MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimiaa Structured version   Visualization version   GIF version

Theorem ralimiaa 3085
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
ralimiaa.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
ralimiaa (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimiaa
StepHypRef Expression
1 ralimiaa.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 412 . 2 (𝑥𝐴 → (𝜑𝜓))
32ralimia 3084 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ral 3068
This theorem is referenced by:  ralrnmptw  6952  ralrnmpt  6954  tz7.48-2  8243  mptelixpg  8681  boxriin  8686  acnlem  9735  iundom2g  10227  konigthlem  10255  hashge2el2dif  14122  rlim2  15133  prdsbas3  17109  prdsdsval2  17112  ptbasfi  22640  ptunimpt  22654  voliun  24623  lgamgulmlem6  26088  riesz4i  30326  dmdbr6ati  30686  ctbssinf  35504
  Copyright terms: Public domain W3C validator