![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > allbutfifvre | Structured version Visualization version GIF version |
Description: Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
allbutfifvre.1 | ⊢ Ⅎ𝑚𝜑 |
allbutfifvre.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
allbutfifvre.3 | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
allbutfifvre.4 | ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
allbutfifvre.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
allbutfifvre | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | allbutfifvre.5 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | allbutfifvre.4 | . . . 4 ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
3 | 1, 2 | eleqtrdi 2848 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
4 | allbutfifvre.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | eqid 2734 | . . . 4 ⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
6 | 4, 5 | allbutfi 45342 | . . 3 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚)) |
7 | 3, 6 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚)) |
8 | allbutfifvre.1 | . . . . 5 ⊢ Ⅎ𝑚𝜑 | |
9 | nfv 1911 | . . . . 5 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
10 | 8, 9 | nfan 1896 | . . . 4 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
11 | simpll 767 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) | |
12 | 4 | uztrn2 12894 | . . . . . . . 8 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑗 ∈ 𝑍) |
13 | 12 | ssd 45019 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
14 | 13 | sselda 3994 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
15 | 14 | adantll 714 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
16 | allbutfifvre.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
17 | 16 | ffvelcdmda 7103 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑚)) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
18 | 17 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑋 ∈ dom (𝐹‘𝑚) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
19 | 11, 15, 18 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝑋 ∈ dom (𝐹‘𝑚) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
20 | 10, 19 | ralimdaa 3257 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚) → ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
21 | 20 | reximdva 3165 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚) → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
22 | 7, 21 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 Ⅎwnf 1779 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 ∪ ciun 4995 ∩ ciin 4996 dom cdm 5688 ⟶wf 6558 ‘cfv 6562 ℝcr 11151 ℤ≥cuz 12875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-neg 11492 df-z 12611 df-uz 12876 |
This theorem is referenced by: fnlimabslt 45634 |
Copyright terms: Public domain | W3C validator |