abs‘(cos‘(𝑟 · (𝑄𝑖)))) ≤ 1)
368366, 367syl 17 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄𝑖)))) ≤ 1)
369368adantlr 713 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) ∧ 𝑟 ∈ ℝ) → (abs‘(cos‘(𝑟 · (𝑄𝑖)))) ≤ 1)
370 fveq2 6902 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → ((ℝ D 𝐷)‘𝑧) = ((ℝ D 𝐷)‘𝑥))
371370fveq2d 6906 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (abs‘((ℝ D 𝐷)‘𝑧)) = (abs‘((ℝ D 𝐷)‘𝑥)))
372371cbvitgv 25726 . . . . . . . . . . . . 13 ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥
373372oveq2i 7437 . . . . . . . . . . . 12 (((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) = (((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥)
374373oveq1i 7436 . . . . . . . . . . 11 ((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) = ((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀))
375374oveq1i 7436 . . . . . . . . . 10 (((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) + 1) = (((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀)) + 1)
376375fveq2i 6905 . . . . . . . . 9 (⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) + 1)) = (⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀)) + 1))
377376oveq1i 7436 . . . . . . . 8 ((⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑧)) d𝑧) / (𝑒 / 𝑀)) + 1)) + 1) = ((⌊‘(((((abs‘(𝐷‘(𝑄‘(𝑖 + 1)))) + (abs‘(𝐷‘(𝑄𝑖)))) + ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) d𝑥) / (𝑒 / 𝑀)) + 1)) + 1)
378173, 304, 305, 310, 314, 332, 333, 342, 343, 344, 350, 355, 360, 364, 369, 377fourierdlem47 45570 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀))
379 simplll 773 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝜑)
380 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑖 ∈ (0..^𝑀))
381 elioore 13394 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (𝑚(,)+∞) → 𝑟 ∈ ℝ)
382381adantl 480 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ ℝ)
383 0red 11255 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 0 ∈ ℝ)
384 nnre 12257 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
385384adantr 479 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑚 ∈ ℝ)
386 nngt0 12281 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 0 < 𝑚)
387386adantr 479 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 0 < 𝑚)
388385rexrd 11302 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑚 ∈ ℝ*)
389 pnfxr 11306 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
390389a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → +∞ ∈ ℝ*)
391 simpr 483 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ (𝑚(,)+∞))
392 ioogtlb 44909 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑚(,)+∞)) → 𝑚 < 𝑟)
393388, 390, 391, 392syl3anc 1368 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑚 < 𝑟)
394383, 385, 382, 387, 393lttrd 11413 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 0 < 𝑟)
395382, 394elrpd 13053 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ ℝ+)
396395adantll 712 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → 𝑟 ∈ ℝ+)
39714adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (𝑄𝑖) ∈ ℝ)
39817adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
39964ffvelcdmda 7099 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐷𝑥) ∈ ℂ)
400399adantlr 713 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐷𝑥) ∈ ℂ)
401 rpcn 13024 . . . . . . . . . . . . . . . . . . 19 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
402401ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
40335recnd 11280 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
404403adantlr 713 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
405402, 404mulcld 11272 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
406405sincld 16114 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
407400, 406mulcld 11272 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
408397, 398, 407itgioo 25765 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
409137adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
41064feqmptd 6972 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐷𝑥)))
411 iftrue 4538 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = 𝐿)
412325, 411eqtr4d 2771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
413412adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
414 iffalse 4541 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))
415414adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))
41645ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) ∈ ℝ*)
41746ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
41835ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ)
41914ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → (𝑄𝑖) ∈ ℝ)
42035adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → 𝑥 ∈ ℝ)
42148adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → (𝑄𝑖) ≤ 𝑥)
422 neqne 2945 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑥 = (𝑄𝑖) → 𝑥 ≠ (𝑄𝑖))
423422adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → 𝑥 ≠ (𝑄𝑖))
424419, 420, 421, 423leneltd 11406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → (𝑄𝑖) < 𝑥)
425424adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄𝑖) < 𝑥)
42635adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ℝ)
42717ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
42851adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ≤ (𝑄‘(𝑖 + 1)))
429318biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑄‘(𝑖 + 1)) = 𝑥𝑥 = (𝑄‘(𝑖 + 1)))
430429necon3bi 2964 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑥 = (𝑄‘(𝑖 + 1)) → (𝑄‘(𝑖 + 1)) ≠ 𝑥)
431430adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) ≠ 𝑥)
432426, 427, 428, 431leneltd 11406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 < (𝑄‘(𝑖 + 1)))
