MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimiaa Structured version   Visualization version   GIF version

Theorem ralimiaa 3072
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
ralimiaa.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
ralimiaa (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimiaa
StepHypRef Expression
1 ralimiaa.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 412 . 2 (𝑥𝐴 → (𝜑𝜓))
32ralimia 3070 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3052
This theorem is referenced by:  ralrnmptw  7084  ralrnmpt  7086  tz7.48-2  8456  mptelixpg  8949  boxriin  8954  acnlem  10062  iundom2g  10554  konigthlem  10582  hashge2el2dif  14498  rlim2  15512  prdsbas3  17495  prdsdsval2  17498  ptbasfi  23519  ptunimpt  23533  voliun  25507  lgamgulmlem6  26996  riesz4i  32044  dmdbr6ati  32404  ctbssinf  37424
  Copyright terms: Public domain W3C validator