Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ctbssinf Structured version   Visualization version   GIF version

Theorem ctbssinf 35577
Description: Using the axiom of choice, any infinite class has a countable subset. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
ctbssinf 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ctbssinf
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinf 9036 . 2 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
2 omex 9401 . . 3 ω ∈ V
3 sseq1 3946 . . . 4 (𝑥 = (𝑓𝑛) → (𝑥𝐴 ↔ (𝑓𝑛) ⊆ 𝐴))
4 breq1 5077 . . . 4 (𝑥 = (𝑓𝑛) → (𝑥𝑛 ↔ (𝑓𝑛) ≈ 𝑛))
53, 4anbi12d 631 . . 3 (𝑥 = (𝑓𝑛) → ((𝑥𝐴𝑥𝑛) ↔ ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)))
62, 5ac6s2 10242 . 2 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ∃𝑓(𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)))
7 simpl 483 . . . . . 6 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ⊆ 𝐴)
87ralimi 3087 . . . . 5 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴)
9 fvex 6787 . . . . . . . 8 (𝑓𝑛) ∈ V
109elpw 4537 . . . . . . 7 ((𝑓𝑛) ∈ 𝒫 𝐴 ↔ (𝑓𝑛) ⊆ 𝐴)
1110ralbii 3092 . . . . . 6 (∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴 ↔ ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴)
12 fnfvrnss 6994 . . . . . . 7 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴) → ran 𝑓 ⊆ 𝒫 𝐴)
13 uniss 4847 . . . . . . . 8 (ran 𝑓 ⊆ 𝒫 𝐴 ran 𝑓 𝒫 𝐴)
14 unipw 5366 . . . . . . . 8 𝒫 𝐴 = 𝐴
1513, 14sseqtrdi 3971 . . . . . . 7 (ran 𝑓 ⊆ 𝒫 𝐴 ran 𝑓𝐴)
1612, 15syl 17 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴) → ran 𝑓𝐴)
1711, 16sylan2br 595 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴) → ran 𝑓𝐴)
188, 17sylan2 593 . . . 4 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓𝐴)
19 dffn5 6828 . . . . . . . . . . 11 (𝑓 Fn ω ↔ 𝑓 = (𝑛 ∈ ω ↦ (𝑓𝑛)))
2019biimpi 215 . . . . . . . . . 10 (𝑓 Fn ω → 𝑓 = (𝑛 ∈ ω ↦ (𝑓𝑛)))
2120rneqd 5847 . . . . . . . . 9 (𝑓 Fn ω → ran 𝑓 = ran (𝑛 ∈ ω ↦ (𝑓𝑛)))
2221unieqd 4853 . . . . . . . 8 (𝑓 Fn ω → ran 𝑓 = ran (𝑛 ∈ ω ↦ (𝑓𝑛)))
239dfiun3 5875 . . . . . . . 8 𝑛 ∈ ω (𝑓𝑛) = ran (𝑛 ∈ ω ↦ (𝑓𝑛))
2422, 23eqtr4di 2796 . . . . . . 7 (𝑓 Fn ω → ran 𝑓 = 𝑛 ∈ ω (𝑓𝑛))
2524adantr 481 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 = 𝑛 ∈ ω (𝑓𝑛))
26 simpr 485 . . . . . . . . 9 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ≈ 𝑛)
2726ralimi 3087 . . . . . . . 8 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω (𝑓𝑛) ≈ 𝑛)
28 endom 8767 . . . . . . . . . 10 ((𝑓𝑛) ≈ 𝑛 → (𝑓𝑛) ≼ 𝑛)
29 nnsdom 9412 . . . . . . . . . 10 (𝑛 ∈ ω → 𝑛 ≺ ω)
30 domsdomtr 8899 . . . . . . . . . . 11 (((𝑓𝑛) ≼ 𝑛𝑛 ≺ ω) → (𝑓𝑛) ≺ ω)
31 sdomdom 8768 . . . . . . . . . . 11 ((𝑓𝑛) ≺ ω → (𝑓𝑛) ≼ ω)
3230, 31syl 17 . . . . . . . . . 10 (((𝑓𝑛) ≼ 𝑛𝑛 ≺ ω) → (𝑓𝑛) ≼ ω)
3328, 29, 32syl2anr 597 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ≼ ω)
3433ralimiaa 3086 . . . . . . . 8 (∀𝑛 ∈ ω (𝑓𝑛) ≈ 𝑛 → ∀𝑛 ∈ ω (𝑓𝑛) ≼ ω)