433432adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 < (𝑄‘(𝑖 + 1)))
434416, 417, 418, 425, 433eliood 44912 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
435 fvres 6921 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
436434, 435syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥) = (𝐹𝑥))
437 iffalse 4541 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥 = (𝑄‘(𝑖 + 1)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = (𝐹𝑥))
438437eqcomd 2734 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 = (𝑄‘(𝑖 + 1)) → (𝐹𝑥) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
439438adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → (𝐹𝑥) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))
440415, 436, 4393eqtrrd 2773 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) ∧ ¬ 𝑥 = (𝑄‘(𝑖 + 1))) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
441413, 440pm2.61dan 811 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ∧ ¬ 𝑥 = (𝑄𝑖)) → if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)) = if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))
442441ifeq2da 4564 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥))) = if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))
443442mpteq2dva 5252 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹𝑥)))) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))))
444315, 410, 4433eqtr3d 2776 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐷𝑥)) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))))
445 eqid 2728 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))
446 fourierdlem73.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
447195, 445, 14, 17, 446, 24, 20cncfiooicc 45311 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
448444, 447eqeltrd 2829 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐷𝑥)) ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
449410, 448eqeltrd 2829 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
450449adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → 𝐷 ∈ (((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))–cn→ℂ))
451 eqid 2728 . . . . . . . . . . . . . . 15 (ℝ D 𝐷) = (ℝ D 𝐷)
452129, 1eqeltrd 2829 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (ℝ D 𝐷) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
453452adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → (ℝ D 𝐷) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
454209adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((ℝ D 𝐷)‘𝑥)) ≤ 𝑦)
455 simpr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
456397, 398, 409, 450, 451, 453, 454, 455fourierdlem39 45563 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥))
457408, 456eqtr3d 2770 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ℝ+) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥))
458379, 380, 396, 457syl21anc 836 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥))
459458fveq2d 6906 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)))
460459breq1d 5162 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ((abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ (abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
461460ralbidva 3173 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑚 ∈ ℕ) → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
462461rexbidva 3174 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
463462adantr 479 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘((((𝐷‘(𝑄‘(𝑖 + 1))) · -((cos‘(𝑟 · (𝑄‘(𝑖 + 1)))) / 𝑟)) − ((𝐷‘(𝑄𝑖)) · -((cos‘(𝑟 · (𝑄𝑖))) / 𝑟))) − ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(((ℝ D 𝐷)‘𝑥) · -((cos‘(𝑟 · 𝑥)) / 𝑟)) d𝑥)) < (𝑒 / 𝑀)))
464378, 463mpbird 256 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑒 ∈ ℝ+) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
465464an32s 650 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
46694oveq1d 7441 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) = ((𝐷𝑥) · (sin‘(𝑟 · 𝑥))))
467466itgeq2dv 25731 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
468467eqcomd 2734 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
469468adantr 479 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
47014adantr 479 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (𝑄𝑖) ∈ ℝ)
47117adantr 479 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
472399adantlr 713 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐷𝑥) ∈ ℂ)
473381recnd 11280 . . . . . . . . . . . . . . . 16 (𝑟 ∈ (𝑚(,)+∞) → 𝑟 ∈ ℂ)
474473ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
475403adantlr 713 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
476474, 475mulcld 11272 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
477476sincld 16114 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
478472, 477mulcld 11272 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
479470, 471, 478itgioo 25765 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
48060adantlr 713 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
481480, 477mulcld 11272 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
482470, 471, 481itgioo 25765 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
483469, 479, 4823eqtr3d 2776 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
484483fveq2d 6906 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
485484breq1d 5162 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ (𝑚(,)+∞)) → ((abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
486485ralbidva 3173 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
487486adantlr 713 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
