MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnlem Structured version   Visualization version   GIF version

Theorem acnlem 10117
Description: Construct a mapping satisfying the consequent of isacn 10113. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnlem ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐴   𝐵,𝑔
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem acnlem
StepHypRef Expression
1 fvssunirn 6953 . . . . . 6 (𝑓𝑥) ⊆ ran 𝑓
2 simpr 484 . . . . . 6 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → 𝐵 ∈ (𝑓𝑥))
31, 2sselid 4006 . . . . 5 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → 𝐵 ran 𝑓)
43ralimiaa 3088 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → ∀𝑥𝐴 𝐵 ran 𝑓)
5 eqid 2740 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65fmpt 7144 . . . 4 (∀𝑥𝐴 𝐵 ran 𝑓 ↔ (𝑥𝐴𝐵):𝐴 ran 𝑓)
74, 6sylib 218 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → (𝑥𝐴𝐵):𝐴 ran 𝑓)
8 id 22 . . 3 (𝐴𝑉𝐴𝑉)
9 vex 3492 . . . . . 6 𝑓 ∈ V
109rnex 7950 . . . . 5 ran 𝑓 ∈ V
1110uniex 7776 . . . 4 ran 𝑓 ∈ V
12 fex2 7974 . . . 4 (((𝑥𝐴𝐵):𝐴 ran 𝑓𝐴𝑉 ran 𝑓 ∈ V) → (𝑥𝐴𝐵) ∈ V)
1311, 12mp3an3 1450 . . 3 (((𝑥𝐴𝐵):𝐴 ran 𝑓𝐴𝑉) → (𝑥𝐴𝐵) ∈ V)
147, 8, 13syl2anr 596 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → (𝑥𝐴𝐵) ∈ V)
155fvmpt2 7040 . . . . 5 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615, 2eqeltrd 2844 . . . 4 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
1716ralimiaa 3088 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
1817adantl 481 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
19 nfmpt1 5274 . . . 4 𝑥(𝑥𝐴𝐵)
2019nfeq2 2926 . . 3 𝑥 𝑔 = (𝑥𝐴𝐵)
21 fveq1 6919 . . . 4 (𝑔 = (𝑥𝐴𝐵) → (𝑔𝑥) = ((𝑥𝐴𝐵)‘𝑥))
2221eleq1d 2829 . . 3 (𝑔 = (𝑥𝐴𝐵) → ((𝑔𝑥) ∈ (𝑓𝑥) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥)))
2320, 22ralbid 3279 . 2 (𝑔 = (𝑥𝐴𝐵) → (∀𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥)))
2414, 18, 23spcedv 3611 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488   cuni 4931  cmpt 5249  ran crn 5701  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  numacn  10118  acndom  10120  acndom2  10123
  Copyright terms: Public domain W3C validator