MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimiaa Structured version   Visualization version   GIF version

Theorem ralimiaa 3071
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
ralimiaa.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
ralimiaa (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimiaa
StepHypRef Expression
1 ralimiaa.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 412 . 2 (𝑥𝐴 → (𝜑𝜓))
32ralimia 3069 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3051
This theorem is referenced by:  ralrnmptw  7080  ralrnmpt  7082  tz7.48-2  8450  mptelixpg  8943  boxriin  8948  acnlem  10054  iundom2g  10546  konigthlem  10574  hashge2el2dif  14486  rlim2  15499  prdsbas3  17480  prdsdsval2  17483  ptbasfi  23504  ptunimpt  23518  voliun  25492  lgamgulmlem6  26980  riesz4i  31976  dmdbr6ati  32336  ctbssinf  37345
  Copyright terms: Public domain W3C validator