MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnlem Structured version   Visualization version   GIF version

Theorem acnlem 10043
Description: Construct a mapping satisfying the consequent of isacn 10039. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnlem ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐴   𝐵,𝑔
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem acnlem
StepHypRef Expression
1 fvssunirn 6925 . . . . . 6 (𝑓𝑥) ⊆ ran 𝑓
2 simpr 486 . . . . . 6 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → 𝐵 ∈ (𝑓𝑥))
31, 2sselid 3981 . . . . 5 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → 𝐵 ran 𝑓)
43ralimiaa 3083 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → ∀𝑥𝐴 𝐵 ran 𝑓)
5 eqid 2733 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65fmpt 7110 . . . 4 (∀𝑥𝐴 𝐵 ran 𝑓 ↔ (𝑥𝐴𝐵):𝐴 ran 𝑓)
74, 6sylib 217 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → (𝑥𝐴𝐵):𝐴 ran 𝑓)
8 id 22 . . 3 (𝐴𝑉𝐴𝑉)
9 vex 3479 . . . . . 6 𝑓 ∈ V
109rnex 7903 . . . . 5 ran 𝑓 ∈ V
1110uniex 7731 . . . 4 ran 𝑓 ∈ V
12 fex2 7924 . . . 4 (((𝑥𝐴𝐵):𝐴 ran 𝑓𝐴𝑉 ran 𝑓 ∈ V) → (𝑥𝐴𝐵) ∈ V)
1311, 12mp3an3 1451 . . 3 (((𝑥𝐴𝐵):𝐴 ran 𝑓𝐴𝑉) → (𝑥𝐴𝐵) ∈ V)
147, 8, 13syl2anr 598 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → (𝑥𝐴𝐵) ∈ V)
155fvmpt2 7010 . . . . 5 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615, 2eqeltrd 2834 . . . 4 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
1716ralimiaa 3083 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
1817adantl 483 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
19 nfmpt1 5257 . . . 4 𝑥(𝑥𝐴𝐵)
2019nfeq2 2921 . . 3 𝑥 𝑔 = (𝑥𝐴𝐵)
21 fveq1 6891 . . . 4 (𝑔 = (𝑥𝐴𝐵) → (𝑔𝑥) = ((𝑥𝐴𝐵)‘𝑥))
2221eleq1d 2819 . . 3 (𝑔 = (𝑥𝐴𝐵) → ((𝑔𝑥) ∈ (𝑓𝑥) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥)))
2320, 22ralbid 3271 . 2 (𝑔 = (𝑥𝐴𝐵) → (∀𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥)))
2414, 18, 23spcedv 3589 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  wral 3062  Vcvv 3475   cuni 4909  cmpt 5232  ran crn 5678  wf 6540  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552
This theorem is referenced by:  numacn  10044  acndom  10046  acndom2  10049
  Copyright terms: Public domain W3C validator