Step | Hyp | Ref
| Expression |
1 | | fnlimabslt.p |
. . . 4
⊢
Ⅎ𝑚𝜑 |
2 | | fnlimabslt.z |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | fnlimabslt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
4 | | eqid 2739 |
. . . 4
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
5 | | fnlimabslt.d |
. . . . . 6
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
6 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑍 |
7 | | nfcv 2908 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(ℤ≥‘𝑛) |
8 | | fnlimabslt.n |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝐹 |
9 | | nfcv 2908 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑚 |
10 | 8, 9 | nffv 6778 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝐹‘𝑚) |
11 | 10 | nfdm 5857 |
. . . . . . . . . 10
⊢
Ⅎ𝑥dom
(𝐹‘𝑚) |
12 | 7, 11 | nfiin 4960 |
. . . . . . . . 9
⊢
Ⅎ𝑥∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
13 | 6, 12 | nfiun 4959 |
. . . . . . . 8
⊢
Ⅎ𝑥∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
14 | | nfcv 2908 |
. . . . . . . 8
⊢
Ⅎ𝑦∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
15 | | nfv 1920 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ |
16 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑦 |
17 | 10, 16 | nffv 6778 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝐹‘𝑚)‘𝑦) |
18 | 6, 17 | nfmpt 5185 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) |
19 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑥dom
⇝ |
20 | 18, 19 | nfel 2922 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ |
21 | | fveq2 6768 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑦)) |
22 | 21 | mpteq2dv 5180 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦))) |
23 | 22 | eleq1d 2824 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ )) |
24 | 13, 14, 15, 20, 23 | cbvrabw 3422 |
. . . . . . 7
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ } |
25 | | ssrab2 4017 |
. . . . . . 7
⊢ {𝑦 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑦)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
26 | 24, 25 | eqsstri 3959 |
. . . . . 6
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
27 | 5, 26 | eqsstri 3959 |
. . . . 5
⊢ 𝐷 ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
28 | | fnlimabslt.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
29 | 27, 28 | sselid 3923 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
30 | 1, 2, 3, 4, 29 | allbutfifvre 43170 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ) |
31 | | nfv 1920 |
. . . . . 6
⊢
Ⅎ𝑗𝜑 |
32 | | nfcv 2908 |
. . . . . 6
⊢
Ⅎ𝑗(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) |
33 | | fnlimabslt.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
34 | | fnlimabslt.g |
. . . . . . 7
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
35 | 8, 5, 34, 28 | fnlimcnv 43162 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ (𝐺‘𝑋)) |
36 | | nfcv 2908 |
. . . . . . . 8
⊢
Ⅎ𝑙((𝐹‘𝑚)‘𝑋) |
37 | | fnlimabslt.f |
. . . . . . . . . 10
⊢
Ⅎ𝑚𝐹 |
38 | | nfcv 2908 |
. . . . . . . . . 10
⊢
Ⅎ𝑚𝑙 |
39 | 37, 38 | nffv 6778 |
. . . . . . . . 9
⊢
Ⅎ𝑚(𝐹‘𝑙) |
40 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑚𝑋 |
41 | 39, 40 | nffv 6778 |
. . . . . . . 8
⊢
Ⅎ𝑚((𝐹‘𝑙)‘𝑋) |
42 | | fveq2 6768 |
. . . . . . . . 9
⊢ (𝑚 = 𝑙 → (𝐹‘𝑚) = (𝐹‘𝑙)) |
43 | 42 | fveq1d 6770 |
. . . . . . . 8
⊢ (𝑚 = 𝑙 → ((𝐹‘𝑚)‘𝑋) = ((𝐹‘𝑙)‘𝑋)) |
44 | 36, 41, 43 | cbvmpt 5189 |
. . . . . . 7
⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑙 ∈ 𝑍 ↦ ((𝐹‘𝑙)‘𝑋)) |
45 | | fveq2 6768 |
. . . . . . . 8
⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) |
46 | 45 | fveq1d 6770 |
. . . . . . 7
⊢ (𝑙 = 𝑗 → ((𝐹‘𝑙)‘𝑋) = ((𝐹‘𝑗)‘𝑋)) |
47 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
48 | | fvexd 6783 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹‘𝑗)‘𝑋) ∈ V) |
49 | 44, 46, 47, 48 | fvmptd3 6892 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))‘𝑗) = ((𝐹‘𝑗)‘𝑋)) |
50 | | fnlimabslt.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
51 | 31, 32, 2, 33, 35, 49, 50 | climd 43167 |
. . . . 5
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
52 | | nfv 1920 |
. . . . . . 7
⊢
Ⅎ𝑗(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) |
53 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚𝑗 |
54 | 37, 53 | nffv 6778 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(𝐹‘𝑗) |
