Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimabslt Structured version   Visualization version   GIF version

Theorem fnlimabslt 45600
Description: A sequence of function values, approximates the corresponding limit function value, all but finitely many times. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimabslt.p 𝑚𝜑
fnlimabslt.f 𝑚𝐹
fnlimabslt.n 𝑥𝐹
fnlimabslt.m (𝜑𝑀 ∈ ℤ)
fnlimabslt.z 𝑍 = (ℤ𝑀)
fnlimabslt.b ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimabslt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimabslt.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
fnlimabslt.x (𝜑𝑋𝐷)
fnlimabslt.y (𝜑𝑌 ∈ ℝ+)
Assertion
Ref Expression
fnlimabslt (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝑛,𝑀   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚)   𝑀(𝑥,𝑚)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem fnlimabslt
Dummy variables 𝑗 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnlimabslt.p . . . 4 𝑚𝜑
2 fnlimabslt.z . . . 4 𝑍 = (ℤ𝑀)
3 fnlimabslt.b . . . 4 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
4 eqid 2740 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
5 fnlimabslt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
6 nfcv 2908 . . . . . . . . 9 𝑥𝑍
7 nfcv 2908 . . . . . . . . . 10 𝑥(ℤ𝑛)
8 fnlimabslt.n . . . . . . . . . . . 12 𝑥𝐹
9 nfcv 2908 . . . . . . . . . . . 12 𝑥𝑚
108, 9nffv 6930 . . . . . . . . . . 11 𝑥(𝐹𝑚)
1110nfdm 5976 . . . . . . . . . 10 𝑥dom (𝐹𝑚)
127, 11nfiin 5047 . . . . . . . . 9 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
136, 12nfiun 5046 . . . . . . . 8 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
14 nfcv 2908 . . . . . . . 8 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
15 nfv 1913 . . . . . . . 8 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
16 nfcv 2908 . . . . . . . . . . 11 𝑥𝑦
1710, 16nffv 6930 . . . . . . . . . 10 𝑥((𝐹𝑚)‘𝑦)
186, 17nfmpt 5273 . . . . . . . . 9 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
19 nfcv 2908 . . . . . . . . 9 𝑥dom ⇝
2018, 19nfel 2923 . . . . . . . 8 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
21 fveq2 6920 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
2221mpteq2dv 5268 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
2322eleq1d 2829 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
2413, 14, 15, 20, 23cbvrabw 3481 . . . . . . 7 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
25 ssrab2 4103 . . . . . . 7 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2624, 25eqsstri 4043 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
275, 26eqsstri 4043 . . . . 5 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
28 fnlimabslt.x . . . . 5 (𝜑𝑋𝐷)
2927, 28sselid 4006 . . . 4 (𝜑𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
301, 2, 3, 4, 29allbutfifvre 45596 . . 3 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
31 nfv 1913 . . . . . 6 𝑗𝜑
32 nfcv 2908 . . . . . 6 𝑗(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
33 fnlimabslt.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
34 fnlimabslt.g . . . . . . 7 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
358, 5, 34, 28fnlimcnv 45588 . . . . . 6 (𝜑 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ⇝ (𝐺𝑋))
36 nfcv 2908 . . . . . . . 8 𝑙((𝐹𝑚)‘𝑋)
37 fnlimabslt.f . . . . . . . . . 10 𝑚𝐹
38 nfcv 2908 . . . . . . . . . 10 𝑚𝑙
3937, 38nffv 6930 . . . . . . . . 9 𝑚(𝐹𝑙)
40 nfcv 2908 . . . . . . . . 9 𝑚𝑋
4139, 40nffv 6930 . . . . . . . 8 𝑚((𝐹𝑙)‘𝑋)
42 fveq2 6920 . . . . . . . . 9 (𝑚 = 𝑙 → (𝐹𝑚) = (𝐹𝑙))
4342fveq1d 6922 . . . . . . . 8 (𝑚 = 𝑙 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑙)‘𝑋))
4436, 41, 43cbvmpt 5277 . . . . . . 7 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) = (𝑙𝑍 ↦ ((𝐹𝑙)‘𝑋))
45 fveq2 6920 . . . . . . . 8 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
4645fveq1d 6922 . . . . . . 7 (𝑙 = 𝑗 → ((𝐹𝑙)‘𝑋) = ((𝐹𝑗)‘𝑋))
47 simpr 484 . . . . . . 7 ((𝜑𝑗𝑍) → 𝑗𝑍)
48 fvexd 6935 . . . . . . 7 ((𝜑𝑗𝑍) → ((𝐹𝑗)‘𝑋) ∈ V)
4944, 46, 47, 48fvmptd3 7052 . . . . . 6 ((𝜑𝑗𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
50 fnlimabslt.y . . . . . 6 (𝜑𝑌 ∈ ℝ+)
5131, 32, 2, 33, 35, 49, 50climd 45593 . . . . 5 (𝜑 → ∃𝑛𝑍𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
