| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > allbutfifvre | Structured version Visualization version GIF version | ||
| Description: Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| allbutfifvre.1 | ⊢ Ⅎ𝑚𝜑 |
| allbutfifvre.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| allbutfifvre.3 | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
| allbutfifvre.4 | ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| allbutfifvre.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| allbutfifvre | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | allbutfifvre.5 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 2 | allbutfifvre.4 | . . . 4 ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
| 3 | 1, 2 | eleqtrdi 2844 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
| 4 | allbutfifvre.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | eqid 2735 | . . . 4 ⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
| 6 | 4, 5 | allbutfi 45368 | . . 3 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚)) |
| 7 | 3, 6 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚)) |
| 8 | allbutfifvre.1 | . . . . 5 ⊢ Ⅎ𝑚𝜑 | |
| 9 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
| 10 | 8, 9 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
| 11 | simpll 766 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) | |
| 12 | 4 | uztrn2 12869 | . . . . . . . 8 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑗 ∈ 𝑍) |
| 13 | 12 | ssd 45052 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
| 14 | 13 | sselda 3958 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
| 15 | 14 | adantll 714 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
| 16 | allbutfifvre.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
| 17 | 16 | ffvelcdmda 7073 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑚)) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
| 18 | 17 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑋 ∈ dom (𝐹‘𝑚) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
| 19 | 11, 15, 18 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝑋 ∈ dom (𝐹‘𝑚) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
| 20 | 10, 19 | ralimdaa 3243 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚) → ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
| 21 | 20 | reximdva 3153 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚) → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
| 22 | 7, 21 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ∪ ciun 4967 ∩ ciin 4968 dom cdm 5654 ⟶wf 6526 ‘cfv 6530 ℝcr 11126 ℤ≥cuz 12850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-neg 11467 df-z 12587 df-uz 12851 |
| This theorem is referenced by: fnlimabslt 45656 |
| Copyright terms: Public domain | W3C validator |