488487rexbidv 3176 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐷𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
489465, 488mpbid 231 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
490489ralrimiva 3143 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
491490ralrimiva 3143 . 2 (𝜑 → ∀𝑒 ∈ ℝ+𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
492 nfv 1909 . . . . . . 7 𝑖(𝜑𝑒 ∈ ℝ+)
493 nfra1 3279 . . . . . . 7 𝑖𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
494492, 493nfan 1894 . . . . . 6 𝑖((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
495 nfv 1909 . . . . . . 7 𝑟(𝜑𝑒 ∈ ℝ+)
496 nfcv 2899 . . . . . . . 8 𝑟(0..^𝑀)
497 nfcv 2899 . . . . . . . . 9 𝑟
498 nfra1 3279 . . . . . . . . 9 𝑟𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
499497, 498nfrexw 3308 . . . . . . . 8 𝑟𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
500496, 499nfralw 3306 . . . . . . 7 𝑟𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
501495, 500nfan 1894 . . . . . 6 𝑟((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
502 nfmpt1 5260 . . . . . 6 𝑖(𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < ))
503 fzofi 13979 . . . . . . 7 (0..^𝑀) ∈ Fin
504503a1i 11 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (0..^𝑀) ∈ Fin)
505 simpr 483 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
506 eqid 2728 . . . . . 6 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)} = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}
507 eqid 2728 . . . . . 6 (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < )) = (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < ))
508 eqid 2728 . . . . . 6 sup(ran (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < )), ℝ, < ) = sup(ran (𝑖 ∈ (0..^𝑀) ↦ inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)}, ℝ, < )), ℝ, < )
509494, 501, 502, 504, 505, 506, 507, 508fourierdlem31 45555 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
510 simpr 483 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
511 nfv 1909 . . . . . . . 8 𝑛(𝜑𝑒 ∈ ℝ+)
512 nfre1 3280 . . . . . . . 8 𝑛𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
513511, 512nfan 1894 . . . . . . 7 𝑛((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
514 nfv 1909 . . . . . . . . . . 11 𝑟 𝑛 ∈ ℕ
515 nfra1 3279 . . . . . . . . . . 11 𝑟𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)
516495, 514, 515nf3an 1896 . . . . . . . . . 10 𝑟((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
517 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝜑)
518 elioore 13394 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ (𝑛(,)+∞) → 𝑟 ∈ ℝ)
519518adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℝ)
520 0red 11255 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 0 ∈ ℝ)
521 nnre 12257 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
522521adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑛 ∈ ℝ)
523 nngt0 12281 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 0 < 𝑛)
524523adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 0 < 𝑛)
525522rexrd 11302 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑛 ∈ ℝ*)
526389a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → +∞ ∈ ℝ*)
527 simpr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ (𝑛(,)+∞))
528 ioogtlb 44909 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑛(,)+∞)) → 𝑛 < 𝑟)
529525, 526, 527, 528syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑛 < 𝑟)
530520, 522, 519, 524, 529lttrd 11413 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 0 < 𝑟)
531519, 530elrpd 13053 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℝ+)
532531adantll 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℝ+)
5337adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝐴 ∈ ℝ)
5348adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝐵 ∈ ℝ)
53527ffvelcdmda 7099 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
536535adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
537401ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑟 ∈ ℂ)
5389sselda 3982 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
539538recnd 11280 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
540539adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
541537, 540mulcld 11272 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑟 · 𝑥) ∈ ℂ)
542541sincld 16114 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
543536, 542mulcld 11272 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
544533, 534, 543itgioo 25765 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫(𝐴[,]𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
545 fourierdlem73.q0 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄‘0) = 𝐴)
546545eqcomd 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 = (𝑄‘0))
547 fourierdlem73.qm . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑄𝑀) = 𝐵)
548547eqcomd 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 = (𝑄𝑀))
549546, 548oveq12d 7444 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
550549adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
551550itgeq1d 45374 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → ∫(𝐴[,]𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄‘0)[,](𝑄𝑀))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
552 0zd 12608 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 0 ∈ ℤ)
553 nnuz 12903 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
554 0p1e1 12372 . . . . . . . . . . . . . . . . . . . . . . 23 (0 + 1) = 1
555554fveq2i 6905 . . . . . . . . . . . . . . . . . . . . . 22 (ℤ‘(0 + 1)) = (ℤ‘1)
556553, 555eqtr4i 2759 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘(0 + 1))
557346, 556eleqtrdi 2839 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ (ℤ‘(0 + 1)))
