| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimiaa | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.) |
| Ref | Expression |
|---|---|
| ralimiaa.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| ralimiaa | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimiaa.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | ralimia 3069 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3051 |
| This theorem is referenced by: ralrnmptw 7080 ralrnmpt 7082 tz7.48-2 8450 mptelixpg 8943 boxriin 8948 acnlem 10054 iundom2g 10546 konigthlem 10574 hashge2el2dif 14486 rlim2 15499 prdsbas3 17480 prdsdsval2 17483 ptbasfi 23504 ptunimpt 23518 voliun 25492 lgamgulmlem6 26980 riesz4i 31976 dmdbr6ati 32336 ctbssinf 37345 |
| Copyright terms: Public domain | W3C validator |