| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > allbutfifvre | Structured version Visualization version GIF version | ||
| Description: Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| allbutfifvre.1 | ⊢ Ⅎ𝑚𝜑 |
| allbutfifvre.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| allbutfifvre.3 | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
| allbutfifvre.4 | ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| allbutfifvre.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| allbutfifvre | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | allbutfifvre.5 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 2 | allbutfifvre.4 | . . . 4 ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
| 3 | 1, 2 | eleqtrdi 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
| 4 | allbutfifvre.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | eqid 2731 | . . . 4 ⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
| 6 | 4, 5 | allbutfi 45431 | . . 3 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚)) |
| 7 | 3, 6 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚)) |
| 8 | allbutfifvre.1 | . . . . 5 ⊢ Ⅎ𝑚𝜑 | |
| 9 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
| 10 | 8, 9 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
| 11 | simpll 766 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) | |
| 12 | 4 | uztrn2 12746 | . . . . . . . 8 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑗 ∈ 𝑍) |
| 13 | 12 | ssd 45117 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
| 14 | 13 | sselda 3929 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
| 15 | 14 | adantll 714 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
| 16 | allbutfifvre.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
| 17 | 16 | ffvelcdmda 7012 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑚)) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
| 18 | 17 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑋 ∈ dom (𝐹‘𝑚) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
| 19 | 11, 15, 18 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝑋 ∈ dom (𝐹‘𝑚) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
| 20 | 10, 19 | ralimdaa 3233 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚) → ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
| 21 | 20 | reximdva 3145 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚) → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
| 22 | 7, 21 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∪ ciun 4936 ∩ ciin 4937 dom cdm 5611 ⟶wf 6472 ‘cfv 6476 ℝcr 11000 ℤ≥cuz 12727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-neg 11342 df-z 12464 df-uz 12728 |
| This theorem is referenced by: fnlimabslt 45717 |
| Copyright terms: Public domain | W3C validator |