52 nfv 1913 . . . . . . 7 𝑗(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
53 nfcv 2908 . . . . . . . . . . 11 𝑚𝑗
5437, 53nffv 6930 . . . . . . . . . 10 𝑚(𝐹𝑗)
5554, 40nffv 6930 . . . . . . . . 9 𝑚((𝐹𝑗)‘𝑋)
56 nfcv 2908 . . . . . . . . 9 𝑚
5755, 56nfel 2923 . . . . . . . 8 𝑚((𝐹𝑗)‘𝑋) ∈ ℂ
58 nfcv 2908 . . . . . . . . . 10 𝑚abs
59 nfcv 2908 . . . . . . . . . . 11 𝑚
60 nfmpt1 5274 . . . . . . . . . . . . . . . . 17 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
61 nfcv 2908 . . . . . . . . . . . . . . . . 17 𝑚dom ⇝
6260, 61nfel 2923 . . . . . . . . . . . . . . . 16 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
63 nfcv 2908 . . . . . . . . . . . . . . . . 17 𝑚𝑍
64 nfii1 5052 . . . . . . . . . . . . . . . . 17 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6563, 64nfiun 5046 . . . . . . . . . . . . . . . 16 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6662, 65nfrabw 3483 . . . . . . . . . . . . . . 15 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
675, 66nfcxfr 2906 . . . . . . . . . . . . . 14 𝑚𝐷
68 nfcv 2908 . . . . . . . . . . . . . . 15 𝑚
6968, 60nffv 6930 . . . . . . . . . . . . . 14 𝑚( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
7067, 69nfmpt 5273 . . . . . . . . . . . . 13 𝑚(𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
7134, 70nfcxfr 2906 . . . . . . . . . . . 12 𝑚𝐺
7271, 40nffv 6930 . . . . . . . . . . 11 𝑚(𝐺𝑋)
7355, 59, 72nfov 7478 . . . . . . . . . 10 𝑚(((𝐹𝑗)‘𝑋) − (𝐺𝑋))
7458, 73nffv 6930 . . . . . . . . 9 𝑚(abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋)))
75 nfcv 2908 . . . . . . . . 9 𝑚 <
76 nfcv 2908 . . . . . . . . 9 𝑚𝑌
7774, 75, 76nfbr 5213 . . . . . . . 8 𝑚(abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌
7857, 77nfan 1898 . . . . . . 7 𝑚(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌)
79 fveq2 6920 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
8079fveq1d 6922 . . . . . . . . 9 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑗)‘𝑋))
8180eleq1d 2829 . . . . . . . 8 (𝑚 = 𝑗 → (((𝐹𝑚)‘𝑋) ∈ ℂ ↔ ((𝐹𝑗)‘𝑋) ∈ ℂ))
8280fvoveq1d 7470 . . . . . . . . 9 (𝑚 = 𝑗 → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) = (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))))
8382breq1d 5176 . . . . . . . 8 (𝑚 = 𝑗 → ((abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌 ↔ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8481, 83anbi12d 631 . . . . . . 7 (𝑚 = 𝑗 → ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ (((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌)))
8552, 78, 84cbvralw 3312 . . . . . 6 (∀𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ ∀𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8685rexbii 3100 . . . . 5 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ ∃𝑛𝑍𝑗 ∈ (ℤ𝑛)(((𝐹𝑗)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑗)‘𝑋) − (𝐺𝑋))) < 𝑌))
8751, 86sylibr 234 . . . 4 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
88 nfv 1913 . . . . . . 7 𝑚 𝑛𝑍
891, 88nfan 1898 . . . . . 6 𝑚(𝜑𝑛𝑍)
90 simpr 484 . . . . . . 7 ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
9190a1i 11 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9289, 91ralimdaa 3266 . . . . 5 ((𝜑𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → ∀𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9392reximdva 3174 . . . 4 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℂ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9487, 93mpd 15 . . 3 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌)
9530, 94jca 511 . 2 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
962rexanuz2 15398 . 2 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌) ↔ (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ ∧ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
9795, 96sylibr 234 1 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)(((𝐹𝑚)‘𝑋) ∈ ℝ ∧ (abs‘(((𝐹𝑚)‘𝑋) − (𝐺𝑋))) < 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  wral 3067  wrex 3076  {crab 3443  Vcvv 3488   ciun 5015   ciin 5016   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183   < clt 11324  cmin 11520  cz 12639  cuz 12903  +crp 13057  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  smflimlem4  46695
  Copyright terms: Public domain W3C validator