Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ctbssinf Structured version   Visualization version   GIF version

Theorem ctbssinf 35263
Description: Using the axiom of choice, any infinite class has a countable subset. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
ctbssinf 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ctbssinf
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinf 8867 . 2 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
2 omex 9236 . . 3 ω ∈ V
3 sseq1 3912 . . . 4 (𝑥 = (𝑓𝑛) → (𝑥𝐴 ↔ (𝑓𝑛) ⊆ 𝐴))
4 breq1 5042 . . . 4 (𝑥 = (𝑓𝑛) → (𝑥𝑛 ↔ (𝑓𝑛) ≈ 𝑛))
53, 4anbi12d 634 . . 3 (𝑥 = (𝑓𝑛) → ((𝑥𝐴𝑥𝑛) ↔ ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)))
62, 5ac6s2 10065 . 2 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ∃𝑓(𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)))
7 simpl 486 . . . . . 6 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ⊆ 𝐴)
87ralimi 3073 . . . . 5 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴)
9 fvex 6708 . . . . . . . 8 (𝑓𝑛) ∈ V
109elpw 4503 . . . . . . 7 ((𝑓𝑛) ∈ 𝒫 𝐴 ↔ (𝑓𝑛) ⊆ 𝐴)
1110ralbii 3078 . . . . . 6 (∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴 ↔ ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴)
12 fnfvrnss 6915 . . . . . . 7 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴) → ran 𝑓 ⊆ 𝒫 𝐴)
13 uniss 4813 . . . . . . . 8 (ran 𝑓 ⊆ 𝒫 𝐴 ran 𝑓 𝒫 𝐴)
14 unipw 5320 . . . . . . . 8 𝒫 𝐴 = 𝐴
1513, 14sseqtrdi 3937 . . . . . . 7 (ran 𝑓 ⊆ 𝒫 𝐴 ran 𝑓𝐴)
1612, 15syl 17 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴) → ran 𝑓𝐴)
1711, 16sylan2br 598 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴) → ran 𝑓𝐴)
188, 17sylan2 596 . . . 4 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓𝐴)
19 dffn5 6749 . . . . . . . . . . 11 (𝑓 Fn ω ↔ 𝑓 = (𝑛 ∈ ω ↦ (𝑓𝑛)))
2019biimpi 219 . . . . . . . . . 10 (𝑓 Fn ω → 𝑓 = (𝑛 ∈ ω ↦ (𝑓𝑛)))
2120rneqd 5792 . . . . . . . . 9 (𝑓 Fn ω → ran 𝑓 = ran (𝑛 ∈ ω ↦ (𝑓𝑛)))
2221unieqd 4819 . . . . . . . 8 (𝑓 Fn ω → ran 𝑓 = ran (𝑛 ∈ ω ↦ (𝑓𝑛)))
239dfiun3 5820 . . . . . . . 8 𝑛 ∈ ω (𝑓𝑛) = ran (𝑛 ∈ ω ↦ (𝑓𝑛))
2422, 23eqtr4di 2789 . . . . . . 7 (𝑓 Fn ω → ran 𝑓 = 𝑛 ∈ ω (𝑓𝑛))
2524adantr 484 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 = 𝑛 ∈ ω (𝑓𝑛))
26 simpr 488 . . . . . . . . 9 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ≈ 𝑛)
2726ralimi 3073 . . . . . . . 8 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω (𝑓𝑛) ≈ 𝑛)
28 endom 8633 . . . . . . . . . 10 ((𝑓𝑛) ≈ 𝑛 → (𝑓𝑛) ≼ 𝑛)
29 nnsdom 9247 . . . . . . . . . 10 (𝑛 ∈ ω → 𝑛 ≺ ω)
30 domsdomtr 8759 . . . . . . . . . . 11 (((𝑓𝑛) ≼ 𝑛𝑛 ≺ ω) → (𝑓𝑛) ≺ ω)
31 sdomdom 8634 . . . . . . . . . . 11 ((𝑓𝑛) ≺ ω → (𝑓𝑛) ≼ ω)
3230, 31syl 17 . . . . . . . . . 10 (((𝑓𝑛) ≼ 𝑛𝑛 ≺ ω) → (𝑓𝑛) ≼ ω)
3328, 29, 32syl2anr 600 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ≼ ω)
3433ralimiaa 3072 . . . . . . . 8 (∀𝑛 ∈ ω (𝑓𝑛) ≈ 𝑛 → ∀𝑛 ∈ ω (𝑓𝑛) ≼ ω)
