Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimabslt Structured version   Visualization version   GIF version

Theorem fnlimabslt 40396
Description: A sequence of function values, approximates the corresponding limit function value, all but finitely many times. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimabslt.p 𝑚𝜑
fnlimabslt.f 𝑚𝐹
fnlimabslt.n 𝑥𝐹
fnlimabslt.m (𝜑𝑀 ∈ ℤ)
fnlimabslt.z 𝑍 = (ℤ𝑀)
fnlimabslt.b ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimabslt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimabslt.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimabslt.x (𝜑𝑋𝐷)
fnlimabslt.y (𝜑𝑌 ∈ ℝ+)
Assertion
Ref Expression
fnlimabslt (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝑛,𝑀   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚)   𝑀(𝑥,𝑚)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem fnlimabslt
Dummy variables 𝑗 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnlimabslt.p . . . 4 𝑚𝜑
2 fnlimabslt.z . . . 4 𝑍 = (ℤ𝑀)
3 fnlimabslt.b . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
4 eqid 2817 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5 fnlimabslt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
6 nfcv 2959 . . . . . . . . 9 𝑥𝑍
7 nfcv 2959 . . . . . . . . . 10 𝑥(ℤ𝑛)
8 fnlimabslt.n . . . . . . . . . . . 12 𝑥𝐹
9 nfcv 2959 . . . . . . . . . . . 12 𝑥𝑚
108, 9nffv 6425 . . . . . . . . . . 11 𝑥(𝐹𝑚)
1110nfdm 5579 . . . . . . . . . 10 𝑥dom (𝐹𝑚)
127, 11nfiin 4752 . . . . . . . . 9 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
136, 12nfiun 4751 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
14 nfcv 2959 . . . . . . . 8 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
15 nfv 2005 . . . . . . . 8 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
16 nfcv 2959 . . . . . . . . . . 11 𝑥𝑦
1710, 16nffv 6425 . . . . . . . . . 10 𝑥((𝐹𝑚)‘𝑦)
186, 17nfmpt 4951 . . . . . . . . 9 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
19 nfcv 2959 . . . . . . . . 9 𝑥dom ⇝
2018, 19nfel 2972 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
21 fveq2 6415 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2221mpteq2dv 4950 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
2322eleq1d 2881 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
2413, 14, 15, 20, 23cbvrab 3399 . . . . . . 7 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
25 ssrab2 3895 . . . . . . 7 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2624, 25eqsstri 3843 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
275, 26eqsstri 3843 . . . . 5 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
28 fnlimabslt.x . . . . 5 (𝜑𝑋𝐷)
2927, 28sseldi 3807 . . . 4 (𝜑𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
301, 2, 3, 4, 29allbutfifvre 40392 . . 3 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
31 nfv 2005 . . . . . 6 𝑗𝜑
32 nfcv 2959 . . . . . 6 𝑗(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
33 fnlimabslt.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
34 fnlimabslt.g . . . . . . 7 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
358, 5, 34, 28fnlimcnv 40384 . . . . . 6 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ (𝐺𝑋))
36 nfcv 2959 . . . . . . . . 9 𝑙((𝐹𝑚)‘𝑋)
37 fnlimabslt.f . . . . . . . . . . 11 𝑚𝐹
38 nfcv 2959 . . . . . . . . . . 11 𝑚𝑙
3937, 38nffv 6425 . . . . . . . . . 10 𝑚(𝐹𝑙)
40 nfcv 2959 . . . . . . . . . 10 𝑚𝑋
4139, 40nffv 6425 . . . . . . . . 9 𝑚((𝐹𝑙)‘𝑋)
42 fveq2 6415 . . . . . . . . . 10 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
4342fveq1d 6417 . . . . . . . . 9 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑙)‘𝑋))
4436, 41, 43cbvmpt 4954 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑋))
4544a1i 11 . . . . . . 7 ((𝜑𝑗𝑍) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑋)))
46 fveq2 6415 . . . . . . . . 9 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
4746fveq1d 6417 . . . . . . . 8 (𝑙 = 𝑗 → ((𝐹𝑙)‘𝑋) = ((𝐹𝑗)‘𝑋))
4847adantl 469 . . . . . . 7 (((𝜑𝑗𝑍) ∧ 𝑙 = 𝑗) → ((𝐹𝑙)‘𝑋) = ((𝐹𝑗)‘𝑋))
49 simpr 473 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗𝑍)
50 fvexd 6430 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝐹𝑗)‘𝑋) ∈ V)
5145, 48, 49, 50fvmptd 6516 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
52 fnlimabslt.y . . . . . 6 (𝜑𝑌 ∈ ℝ+)
5331, 32, 2, 33, 35, 51, 52climd 40389 . . . . 5 (𝜑 → ∃𝑛𝑍𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
54 nfv 2005 . . . . . . 7 𝑗(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
55 nfcv 2959 . . . . . . . . . . 11 𝑚𝑗
