Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimabslt Structured version   Visualization version   GIF version

Theorem fnlimabslt 41821
Description: A sequence of function values, approximates the corresponding limit function value, all but finitely many times. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimabslt.p 𝑚𝜑
fnlimabslt.f 𝑚𝐹
fnlimabslt.n 𝑥𝐹
fnlimabslt.m (𝜑𝑀 ∈ ℤ)
fnlimabslt.z 𝑍 = (ℤ𝑀)
fnlimabslt.b ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimabslt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimabslt.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimabslt.x (𝜑𝑋𝐷)
fnlimabslt.y (𝜑𝑌 ∈ ℝ+)
Assertion
Ref Expression
fnlimabslt (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝑛,𝑀   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚)   𝑀(𝑥,𝑚)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem fnlimabslt
Dummy variables 𝑗 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnlimabslt.p . . . 4 𝑚𝜑
2 fnlimabslt.z . . . 4 𝑍 = (ℤ𝑀)
3 fnlimabslt.b . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
4 eqid 2825 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5 fnlimabslt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
6 nfcv 2981 . . . . . . . . 9 𝑥𝑍
7 nfcv 2981 . . . . . . . . . 10 𝑥(ℤ𝑛)
8 fnlimabslt.n . . . . . . . . . . . 12 𝑥𝐹
9 nfcv 2981 . . . . . . . . . . . 12 𝑥𝑚
108, 9nffv 6676 . . . . . . . . . . 11 𝑥(𝐹𝑚)
1110nfdm 5821 . . . . . . . . . 10 𝑥dom (𝐹𝑚)
127, 11nfiin 4946 . . . . . . . . 9 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
136, 12nfiun 4945 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
14 nfcv 2981 . . . . . . . 8 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
15 nfv 1908 . . . . . . . 8 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
16 nfcv 2981 . . . . . . . . . . 11 𝑥𝑦
1710, 16nffv 6676 . . . . . . . . . 10 𝑥((𝐹𝑚)‘𝑦)
186, 17nfmpt 5159 . . . . . . . . 9 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
19 nfcv 2981 . . . . . . . . 9 𝑥dom ⇝
2018, 19nfel 2996 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
21 fveq2 6666 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2221mpteq2dv 5158 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
2322eleq1d 2901 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
2413, 14, 15, 20, 23cbvrab 3495 . . . . . . 7 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
25 ssrab2 4059 . . . . . . 7 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2624, 25eqsstri 4004 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
275, 26eqsstri 4004 . . . . 5 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
28 fnlimabslt.x . . . . 5 (𝜑𝑋𝐷)
2927, 28sseldi 3968 . . . 4 (𝜑𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
301, 2, 3, 4, 29allbutfifvre 41817 . . 3 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
31 nfv 1908 . . . . . 6 𝑗𝜑
32 nfcv 2981 . . . . . 6 𝑗(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
33 fnlimabslt.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
34 fnlimabslt.g . . . . . . 7 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
358, 5, 34, 28fnlimcnv 41809 . . . . . 6 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ (𝐺𝑋))
36 nfcv 2981 . . . . . . . 8 𝑙((𝐹𝑚)‘𝑋)
37 fnlimabslt.f . . . . . . . . . 10 𝑚𝐹
38 nfcv 2981 . . . . . . . . . 10 𝑚𝑙
3937, 38nffv 6676 . . . . . . . . 9 𝑚(𝐹𝑙)
40 nfcv 2981 . . . . . . . . 9 𝑚𝑋
4139, 40nffv 6676 . . . . . . . 8 𝑚((𝐹𝑙)‘𝑋)
42 fveq2 6666 . . . . . . . . 9 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
4342fveq1d 6668 . . . . . . . 8 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑙)‘𝑋))
4436, 41, 43cbvmpt 5163 . . . . . . 7 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑋))
45 fveq2 6666 . . . . . . . 8 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
4645fveq1d 6668 . . . . . . 7 (𝑙 = 𝑗 → ((𝐹𝑙)‘𝑋) = ((𝐹𝑗)‘𝑋))
47 simpr 485 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗𝑍)
48 fvexd 6681 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝐹𝑗)‘𝑋) ∈ V)
4944, 46, 47, 48fvmptd3 6786 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
50 fnlimabslt.y . . . . . 6 (𝜑𝑌 ∈ ℝ+)