55 | 54, 40 | nffv 6778 |
. . . . . . . . 9
⊢
Ⅎ𝑚((𝐹‘𝑗)‘𝑋) |
56 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑚ℂ |
57 | 55, 56 | nfel 2922 |
. . . . . . . 8
⊢
Ⅎ𝑚((𝐹‘𝑗)‘𝑋) ∈ ℂ |
58 | | nfcv 2908 |
. . . . . . . . . 10
⊢
Ⅎ𝑚abs |
59 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚
− |
60 | | nfmpt1 5186 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) |
61 | | nfcv 2908 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚dom
⇝ |
62 | 60, 61 | nfel 2922 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ |
63 | | nfcv 2908 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚𝑍 |
64 | | nfii1 4964 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
65 | 63, 64 | nfiun 4959 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
66 | 62, 65 | nfrabw 3316 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚{𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
67 | 5, 66 | nfcxfr 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑚𝐷 |
68 | | nfcv 2908 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚
⇝ |
69 | 68, 60 | nffv 6778 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑚(
⇝ ‘(𝑚 ∈
𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) |
70 | 67, 69 | nfmpt 5185 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚(𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
71 | 34, 70 | nfcxfr 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚𝐺 |
72 | 71, 40 | nffv 6778 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚(𝐺‘𝑋) |
73 | 55, 59, 72 | nfov 7298 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋)) |
74 | 58, 73 | nffv 6778 |
. . . . . . . . 9
⊢
Ⅎ𝑚(abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) |
75 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑚
< |
76 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑚𝑌 |
77 | 74, 75, 76 | nfbr 5125 |
. . . . . . . 8
⊢
Ⅎ𝑚(abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌 |
78 | 57, 77 | nfan 1905 |
. . . . . . 7
⊢
Ⅎ𝑚(((𝐹‘𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌) |
79 | | fveq2 6768 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑗 → (𝐹‘𝑚) = (𝐹‘𝑗)) |
80 | 79 | fveq1d 6770 |
. . . . . . . . 9
⊢ (𝑚 = 𝑗 → ((𝐹‘𝑚)‘𝑋) = ((𝐹‘𝑗)‘𝑋)) |
81 | 80 | eleq1d 2824 |
. . . . . . . 8
⊢ (𝑚 = 𝑗 → (((𝐹‘𝑚)‘𝑋) ∈ ℂ ↔ ((𝐹‘𝑗)‘𝑋) ∈ ℂ)) |
82 | 80 | fvoveq1d 7290 |
. . . . . . . . 9
⊢ (𝑚 = 𝑗 → (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) = (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋)))) |
83 | 82 | breq1d 5088 |
. . . . . . . 8
⊢ (𝑚 = 𝑗 → ((abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌 ↔ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
84 | 81, 83 | anbi12d 630 |
. . . . . . 7
⊢ (𝑚 = 𝑗 → ((((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) ↔ (((𝐹‘𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌))) |
85 | 52, 78, 84 | cbvralw 3371 |
. . . . . 6
⊢
(∀𝑚 ∈
(ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) ↔ ∀𝑗 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
86 | 85 | rexbii 3179 |
. . . . 5
⊢
(∃𝑛 ∈
𝑍 ∀𝑚 ∈
(ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) ↔ ∃𝑛 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑗)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
87 | 51, 86 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
88 | | nfv 1920 |
. . . . . . 7
⊢
Ⅎ𝑚 𝑛 ∈ 𝑍 |
89 | 1, 88 | nfan 1905 |
. . . . . 6
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
90 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) → (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) |
91 | 90 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) → (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
92 | 89, 91 | ralimdaa 3142 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) → ∀𝑚 ∈ (ℤ≥‘𝑛)(abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
93 | 92 | reximdva 3204 |
. . . 4
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
94 | 87, 93 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) |
95 | 30, 94 | jca 511 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
96 | 2 | rexanuz2 15042 |
. 2
⊢
(∃𝑛 ∈
𝑍 ∀𝑚 ∈
(ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌) ↔ (∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |
97 | 95, 96 | sylibr 233 |
1
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)(((𝐹‘𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹‘𝑚)‘𝑋) − (𝐺‘𝑋))) < 𝑌)) |