Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfifvre Structured version   Visualization version   GIF version

Theorem allbutfifvre 43223
Description: Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
allbutfifvre.1 𝑚𝜑
allbutfifvre.2 𝑍 = (ℤ𝑀)
allbutfifvre.3 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
allbutfifvre.4 𝐷 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
allbutfifvre.5 (𝜑𝑋𝐷)
Assertion
Ref Expression
allbutfifvre (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
Distinct variable groups:   𝑚,𝑋,𝑛   𝑚,𝑍   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑚,𝑛)   𝐹(𝑚,𝑛)   𝑀(𝑚,𝑛)   𝑍(𝑛)

Proof of Theorem allbutfifvre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 allbutfifvre.5 . . . 4 (𝜑𝑋𝐷)
2 allbutfifvre.4 . . . 4 𝐷 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
31, 2eleqtrdi 2850 . . 3 (𝜑𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4 allbutfifvre.2 . . . 4 𝑍 = (ℤ𝑀)
5 eqid 2739 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
64, 5allbutfi 42940 . . 3 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚))
73, 6sylib 217 . 2 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚))
8 allbutfifvre.1 . . . . 5 𝑚𝜑
9 nfv 1918 . . . . 5 𝑚 𝑛𝑍
108, 9nfan 1903 . . . 4 𝑚(𝜑𝑛𝑍)
11 simpll 764 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
124uztrn2 12610 . . . . . . . 8 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
1312ssd 42637 . . . . . . 7 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
1413sselda 3922 . . . . . 6 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1514adantll 711 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
16 allbutfifvre.3 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1716ffvelrnda 6970 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑋 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
1817ex 413 . . . . 5 ((𝜑𝑚𝑍) → (𝑋 ∈ dom (𝐹𝑚) → ((𝐹𝑚)‘𝑋) ∈ ℝ))
1911, 15, 18syl2anc 584 . . . 4 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑋 ∈ dom (𝐹𝑚) → ((𝐹𝑚)‘𝑋) ∈ ℝ))
2010, 19ralimdaa 3143 . . 3 ((𝜑𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚) → ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ))
2120reximdva 3204 . 2 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ))
227, 21mpd 15 1 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2107  wral 3065  wrex 3066   ciun 4925   ciin 4926  dom cdm 5590  wf 6433  cfv 6437  cr 10879  cuz 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-pre-lttri 10954  ax-pre-lttrn 10955
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-ov 7287  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-neg 11217  df-z 12329  df-uz 12592
This theorem is referenced by:  fnlimabslt  43227
  Copyright terms: Public domain W3C validator