Proof of Theorem acnlem
Step | Hyp | Ref
| Expression |
1 | | fvssunirn 6715 |
. . . . . 6
⊢ (𝑓‘𝑥) ⊆ ∪ ran
𝑓 |
2 | | simpr 488 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (𝑓‘𝑥)) → 𝐵 ∈ (𝑓‘𝑥)) |
3 | 1, 2 | sseldi 3885 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (𝑓‘𝑥)) → 𝐵 ∈ ∪ ran
𝑓) |
4 | 3 | ralimiaa 3075 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ (𝑓‘𝑥) → ∀𝑥 ∈ 𝐴 𝐵 ∈ ∪ ran
𝑓) |
5 | | eqid 2739 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
6 | 5 | fmpt 6896 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ∪ ran
𝑓 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶∪ ran
𝑓) |
7 | 4, 6 | sylib 221 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ (𝑓‘𝑥) → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶∪ ran
𝑓) |
8 | | id 22 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) |
9 | | vex 3404 |
. . . . . 6
⊢ 𝑓 ∈ V |
10 | 9 | rnex 7655 |
. . . . 5
⊢ ran 𝑓 ∈ V |
11 | 10 | uniex 7497 |
. . . 4
⊢ ∪ ran 𝑓 ∈ V |
12 | | fex2 7676 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶∪ ran
𝑓 ∧ 𝐴 ∈ 𝑉 ∧ ∪ ran
𝑓 ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
13 | 11, 12 | mp3an3 1451 |
. . 3
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶∪ ran
𝑓 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
14 | 7, 8, 13 | syl2anr 600 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑓‘𝑥)) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
15 | 5 | fvmpt2 6798 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (𝑓‘𝑥)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
16 | 15, 2 | eqeltrd 2834 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (𝑓‘𝑥)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ∈ (𝑓‘𝑥)) |
17 | 16 | ralimiaa 3075 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ (𝑓‘𝑥) → ∀𝑥 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ∈ (𝑓‘𝑥)) |
18 | 17 | adantl 485 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑓‘𝑥)) → ∀𝑥 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ∈ (𝑓‘𝑥)) |
19 | | nfmpt1 5138 |
. . . 4
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
20 | 19 | nfeq2 2917 |
. . 3
⊢
Ⅎ𝑥 𝑔 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
21 | | fveq1 6685 |
. . . 4
⊢ (𝑔 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑔‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
22 | 21 | eleq1d 2818 |
. . 3
⊢ (𝑔 = (𝑥 ∈ 𝐴 ↦ 𝐵) → ((𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ∈ (𝑓‘𝑥))) |
23 | 20, 22 | ralbid 3146 |
. 2
⊢ (𝑔 = (𝑥 ∈ 𝐴 ↦ 𝐵) → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ ∀𝑥 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ∈ (𝑓‘𝑥))) |
24 | 14, 18, 23 | spcedv 3505 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑓‘𝑥)) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) |