558557adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝑀 ∈ (ℤ‘(0 + 1)))
55910adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ℝ+) → 𝑄:(0...𝑀)⟶ℝ)
560136adantlr 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
561 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
562549eqcomd 2734 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) = (𝐴[,]𝐵))
563562adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → ((𝑄‘0)[,](𝑄𝑀)) = (𝐴[,]𝐵))
564561, 563eleqtrd 2831 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ (𝐴[,]𝐵))
565564adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ (𝐴[,]𝐵))
566565, 543syldan 589 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
56714adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
56817adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
569106, 103sstrd 3992 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
570113, 569feqresmpt 6973 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)))
571570, 446eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
572571adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
573 sincn 26401 . . . . . . . . . . . . . . . . . . . . . . . 24 sin ∈ (ℂ–cn→ℂ)
574573a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → sin ∈ (ℂ–cn→ℂ))
575180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑟 ∈ ℝ+) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
576401adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
577184a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑟 ∈ ℝ+) → ℂ ⊆ ℂ)
578575, 576, 577constcncfg 45289 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
579189adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑟 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
580578, 579mulcncf 25394 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ ℝ+) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
581580adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
582574, 581cncfmpt1f 24854 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
583572, 582mulcncf 25394 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
584 eqid 2728 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥))
585 eqid 2728 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥)))
586 eqid 2728 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))))
58727ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
58836ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐴 ∈ ℝ*)
58938ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐵 ∈ ℝ*)
5906ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
591 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
592588, 589, 590, 591, 72fourierdlem1 45525 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
593587, 592ffvelcdmd 7100 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
594593adantllr 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
595576ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
596307adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
597595, 596mulcld 11272 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
598597sincld 16114 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
599570oveq1d 7441 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
60024, 599eleqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
601600adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
602 rpre 13022 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
603602adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ+𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℝ)
60487adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑟 ∈ ℝ+𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℝ)
605603, 604remulcld 11282 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟 ∈ ℝ+𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℝ)
606605adantll 712 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℝ)
607606ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) ≠ (𝑟 · (𝑄‘(𝑖 + 1))))) → (𝑟 · 𝑥) ∈ ℝ)
608 recn 11236 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
609608sincld 16114 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℂ)
610609adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ℝ) → (sin‘𝑦) ∈ ℂ)
611 eqid 2728 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟)
612 eqid 2728 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥)
613 eqid 2728 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥))
614180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
615576adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ℂ)
616568recnd 11280 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
617611, 614, 615, 616constlimc 45041 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) lim (𝑄‘(𝑖 + 1))))
618614, 612, 616idlimc 45043 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) lim (𝑄‘(𝑖 + 1))))
619611, 612, 613, 595, 596, 617, 618mullimc 45033 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) lim (𝑄‘(𝑖 + 1))))
620 eqid 2728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℂ ↦ (sin‘𝑦)) = (𝑦 ∈ ℂ ↦ (sin‘𝑦))
621 sinf 16108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 sin:ℂ⟶ℂ
622621a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⊤ → sin:ℂ⟶ℂ)
623622feqmptd 6972 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⊤ → sin = (𝑦 ∈ ℂ ↦ (sin‘𝑦)))
624623, 573eqeltrrdi 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → (𝑦 ∈ ℂ ↦ (sin‘𝑦)) ∈ (ℂ–cn→ℂ))
6254a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⊤ → ℝ ⊆ ℂ)
626 resincl 16124 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℝ)
627626adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⊤ ∧ 𝑦 ∈ ℝ) → (sin‘𝑦) ∈ ℝ)
