MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimiaa Structured version   Visualization version   GIF version

Theorem ralimiaa 3080
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
ralimiaa.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
ralimiaa (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimiaa
StepHypRef Expression
1 ralimiaa.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 411 . 2 (𝑥𝐴 → (𝜑𝜓))
32ralimia 3078 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2104  wral 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 206  df-an 395  df-ral 3060
This theorem is referenced by:  ralrnmptw  7094  ralrnmpt  7096  tz7.48-2  8444  mptelixpg  8931  boxriin  8936  acnlem  10045  iundom2g  10537  konigthlem  10565  hashge2el2dif  14445  rlim2  15444  prdsbas3  17431  prdsdsval2  17434  ptbasfi  23305  ptunimpt  23319  voliun  25303  lgamgulmlem6  26774  riesz4i  31583  dmdbr6ati  31943  ctbssinf  36590
  Copyright terms: Public domain W3C validator