Step | Hyp | Ref
| Expression |
1 | | isinf 9036 |
. 2
⊢ (¬
𝐴 ∈ Fin →
∀𝑛 ∈ ω
∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) |
2 | | omex 9401 |
. . 3
⊢ ω
∈ V |
3 | | sseq1 3946 |
. . . 4
⊢ (𝑥 = (𝑓‘𝑛) → (𝑥 ⊆ 𝐴 ↔ (𝑓‘𝑛) ⊆ 𝐴)) |
4 | | breq1 5077 |
. . . 4
⊢ (𝑥 = (𝑓‘𝑛) → (𝑥 ≈ 𝑛 ↔ (𝑓‘𝑛) ≈ 𝑛)) |
5 | 3, 4 | anbi12d 631 |
. . 3
⊢ (𝑥 = (𝑓‘𝑛) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) ↔ ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛))) |
6 | 2, 5 | ac6s2 10242 |
. 2
⊢
(∀𝑛 ∈
ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛) → ∃𝑓(𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛))) |
7 | | simpl 483 |
. . . . . 6
⊢ (((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛) → (𝑓‘𝑛) ⊆ 𝐴) |
8 | 7 | ralimi 3087 |
. . . . 5
⊢
(∀𝑛 ∈
ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω (𝑓‘𝑛) ⊆ 𝐴) |
9 | | fvex 6787 |
. . . . . . . 8
⊢ (𝑓‘𝑛) ∈ V |
10 | 9 | elpw 4537 |
. . . . . . 7
⊢ ((𝑓‘𝑛) ∈ 𝒫 𝐴 ↔ (𝑓‘𝑛) ⊆ 𝐴) |
11 | 10 | ralbii 3092 |
. . . . . 6
⊢
(∀𝑛 ∈
ω (𝑓‘𝑛) ∈ 𝒫 𝐴 ↔ ∀𝑛 ∈ ω (𝑓‘𝑛) ⊆ 𝐴) |
12 | | fnfvrnss 6994 |
. . . . . . 7
⊢ ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓‘𝑛) ∈ 𝒫 𝐴) → ran 𝑓 ⊆ 𝒫 𝐴) |
13 | | uniss 4847 |
. . . . . . . 8
⊢ (ran
𝑓 ⊆ 𝒫 𝐴 → ∪ ran 𝑓 ⊆ ∪
𝒫 𝐴) |
14 | | unipw 5366 |
. . . . . . . 8
⊢ ∪ 𝒫 𝐴 = 𝐴 |
15 | 13, 14 | sseqtrdi 3971 |
. . . . . . 7
⊢ (ran
𝑓 ⊆ 𝒫 𝐴 → ∪ ran 𝑓 ⊆ 𝐴) |
16 | 12, 15 | syl 17 |
. . . . . 6
⊢ ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓‘𝑛) ∈ 𝒫 𝐴) → ∪ ran
𝑓 ⊆ 𝐴) |
17 | 11, 16 | sylan2br 595 |
. . . . 5
⊢ ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓‘𝑛) ⊆ 𝐴) → ∪ ran
𝑓 ⊆ 𝐴) |
18 | 8, 17 | sylan2 593 |
. . . 4
⊢ ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛)) → ∪ ran
𝑓 ⊆ 𝐴) |
19 | | dffn5 6828 |
. . . . . . . . . . 11
⊢ (𝑓 Fn ω ↔ 𝑓 = (𝑛 ∈ ω ↦ (𝑓‘𝑛))) |
20 | 19 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑓 Fn ω → 𝑓 = (𝑛 ∈ ω ↦ (𝑓‘𝑛))) |
21 | 20 | rneqd 5847 |
. . . . . . . . 9
⊢ (𝑓 Fn ω → ran 𝑓 = ran (𝑛 ∈ ω ↦ (𝑓‘𝑛))) |
22 | 21 | unieqd 4853 |
. . . . . . . 8
⊢ (𝑓 Fn ω → ∪ ran 𝑓 = ∪ ran (𝑛 ∈ ω ↦ (𝑓‘𝑛))) |
23 | 9 | dfiun3 5875 |
. . . . . . . 8
⊢ ∪ 𝑛 ∈ ω (𝑓‘𝑛) = ∪ ran (𝑛 ∈ ω ↦ (𝑓‘𝑛)) |
24 | 22, 23 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑓 Fn ω → ∪ ran 𝑓 = ∪ 𝑛 ∈ ω (𝑓‘𝑛)) |
25 | 24 | adantr 481 |
. . . . . 6
⊢ ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛)) → ∪ ran
𝑓 = ∪ 𝑛 ∈ ω (𝑓‘𝑛)) |