35 iunctb2 35260 . . . . . . . 8 (∀𝑛 ∈ ω (𝑓𝑛) ≼ ω → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3627, 34, 353syl 18 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3736adantl 485 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3825, 37eqbrtrd 5061 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 ≼ ω)
39 fvssunirn 6724 . . . . . . . . . 10 (𝑓𝑛) ⊆ ran 𝑓
4039jctl 527 . . . . . . . . 9 ((𝑓𝑛) ≈ 𝑛 → ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
4140adantl 485 . . . . . . . 8 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
4241ralimi 3073 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
43 sseq1 3912 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑛) → (𝑥 ran 𝑓 ↔ (𝑓𝑛) ⊆ ran 𝑓))
4443, 4anbi12d 634 . . . . . . . . . . 11 (𝑥 = (𝑓𝑛) → ((𝑥 ran 𝑓𝑥𝑛) ↔ ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛)))
459, 44spcev 3511 . . . . . . . . . 10 (((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ∃𝑥(𝑥 ran 𝑓𝑥𝑛))
4645ralimi 3073 . . . . . . . . 9 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω ∃𝑥(𝑥 ran 𝑓𝑥𝑛))
47 isinf2 35262 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑥(𝑥 ran 𝑓𝑥𝑛) → ¬ ran 𝑓 ∈ Fin)
4846, 47syl 17 . . . . . . . 8 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ¬ ran 𝑓 ∈ Fin)
49 vex 3402 . . . . . . . . . . 11 𝑓 ∈ V
5049rnex 7668 . . . . . . . . . 10 ran 𝑓 ∈ V
5150uniex 7507 . . . . . . . . 9 ran 𝑓 ∈ V
52 infinf 10145 . . . . . . . . 9 ( ran 𝑓 ∈ V → (¬ ran 𝑓 ∈ Fin ↔ ω ≼ ran 𝑓))
5351, 52ax-mp 5 . . . . . . . 8 ran 𝑓 ∈ Fin ↔ ω ≼ ran 𝑓)
5448, 53sylib 221 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ω ≼ ran 𝑓)
5542, 54syl 17 . . . . . 6 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ω ≼ ran 𝑓)
5655adantl 485 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ω ≼ ran 𝑓)
57 sbth 8744 . . . . 5 (( ran 𝑓 ≼ ω ∧ ω ≼ ran 𝑓) → ran 𝑓 ≈ ω)
5838, 56, 57syl2anc 587 . . . 4 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 ≈ ω)
59 sseq1 3912 . . . . . 6 (𝑥 = ran 𝑓 → (𝑥𝐴 ran 𝑓𝐴))
60 breq1 5042 . . . . . 6 (𝑥 = ran 𝑓 → (𝑥 ≈ ω ↔ ran 𝑓 ≈ ω))
6159, 60anbi12d 634 . . . . 5 (𝑥 = ran 𝑓 → ((𝑥𝐴𝑥 ≈ ω) ↔ ( ran 𝑓𝐴 ran 𝑓 ≈ ω)))
6251, 61spcev 3511 . . . 4 (( ran 𝑓𝐴 ran 𝑓 ≈ ω) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
6318, 58, 62syl2anc 587 . . 3 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
6463exlimiv 1938 . 2 (∃𝑓(𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
651, 6, 643syl 18 1 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  wral 3051  Vcvv 3398  wss 3853  𝒫 cpw 4499   cuni 4805   ciun 4890   class class class wbr 5039  cmpt 5120  ran crn 5537   Fn wfn 6353  cfv 6358  ωcom 7622  cen 8601  cdom 8602  csdm 8603  Fincfn 8604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-reg 9186  ax-inf2 9234  ax-cc 10014  ax-ac2 10042
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-oi 9104  df-r1 9345  df-rank 9346  df-card 9520  df-acn 9523  df-ac 9695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator