Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfifvre Structured version   Visualization version   GIF version

Theorem allbutfifvre 45656
Description: Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
allbutfifvre.1 𝑚𝜑
allbutfifvre.2 𝑍 = (ℤ𝑀)
allbutfifvre.3 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
allbutfifvre.4 𝐷 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
allbutfifvre.5 (𝜑𝑋𝐷)
Assertion
Ref Expression
allbutfifvre (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
Distinct variable groups:   𝑚,𝑋,𝑛   𝑚,𝑍   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑚,𝑛)   𝐹(𝑚,𝑛)   𝑀(𝑚,𝑛)   𝑍(𝑛)

Proof of Theorem allbutfifvre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 allbutfifvre.5 . . . 4 (𝜑𝑋𝐷)
2 allbutfifvre.4 . . . 4 𝐷 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
31, 2eleqtrdi 2838 . . 3 (𝜑𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4 allbutfifvre.2 . . . 4 𝑍 = (ℤ𝑀)
5 eqid 2729 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
64, 5allbutfi 45372 . . 3 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚))
73, 6sylib 218 . 2 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚))
8 allbutfifvre.1 . . . . 5 𝑚𝜑
9 nfv 1914 . . . . 5 𝑚 𝑛𝑍
108, 9nfan 1899 . . . 4 𝑚(𝜑𝑛𝑍)
11 simpll 766 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
124uztrn2 12754 . . . . . . . 8 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
1312ssd 45058 . . . . . . 7 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
1413sselda 3935 . . . . . 6 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1514adantll 714 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
16 allbutfifvre.3 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1716ffvelcdmda 7018 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑋 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
1817ex 412 . . . . 5 ((𝜑𝑚𝑍) → (𝑋 ∈ dom (𝐹𝑚) → ((𝐹𝑚)‘𝑋) ∈ ℝ))
1911, 15, 18syl2anc 584 . . . 4 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑋 ∈ dom (𝐹𝑚) → ((𝐹𝑚)‘𝑋) ∈ ℝ))
2010, 19ralimdaa 3230 . . 3 ((𝜑𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚) → ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ))
2120reximdva 3142 . 2 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ))
227, 21mpd 15 1 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053   ciun 4941   ciin 4942  dom cdm 5619  wf 6478  cfv 6482  cr 11008  cuz 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-neg 11350  df-z 12472  df-uz 12736
This theorem is referenced by:  fnlimabslt  45660
  Copyright terms: Public domain W3C validator