628620, 624, 625, 625, 627cncfmptssg 45288 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⊤ → (𝑦 ∈ ℝ ↦ (sin‘𝑦)) ∈ (ℝ–cn→ℝ))
629628mptru 1540 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ ↦ (sin‘𝑦)) ∈ (ℝ–cn→ℝ)
630629a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑦 ∈ ℝ ↦ (sin‘𝑦)) ∈ (ℝ–cn→ℝ))
631602ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ℝ)
632631, 568remulcld 11282 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄‘(𝑖 + 1))) ∈ ℝ)
633 fveq2 6902 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑟 · (𝑄‘(𝑖 + 1))) → (sin‘𝑦) = (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))))
634630, 632, 633cnmptlimc 25839 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))) ∈ ((𝑦 ∈ ℝ ↦ (sin‘𝑦)) lim (𝑟 · (𝑄‘(𝑖 + 1)))))
635 fveq2 6902 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (𝑟 · 𝑥) → (sin‘𝑦) = (sin‘(𝑟 · 𝑥)))
636 fveq2 6902 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 · 𝑥) = (𝑟 · (𝑄‘(𝑖 + 1))) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))))
637636ad2antll 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) = (𝑟 · (𝑄‘(𝑖 + 1))))) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))))
638607, 610, 619, 634, 635, 637limcco 25842 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄‘(𝑖 + 1)))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) lim (𝑄‘(𝑖 + 1))))
639584, 585, 586, 594, 598, 601, 638mullimc 45033 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐿 · (sin‘(𝑟 · (𝑄‘(𝑖 + 1))))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) lim (𝑄‘(𝑖 + 1))))
640570oveq1d 7441 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
64120, 640eleqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
642641adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
643606ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) ≠ (𝑟 · (𝑄𝑖)))) → (𝑟 · 𝑥) ∈ ℝ)
644567recnd 11280 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
645611, 614, 615, 644constlimc 45041 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑟) lim (𝑄𝑖)))
646614, 612, 644idlimc 45043 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ 𝑥) lim (𝑄𝑖)))
647611, 612, 613, 595, 596, 645, 646mullimc 45033 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄𝑖)) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑟 · 𝑥)) lim (𝑄𝑖)))
648631, 567remulcld 11282 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑟 · (𝑄𝑖)) ∈ ℝ)
649 fveq2 6902 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (𝑟 · (𝑄𝑖)) → (sin‘𝑦) = (sin‘(𝑟 · (𝑄𝑖))))
650630, 648, 649cnmptlimc 25839 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄𝑖))) ∈ ((𝑦 ∈ ℝ ↦ (sin‘𝑦)) lim (𝑟 · (𝑄𝑖))))
651 fveq2 6902 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 · 𝑥) = (𝑟 · (𝑄𝑖)) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄𝑖))))
652651ad2antll 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ (𝑟 · 𝑥) = (𝑟 · (𝑄𝑖)))) → (sin‘(𝑟 · 𝑥)) = (sin‘(𝑟 · (𝑄𝑖))))
653643, 610, 647, 650, 635, 652limcco 25842 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (sin‘(𝑟 · (𝑄𝑖))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (sin‘(𝑟 · 𝑥))) lim (𝑄𝑖)))
654584, 585, 586, 594, 598, 642, 653mullimc 45033 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑅 · (sin‘(𝑟 · (𝑄𝑖)))) ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) lim (𝑄𝑖)))
655567, 568, 583, 639, 654iblcncfioo 45395 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ 𝐿1)
656 simpll 765 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝜑𝑟 ∈ ℝ+))
65759adantllr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
658656, 657, 543syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
659567, 568, 655, 658ibliooicc 45388 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ 𝐿1)
660552, 558, 559, 560, 566, 659itgspltprt 45396 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ℝ+) → ∫((𝑄‘0)[,](𝑄𝑀))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
661544, 551, 6603eqtrd 2772 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ ℝ+) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
662517, 532, 661syl2anc 582 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
663503a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ∈ Fin)
66460adantllr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
665518recnd 11280 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 ∈ (𝑛(,)+∞) → 𝑟 ∈ ℂ)
666665adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑟 ∈ (𝑛(,)+∞)) → 𝑟 ∈ ℂ)
667666ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑟 ∈ ℂ)
668403adantllr 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ ℂ)
669667, 668mulcld 11272 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝑟 · 𝑥) ∈ ℂ)
670669sincld 16114 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (sin‘(𝑟 · 𝑥)) ∈ ℂ)
671664, 670mulcld 11272 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
672671adantl3r 748 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → ((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) ∈ ℂ)
673 simplll 773 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝜑)
674532adantr 479 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑟 ∈ ℝ+)
675 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
676673, 674, 675, 659syl21anc 836 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ ((𝐹𝑥) · (sin‘(𝑟 · 𝑥)))) ∈ 𝐿1)
677672, 676itgcl 25733 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
678663, 677fsumcl 15719 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
679662, 678eqeltrd 2829 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
680679adantllr 717 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
6816803adantl3 1165 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
682681abscld 15423 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
