MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimiaa Structured version   Visualization version   GIF version

Theorem ralimiaa 3066
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
ralimiaa.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
ralimiaa (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimiaa
StepHypRef Expression
1 ralimiaa.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 412 . 2 (𝑥𝐴 → (𝜑𝜓))
32ralimia 3064 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3046
This theorem is referenced by:  ralrnmptw  7069  ralrnmpt  7071  tz7.48-2  8413  mptelixpg  8911  boxriin  8916  acnlem  10008  iundom2g  10500  konigthlem  10528  hashge2el2dif  14452  rlim2  15469  prdsbas3  17451  prdsdsval2  17454  ptbasfi  23475  ptunimpt  23489  voliun  25462  lgamgulmlem6  26951  riesz4i  31999  dmdbr6ati  32359  ctbssinf  37401
  Copyright terms: Public domain W3C validator