![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > allbutfifvre | Structured version Visualization version GIF version |
Description: Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
allbutfifvre.1 | ⊢ Ⅎ𝑚𝜑 |
allbutfifvre.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
allbutfifvre.3 | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
allbutfifvre.4 | ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
allbutfifvre.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
allbutfifvre | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | allbutfifvre.5 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | allbutfifvre.4 | . . . 4 ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
3 | 1, 2 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
4 | allbutfifvre.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | eqid 2727 | . . . 4 ⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
6 | 4, 5 | allbutfi 44688 | . . 3 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚)) |
7 | 3, 6 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚)) |
8 | allbutfifvre.1 | . . . . 5 ⊢ Ⅎ𝑚𝜑 | |
9 | nfv 1910 | . . . . 5 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
10 | 8, 9 | nfan 1895 | . . . 4 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
11 | simpll 766 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) | |
12 | 4 | uztrn2 12857 | . . . . . . . 8 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑗 ∈ 𝑍) |
13 | 12 | ssd 44359 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
14 | 13 | sselda 3978 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
15 | 14 | adantll 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
16 | allbutfifvre.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
17 | 16 | ffvelcdmda 7088 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑚)) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
18 | 17 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑋 ∈ dom (𝐹‘𝑚) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
19 | 11, 15, 18 | syl2anc 583 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝑋 ∈ dom (𝐹‘𝑚) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
20 | 10, 19 | ralimdaa 3252 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚) → ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
21 | 20 | reximdva 3163 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚) → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
22 | 7, 21 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 ∪ ciun 4991 ∩ ciin 4992 dom cdm 5672 ⟶wf 6538 ‘cfv 6542 ℝcr 11123 ℤ≥cuz 12838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-pre-lttri 11198 ax-pre-lttrn 11199 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-neg 11463 df-z 12575 df-uz 12839 |
This theorem is referenced by: fnlimabslt 44980 |
Copyright terms: Public domain | W3C validator |