5131, 32, 2, 33, 35, 49, 50climd 41814 . . . . 5 (𝜑 → ∃𝑛𝑍𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
52 nfv 1908 . . . . . . 7 𝑗(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
53 nfcv 2981 . . . . . . . . . . 11 𝑚𝑗
5437, 53nffv 6676 . . . . . . . . . 10 𝑚(𝐹𝑗)
5554, 40nffv 6676 . . . . . . . . 9 𝑚((𝐹𝑗)‘𝑋)
56 nfcv 2981 . . . . . . . . 9 𝑚
5755, 56nfel 2996 . . . . . . . 8 𝑚((𝐹𝑗)‘𝑋) ∈ ℂ
58 nfcv 2981 . . . . . . . . . 10 𝑚abs
59 nfcv 2981 . . . . . . . . . . 11 𝑚
60 nfmpt1 5160 . . . . . . . . . . . . . . . . 17 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
61 nfcv 2981 . . . . . . . . . . . . . . . . 17 𝑚dom ⇝
6260, 61nfel 2996 . . . . . . . . . . . . . . . 16 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
63 nfcv 2981 . . . . . . . . . . . . . . . . 17 𝑚𝑍
64 nfii1 4950 . . . . . . . . . . . . . . . . 17 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6563, 64nfiun 4945 . . . . . . . . . . . . . . . 16 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6662, 65nfrab 3391 . . . . . . . . . . . . . . 15 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
675, 66nfcxfr 2979 . . . . . . . . . . . . . 14 𝑚𝐷
68 nfcv 2981 . . . . . . . . . . . . . . 15 𝑚
6968, 60nffv 6676 . . . . . . . . . . . . . 14 𝑚( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
7067, 69nfmpt 5159 . . . . . . . . . . . . 13 𝑚(𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7134, 70nfcxfr 2979 . . . . . . . . . . . 12 𝑚𝐺
7271, 40nffv 6676 . . . . . . . . . . 11 𝑚(𝐺𝑋)
7355, 59, 72nfov 7181 . . . . . . . . . 10 𝑚(((𝐹𝑗)‘𝑋) − (𝐺𝑋))
7458, 73nffv 6676 . . . . . . . . 9 𝑚(abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋)))
75 nfcv 2981 . . . . . . . . 9 𝑚 <
76 nfcv 2981 . . . . . . . . 9 𝑚𝑌
7774, 75, 76nfbr 5109 . . . . . . . 8 𝑚(abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌
7857, 77nfan 1893 . . . . . . 7 𝑚(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌)
79 fveq2 6666 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
8079fveq1d 6668 . . . . . . . . 9 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑗)‘𝑋))
8180eleq1d 2901 . . . . . . . 8 (𝑚 = 𝑗 → (((𝐹𝑚)‘𝑋) ∈ ℂ ↔ ((𝐹𝑗)‘𝑋) ∈ ℂ))
8280fvoveq1d 7173 . . . . . . . . 9 (𝑚 = 𝑗 → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) = (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))))
8382breq1d 5072 . . . . . . . 8 (𝑚 = 𝑗 → ((abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌 ↔ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8481, 83anbi12d 630 . . . . . . 7 (𝑚 = 𝑗 → ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ (((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌)))
8552, 78, 84cbvral 3450 . . . . . 6 (∀𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ ∀𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8685rexbii 3251 . . . . 5 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ ∃𝑛𝑍𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8751, 86sylibr 235 . . . 4 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
88 nfv 1908 . . . . . . 7 𝑚 𝑛𝑍
891, 88nfan 1893 . . . . . 6 𝑚(𝜑𝑛𝑍)
90 simpr 485 . . . . . . 7 ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
9190a1i 11 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9289, 91ralimdaa 3221 . . . . 5 ((𝜑𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → ∀𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9392reximdva 3278 . . . 4 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9487, 93mpd 15 . . 3 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
9530, 94jca 512 . 2 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
962rexanuz2 14702 . 2 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9795, 96sylibr 235 1 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wnf 1777  wcel 2107  wnfc 2965  wral 3142  wrex 3143  {crab 3146  Vcvv 3499   ciun 4916   ciin 4917   class class class wbr 5062  cmpt 5142  dom cdm 5553  wf 6347  cfv 6351  (class class class)co 7151  cc 10527  cr 10528   < clt 10667  cmin 10862  cz 11973  cuz 12235  +crp 12382  abscabs 14586  cli 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838
This theorem is referenced by:  smflimlem4  42912
  Copyright terms: Public domain W3C validator