MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimiaa Structured version   Visualization version   GIF version

Theorem ralimiaa 3086
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
ralimiaa.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
ralimiaa (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimiaa
StepHypRef Expression
1 ralimiaa.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 413 . 2 (𝑥𝐴 → (𝜑𝜓))
32ralimia 3085 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ral 3069
This theorem is referenced by:  ralrnmptw  6970  ralrnmpt  6972  tz7.48-2  8273  mptelixpg  8723  boxriin  8728  acnlem  9804  iundom2g  10296  konigthlem  10324  hashge2el2dif  14194  rlim2  15205  prdsbas3  17192  prdsdsval2  17195  ptbasfi  22732  ptunimpt  22746  voliun  24718  lgamgulmlem6  26183  riesz4i  30425  dmdbr6ati  30785  ctbssinf  35577
  Copyright terms: Public domain W3C validator