683677abscld 15423 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
684663, 683fsumrecl 15720 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
685684adantllr 717 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
6866853adantl3 1165 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
687 rpre 13022 . . . . . . . . . . . . . 14 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
688687ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑒 ∈ ℝ)
6896883ad2antl1 1182 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → 𝑒 ∈ ℝ)
690662fveq2d 6906 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
691663, 677fsumabs 15787 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
692690, 691eqbrtrd 5174 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
693692adantllr 717 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
6946933adantl3 1165 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ≤ Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
695503a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ∈ Fin)
696 0zd 12608 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ∈ ℤ)
697346nnzd 12623 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℤ)
698346nngt0d 12299 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 𝑀)
699 fzolb 13678 . . . . . . . . . . . . . . . . . 18 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
700696, 697, 698, 699syl3anbrc 1340 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ (0..^𝑀))
701 ne0i 4338 . . . . . . . . . . . . . . . . 17 (0 ∈ (0..^𝑀) → (0..^𝑀) ≠ ∅)
702700, 701syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (0..^𝑀) ≠ ∅)
703702ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ≠ ∅)
7047033ad2antl1 1182 . . . . . . . . . . . . . 14 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (0..^𝑀) ≠ ∅)
705 simp1l 1194 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → 𝜑)
706705ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝜑)
707 simpll2 1210 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑛 ∈ ℕ)
708706, 707jca 510 . . . . . . . . . . . . . . . 16 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (𝜑𝑛 ∈ ℕ))
709 simplr 767 . . . . . . . . . . . . . . . 16 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑟 ∈ (𝑛(,)+∞))
710 simpr 483 . . . . . . . . . . . . . . . 16 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0..^𝑀))
711 eleq1w 2812 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀)))
712711anbi2d 628 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) ↔ (((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀))))
713 fveq2 6902 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
714 oveq1 7433 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
715714fveq2d 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
716713, 715oveq12d 7444 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑗 → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) = ((𝑄𝑗)[,](𝑄‘(𝑗 + 1))))
717716itgeq1d 45374 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
718717eleq1d 2814 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ ↔ ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ))
719712, 718imbi12d 343 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → (((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ) ↔ ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)))
720719, 677chvarvv 1994 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
721708, 709, 710, 720syl21anc 836 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 ∈ ℂ)
722721abscld 15423 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) ∈ ℝ)
723349rpred 13056 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℝ)
7247233ad2ant1 1130 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (𝑒 / 𝑀) ∈ ℝ)
725724ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑒 / 𝑀) ∈ ℝ)
726 simpll3 1211 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
727 rspa 3243 . . . . . . . . . . . . . . . . . 18 ((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) → ∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
728727adantr 479 . . . . . . . . . . . . . . . . 17 (((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
729717fveq2d 6906 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
730729breq1d 5162 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → ((abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)))
731730cbvralvw 3232 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ↔ ∀𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
732728, 731sylib 217 . . . . . . . . . . . . . . . 16 (((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → ∀𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
733 rspa 3243 . . . . . . . . . . . . . . . 16 ((∀𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
734732, 733sylancom 586 . . . . . . . . . . . . . . 15 (((∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
735726, 709, 710, 734syl21anc 836 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) ∧ 𝑗 ∈ (0..^𝑀)) → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀))
736695, 704, 722, 725, 735fsumlt 15786 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀))
737 fveq2 6902 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
738 oveq1 7433 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
739738fveq2d 6906 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
740737, 739oveq12d 7444 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → ((𝑄𝑗)[,](𝑄‘(𝑗 + 1))) = ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
741740itgeq1d 45374 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑖 → ∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