5637, 55nffv 6425 . . . . . . . . . 10 𝑚(𝐹𝑗)
5756, 40nffv 6425 . . . . . . . . 9 𝑚((𝐹𝑗)‘𝑋)
58 nfcv 2959 . . . . . . . . 9 𝑚
5957, 58nfel 2972 . . . . . . . 8 𝑚((𝐹𝑗)‘𝑋) ∈ ℂ
60 nfcv 2959 . . . . . . . . . 10 𝑚abs
61 nfcv 2959 . . . . . . . . . . 11 𝑚
62 nfmpt1 4952 . . . . . . . . . . . . . . . . 17 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
63 nfcv 2959 . . . . . . . . . . . . . . . . 17 𝑚dom ⇝
6462, 63nfel 2972 . . . . . . . . . . . . . . . 16 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
65 nfcv 2959 . . . . . . . . . . . . . . . . 17 𝑚𝑍
66 nfii1 4754 . . . . . . . . . . . . . . . . 17 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6765, 66nfiun 4751 . . . . . . . . . . . . . . . 16 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6864, 67nfrab 3323 . . . . . . . . . . . . . . 15 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
695, 68nfcxfr 2957 . . . . . . . . . . . . . 14 𝑚𝐷
70 nfcv 2959 . . . . . . . . . . . . . . 15 𝑚
7170, 62nffv 6425 . . . . . . . . . . . . . 14 𝑚( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
7269, 71nfmpt 4951 . . . . . . . . . . . . 13 𝑚(𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7334, 72nfcxfr 2957 . . . . . . . . . . . 12 𝑚𝐺
7473, 40nffv 6425 . . . . . . . . . . 11 𝑚(𝐺𝑋)
7557, 61, 74nfov 6911 . . . . . . . . . 10 𝑚(((𝐹𝑗)‘𝑋) − (𝐺𝑋))
7660, 75nffv 6425 . . . . . . . . 9 𝑚(abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋)))
77 nfcv 2959 . . . . . . . . 9 𝑚 <
78 nfcv 2959 . . . . . . . . 9 𝑚𝑌
7976, 77, 78nfbr 4902 . . . . . . . 8 𝑚(abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌
8059, 79nfan 1990 . . . . . . 7 𝑚(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌)
81 fveq2 6415 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
8281fveq1d 6417 . . . . . . . . 9 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑗)‘𝑋))
8382eleq1d 2881 . . . . . . . 8 (𝑚 = 𝑗 → (((𝐹𝑚)‘𝑋) ∈ ℂ ↔ ((𝐹𝑗)‘𝑋) ∈ ℂ))
8482fvoveq1d 6903 . . . . . . . . 9 (𝑚 = 𝑗 → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) = (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))))
8584breq1d 4865 . . . . . . . 8 (𝑚 = 𝑗 → ((abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌 ↔ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8683, 85anbi12d 618 . . . . . . 7 (𝑚 = 𝑗 → ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ (((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌)))
8754, 80, 86cbvral 3367 . . . . . 6 (∀𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ ∀𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8887rexbii 3240 . . . . 5 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ ∃𝑛𝑍𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8953, 88sylibr 225 . . . 4 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
90 nfv 2005 . . . . . . 7 𝑚 𝑛𝑍
911, 90nfan 1990 . . . . . 6 𝑚(𝜑𝑛𝑍)
92 simpr 473 . . . . . . 7 ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
9392a1i 11 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9491, 93ralimdaa 3157 . . . . 5 ((𝜑𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → ∀𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9594reximdva 3215 . . . 4 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9689, 95mpd 15 . . 3 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
9730, 96jca 503 . 2 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
982rexanuz2 14319 . 2 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9997, 98sylibr 225 1 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wnf 1863  wcel 2157  wnfc 2946  wral 3107  wrex 3108  {crab 3111  Vcvv 3402   ciun 4723   ciin 4724   class class class wbr 4855  cmpt 4934  dom cdm 5322  wf 6104  cfv 6108  (class class class)co 6881  cc 10226  cr 10227   < clt 10366  cmin 10558  cz 11650  cuz 11911  +crp 12053  abscabs 14204  cli 14445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305  ax-pre-sup 10306
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-iun 4725  df-iin 4726  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-om 7303  df-2nd 7406  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-er 7986  df-en 8200  df-dom 8201  df-sdom 8202  df-sup 8594  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-div 10977  df-nn 11313  df-2 11371  df-3 11372  df-n0 11567  df-z 11651  df-uz 11912  df-rp 12054  df-seq 13032  df-exp 13091  df-cj 14069  df-re 14070  df-im 14071  df-sqrt 14205  df-abs 14206  df-clim 14449
This theorem is referenced by:  smflimlem4  41469
  Copyright terms: Public domain W3C validator