![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimiaa | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.) |
Ref | Expression |
---|---|
ralimiaa.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
ralimiaa | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimiaa.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 412 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | ralimia 3086 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: ralrnmptw 7128 ralrnmpt 7130 tz7.48-2 8498 mptelixpg 8993 boxriin 8998 acnlem 10117 iundom2g 10609 konigthlem 10637 hashge2el2dif 14529 rlim2 15542 prdsbas3 17541 prdsdsval2 17544 ptbasfi 23610 ptunimpt 23624 voliun 25608 lgamgulmlem6 27095 riesz4i 32095 dmdbr6ati 32455 ctbssinf 37372 |
Copyright terms: Public domain | W3C validator |