742741fveq2d 6906 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = (abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
743742cbvsumv 15682 . . . . . . . . . . . . . 14 Σ𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥)
744743a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(abs‘∫((𝑄𝑗)[,](𝑄‘(𝑗 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) = Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥))
745349rpcnd 13058 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 𝑀) ∈ ℂ)
746 fsumconst 15776 . . . . . . . . . . . . . . . . 17 (((0..^𝑀) ∈ Fin ∧ (𝑒 / 𝑀) ∈ ℂ) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)))
747503, 745, 746sylancr 585 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)))
748346nnnn0d 12570 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ0)
749 hashfzo0 14429 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → (♯‘(0..^𝑀)) = 𝑀)
750748, 749syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘(0..^𝑀)) = 𝑀)
751750oveq1d 7441 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)) = (𝑀 · (𝑒 / 𝑀)))
752751adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → ((♯‘(0..^𝑀)) · (𝑒 / 𝑀)) = (𝑀 · (𝑒 / 𝑀)))
753345rpcnd 13058 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℂ)
754348rpcnd 13058 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → 𝑀 ∈ ℂ)
755348rpne0d 13061 . . . . . . . . . . . . . . . . 17 ((𝜑𝑒 ∈ ℝ+) → 𝑀 ≠ 0)
756753, 754, 755divcan2d 12030 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ ℝ+) → (𝑀 · (𝑒 / 𝑀)) = 𝑒)
757747, 752, 7563eqtrd 2772 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ ℝ+) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = 𝑒)
758757adantr 479 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = 𝑒)
7597583ad2antl1 1182 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑗 ∈ (0..^𝑀)(𝑒 / 𝑀) = 𝑒)
760736, 744, 7593brtr3d 5183 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → Σ𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
761682, 686, 689, 694, 760lelttrd 11410 . . . . . . . . . . 11 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) ∧ 𝑟 ∈ (𝑛(,)+∞)) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
762761ex 411 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (𝑟 ∈ (𝑛(,)+∞) → (abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
763516, 762ralrimi 3252 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑛 ∈ ℕ ∧ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
7647633exp 1116 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝑛 ∈ ℕ → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)))
765764adantr 479 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (𝑛 ∈ ℕ → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)))
766513, 765reximdai 3256 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → (∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
767510, 766mpd 15 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ (0..^𝑀)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
768509, 767syldan 589 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ ∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀)) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
769768ex 411 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∀𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
770769ralimdva 3164 . 2 (𝜑 → (∀𝑒 ∈ ℝ+𝑖 ∈ (0..^𝑀)∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < (𝑒 / 𝑀) → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒))
771491, 770mpd 15 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)(abs‘∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑟 · 𝑥))) d𝑥) < 𝑒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wtru 1534  wcel 2098  wne 2937  wral 3058  wrex 3067  {crab 3430  wss 3949  c0 4326  ifcif 4532   class class class wbr 5152  cmpt 5235  dom cdm 5682  ran crn 5683  cres 5684   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  Fincfn 8970  supcsup 9471  infcinf 9472  cc 11144  cr 11145  0cc0 11146  1c1 11147   + caddc 11149   · cmul 11151  +∞cpnf 11283  *cxr 11285   < clt 11286  cle 11287  cmin 11482  -cneg 11483   / cdiv 11909  cn 12250  0cn0 12510  cz 12596  cuz 12860  +crp 13014  (,)cioo 13364  [,]cicc 13367  ...cfz 13524  ..^cfzo 13667  cfl 13795  chash 14329  abscabs 15221  Σcsu 15672  sincsin 16047  cosccos 16048  TopOpenctopn 17410  topGenctg 17426  fldccnfld 21286  Topctop 22815  intcnt 22941  cnccncf 24816  volcvol 25412  𝐿1cibl 25566  citg 25567   lim climc 25811   D cdv 25812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cc 10466  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-symdif 4245  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-disj 5118  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-ofr 7692  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-omul 8498  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-acn 9973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-shft 15054  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-limsup 15455  df-clim 15472  df-rlim 15473  df-sum 15673  df-ef 16051  df-sin 16053  df-cos 16054  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-pt 17433  df-prds 17436  df-xrs 17491  df-qtop 17496  df-imas 17497  df-xps 17499  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cld 22943  df-ntr 22944  df-cls 22945  df-nei 23022  df-lp 23060  df-perf 23061  df-cn 23151  df-cnp 23152  df-haus 23239  df-cmp 23311  df-tx 23486  df-hmeo 23679  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24818  df-ovol 25413  df-vol 25414  df-mbf 25568  df-itg1 25569  df-itg2 25570  df-ibl 25571  df-itg 25572  df-0p 25619  df-limc 25815  df-dv 25816
This theorem is referenced by:  fourierdlem103  45626  fourierdlem104  45627
  Copyright terms: Public domain W3C validator