35 iunctb2 35574 . . . . . . . 8 (∀𝑛 ∈ ω (𝑓𝑛) ≼ ω → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3627, 34, 353syl 18 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3736adantl 482 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3825, 37eqbrtrd 5096 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 ≼ ω)
39 fvssunirn 6803 . . . . . . . . . 10 (𝑓𝑛) ⊆ ran 𝑓
4039jctl 524 . . . . . . . . 9 ((𝑓𝑛) ≈ 𝑛 → ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
4140adantl 482 . . . . . . . 8 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
4241ralimi 3087 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
43 sseq1 3946 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑛) → (𝑥 ran 𝑓 ↔ (𝑓𝑛) ⊆ ran 𝑓))
4443, 4anbi12d 631 . . . . . . . . . . 11 (𝑥 = (𝑓𝑛) → ((𝑥 ran 𝑓𝑥𝑛) ↔ ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛)))
459, 44spcev 3545 . . . . . . . . . 10 (((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ∃𝑥(𝑥 ran 𝑓𝑥𝑛))
4645ralimi 3087 . . . . . . . . 9 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω ∃𝑥(𝑥 ran 𝑓𝑥𝑛))
47 isinf2 35576 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑥(𝑥 ran 𝑓𝑥𝑛) → ¬ ran 𝑓 ∈ Fin)
4846, 47syl 17 . . . . . . . 8 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ¬ ran 𝑓 ∈ Fin)
49 vex 3436 . . . . . . . . . . 11 𝑓 ∈ V
5049rnex 7759 . . . . . . . . . 10 ran 𝑓 ∈ V
5150uniex 7594 . . . . . . . . 9 ran 𝑓 ∈ V
52 infinf 10322 . . . . . . . . 9 ( ran 𝑓 ∈ V → (¬ ran 𝑓 ∈ Fin ↔ ω ≼ ran 𝑓))
5351, 52ax-mp 5 . . . . . . . 8 ran 𝑓 ∈ Fin ↔ ω ≼ ran 𝑓)
5448, 53sylib 217 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ω ≼ ran 𝑓)
5542, 54syl 17 . . . . . 6 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ω ≼ ran 𝑓)
5655adantl 482 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ω ≼ ran 𝑓)
57 sbth 8880 . . . . 5 (( ran 𝑓 ≼ ω ∧ ω ≼ ran 𝑓) → ran 𝑓 ≈ ω)
5838, 56, 57syl2anc 584 . . . 4 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 ≈ ω)
59 sseq1 3946 . . . . . 6 (𝑥 = ran 𝑓 → (𝑥𝐴 ran 𝑓𝐴))
60 breq1 5077 . . . . . 6 (𝑥 = ran 𝑓 → (𝑥 ≈ ω ↔ ran 𝑓 ≈ ω))
6159, 60anbi12d 631 . . . . 5 (𝑥 = ran 𝑓 → ((𝑥𝐴𝑥 ≈ ω) ↔ ( ran 𝑓𝐴 ran 𝑓 ≈ ω)))
6251, 61spcev 3545 . . . 4 (( ran 𝑓𝐴 ran 𝑓 ≈ ω) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
6318, 58, 62syl2anc 584 . . 3 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
6463exlimiv 1933 . 2 (∃𝑓(𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
651, 6, 643syl 18 1 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  Vcvv 3432  wss 3887  𝒫 cpw 4533   cuni 4839   ciun 4924   class class class wbr 5074  cmpt 5157  ran crn 5590   Fn wfn 6428  cfv 6433  ωcom 7712  cen 8730  cdom 8731  csdm 8732  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-cc 10191  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-r1 9522  df-rank 9523  df-card 9697  df-acn 9700  df-ac 9872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator