MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimiaa Structured version   Visualization version   GIF version

Theorem ralimiaa 3065
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
ralimiaa.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
ralimiaa (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimiaa
StepHypRef Expression
1 ralimiaa.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 412 . 2 (𝑥𝐴 → (𝜑𝜓))
32ralimia 3063 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3045
This theorem is referenced by:  ralrnmptw  7066  ralrnmpt  7068  tz7.48-2  8410  mptelixpg  8908  boxriin  8913  acnlem  10001  iundom2g  10493  konigthlem  10521  hashge2el2dif  14445  rlim2  15462  prdsbas3  17444  prdsdsval2  17447  ptbasfi  23468  ptunimpt  23482  voliun  25455  lgamgulmlem6  26944  riesz4i  31992  dmdbr6ati  32352  ctbssinf  37394
  Copyright terms: Public domain W3C validator