MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimiaa Structured version   Visualization version   GIF version

Theorem ralimiaa 3088
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
ralimiaa.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
ralimiaa (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimiaa
StepHypRef Expression
1 ralimiaa.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 412 . 2 (𝑥𝐴 → (𝜑𝜓))
32ralimia 3086 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3068
This theorem is referenced by:  ralrnmptw  7128  ralrnmpt  7130  tz7.48-2  8498  mptelixpg  8993  boxriin  8998  acnlem  10117  iundom2g  10609  konigthlem  10637  hashge2el2dif  14529  rlim2  15542  prdsbas3  17541  prdsdsval2  17544  ptbasfi  23610  ptunimpt  23624  voliun  25608  lgamgulmlem6  27095  riesz4i  32095  dmdbr6ati  32455  ctbssinf  37372
  Copyright terms: Public domain W3C validator