MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimiaa Structured version   Visualization version   GIF version

Theorem ralimiaa 3068
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
ralimiaa.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
ralimiaa (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimiaa
StepHypRef Expression
1 ralimiaa.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 412 . 2 (𝑥𝐴 → (𝜑𝜓))
32ralimia 3066 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3048
This theorem is referenced by:  ralrnmptw  7027  ralrnmpt  7029  tz7.48-2  8361  mptelixpg  8859  boxriin  8864  acnlem  9939  iundom2g  10431  konigthlem  10459  hashge2el2dif  14387  rlim2  15403  prdsbas3  17385  prdsdsval2  17388  ptbasfi  23496  ptunimpt  23510  voliun  25482  lgamgulmlem6  26971  riesz4i  32043  dmdbr6ati  32403  ctbssinf  37450
  Copyright terms: Public domain W3C validator