Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfifvre Structured version   Visualization version   GIF version

Theorem allbutfifvre 44976
Description: Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
allbutfifvre.1 𝑚𝜑
allbutfifvre.2 𝑍 = (ℤ𝑀)
allbutfifvre.3 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
allbutfifvre.4 𝐷 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
allbutfifvre.5 (𝜑𝑋𝐷)
Assertion
Ref Expression
allbutfifvre (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
Distinct variable groups:   𝑚,𝑋,𝑛   𝑚,𝑍   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑚,𝑛)   𝐹(𝑚,𝑛)   𝑀(𝑚,𝑛)   𝑍(𝑛)

Proof of Theorem allbutfifvre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 allbutfifvre.5 . . . 4 (𝜑𝑋𝐷)
2 allbutfifvre.4 . . . 4 𝐷 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
31, 2eleqtrdi 2838 . . 3 (𝜑𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4 allbutfifvre.2 . . . 4 𝑍 = (ℤ𝑀)
5 eqid 2727 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
64, 5allbutfi 44688 . . 3 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚))
73, 6sylib 217 . 2 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚))
8 allbutfifvre.1 . . . . 5 𝑚𝜑
9 nfv 1910 . . . . 5 𝑚 𝑛𝑍
108, 9nfan 1895 . . . 4 𝑚(𝜑𝑛𝑍)
11 simpll 766 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
124uztrn2 12857 . . . . . . . 8 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
1312ssd 44359 . . . . . . 7 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
1413sselda 3978 . . . . . 6 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1514adantll 713 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
16 allbutfifvre.3 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1716ffvelcdmda 7088 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑋 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
1817ex 412 . . . . 5 ((𝜑𝑚𝑍) → (𝑋 ∈ dom (𝐹𝑚) → ((𝐹𝑚)‘𝑋) ∈ ℝ))
1911, 15, 18syl2anc 583 . . . 4 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑋 ∈ dom (𝐹𝑚) → ((𝐹𝑚)‘𝑋) ∈ ℝ))
2010, 19ralimdaa 3252 . . 3 ((𝜑𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚) → ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ))
2120reximdva 3163 . 2 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ))
227, 21mpd 15 1 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wnf 1778  wcel 2099  wral 3056  wrex 3065   ciun 4991   ciin 4992  dom cdm 5672  wf 6538  cfv 6542  cr 11123  cuz 12838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-pre-lttri 11198  ax-pre-lttrn 11199
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-neg 11463  df-z 12575  df-uz 12839
This theorem is referenced by:  fnlimabslt  44980
  Copyright terms: Public domain W3C validator