![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > allbutfifvre | Structured version Visualization version GIF version |
Description: Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
allbutfifvre.1 | ⊢ Ⅎ𝑚𝜑 |
allbutfifvre.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
allbutfifvre.3 | ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
allbutfifvre.4 | ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
allbutfifvre.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
allbutfifvre | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | allbutfifvre.5 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
2 | allbutfifvre.4 | . . . 4 ⊢ 𝐷 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
3 | 1, 2 | eleqtrdi 2848 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
4 | allbutfifvre.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | eqid 2734 | . . . 4 ⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) | |
6 | 4, 5 | allbutfi 45294 | . . 3 ⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚)) |
7 | 3, 6 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚)) |
8 | allbutfifvre.1 | . . . . 5 ⊢ Ⅎ𝑚𝜑 | |
9 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑚 𝑛 ∈ 𝑍 | |
10 | 8, 9 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
11 | simpll 766 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) | |
12 | 4 | uztrn2 12927 | . . . . . . . 8 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑗 ∈ 𝑍) |
13 | 12 | ssd 44968 | . . . . . . 7 ⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
14 | 13 | sselda 4008 | . . . . . 6 ⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
15 | 14 | adantll 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
16 | allbutfifvre.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | |
17 | 16 | ffvelcdmda 7124 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑚)) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
18 | 17 | ex 412 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑋 ∈ dom (𝐹‘𝑚) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
19 | 11, 15, 18 | syl2anc 583 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝑋 ∈ dom (𝐹‘𝑚) → ((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
20 | 10, 19 | ralimdaa 3262 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚) → ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
21 | 20 | reximdva 3170 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ dom (𝐹‘𝑚) → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ)) |
22 | 7, 21 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2103 ∀wral 3063 ∃wrex 3072 ∪ ciun 5025 ∩ ciin 5026 dom cdm 5706 ⟶wf 6575 ‘cfv 6579 ℝcr 11188 ℤ≥cuz 12908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5327 ax-nul 5334 ax-pow 5393 ax-pr 5457 ax-un 7775 ax-cnex 11245 ax-resscn 11246 ax-pre-lttri 11263 ax-pre-lttrn 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rab 3440 df-v 3486 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4354 df-if 4555 df-pw 4630 df-sn 4655 df-pr 4657 df-op 4661 df-uni 4938 df-iun 5027 df-iin 5028 df-br 5177 df-opab 5239 df-mpt 5260 df-id 5604 df-xp 5712 df-rel 5713 df-cnv 5714 df-co 5715 df-dm 5716 df-rn 5717 df-res 5718 df-ima 5719 df-iota 6531 df-fun 6581 df-fn 6582 df-f 6583 df-f1 6584 df-fo 6585 df-f1o 6586 df-fv 6587 df-ov 7457 df-er 8768 df-en 9009 df-dom 9010 df-sdom 9011 df-pnf 11331 df-mnf 11332 df-xr 11333 df-ltxr 11334 df-le 11335 df-neg 11528 df-z 12645 df-uz 12909 |
This theorem is referenced by: fnlimabslt 45586 |
Copyright terms: Public domain | W3C validator |