26 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛) → (𝑓‘𝑛) ≈ 𝑛) |
27 | 26 | ralimi 3087 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω (𝑓‘𝑛) ≈ 𝑛) |
28 | | endom 8767 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ≈ 𝑛 → (𝑓‘𝑛) ≼ 𝑛) |
29 | | nnsdom 9412 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ω → 𝑛 ≺
ω) |
30 | | domsdomtr 8899 |
. . . . . . . . . . 11
⊢ (((𝑓‘𝑛) ≼ 𝑛 ∧ 𝑛 ≺ ω) → (𝑓‘𝑛) ≺ ω) |
31 | | sdomdom 8768 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑛) ≺ ω → (𝑓‘𝑛) ≼ ω) |
32 | 30, 31 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑓‘𝑛) ≼ 𝑛 ∧ 𝑛 ≺ ω) → (𝑓‘𝑛) ≼ ω) |
33 | 28, 29, 32 | syl2anr 597 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ (𝑓‘𝑛) ≈ 𝑛) → (𝑓‘𝑛) ≼ ω) |
34 | 33 | ralimiaa 3086 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ω (𝑓‘𝑛) ≈ 𝑛 → ∀𝑛 ∈ ω (𝑓‘𝑛) ≼ ω) |
35 | | iunctb2 35574 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ω (𝑓‘𝑛) ≼ ω →
∪ 𝑛 ∈ ω (𝑓‘𝑛) ≼ ω) |
36 | 27, 34, 35 | 3syl 18 |
. . . . . . 7
⊢
(∀𝑛 ∈
ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛) → ∪
𝑛 ∈ ω (𝑓‘𝑛) ≼ ω) |
37 | 36 | adantl 482 |
. . . . . 6
⊢ ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛)) → ∪
𝑛 ∈ ω (𝑓‘𝑛) ≼ ω) |
38 | 25, 37 | eqbrtrd 5096 |
. . . . 5
⊢ ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛)) → ∪ ran
𝑓 ≼
ω) |
39 | | fvssunirn 6803 |
. . . . . . . . . 10
⊢ (𝑓‘𝑛) ⊆ ∪ ran
𝑓 |
40 | 39 | jctl 524 |
. . . . . . . . 9
⊢ ((𝑓‘𝑛) ≈ 𝑛 → ((𝑓‘𝑛) ⊆ ∪ ran
𝑓 ∧ (𝑓‘𝑛) ≈ 𝑛)) |
41 | 40 | adantl 482 |
. . . . . . . 8
⊢ (((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛) → ((𝑓‘𝑛) ⊆ ∪ ran
𝑓 ∧ (𝑓‘𝑛) ≈ 𝑛)) |
42 | 41 | ralimi 3087 |
. . . . . . 7
⊢
(∀𝑛 ∈
ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω ((𝑓‘𝑛) ⊆ ∪ ran
𝑓 ∧ (𝑓‘𝑛) ≈ 𝑛)) |
43 | | sseq1 3946 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑓‘𝑛) → (𝑥 ⊆ ∪ ran
𝑓 ↔ (𝑓‘𝑛) ⊆ ∪ ran
𝑓)) |
44 | 43, 4 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑓‘𝑛) → ((𝑥 ⊆ ∪ ran
𝑓 ∧ 𝑥 ≈ 𝑛) ↔ ((𝑓‘𝑛) ⊆ ∪ ran
𝑓 ∧ (𝑓‘𝑛) ≈ 𝑛))) |
45 | 9, 44 | spcev 3545 |
. . . . . . . . . 10
⊢ (((𝑓‘𝑛) ⊆ ∪ ran
𝑓 ∧ (𝑓‘𝑛) ≈ 𝑛) → ∃𝑥(𝑥 ⊆ ∪ ran
𝑓 ∧ 𝑥 ≈ 𝑛)) |
46 | 45 | ralimi 3087 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω ((𝑓‘𝑛) ⊆ ∪ ran 𝑓 ∧ (𝑓‘𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ ∪ ran
𝑓 ∧ 𝑥 ≈ 𝑛)) |
47 | | isinf2 35576 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ω ∃𝑥(𝑥 ⊆ ∪ ran 𝑓 ∧ 𝑥 ≈ 𝑛) → ¬ ∪
ran 𝑓 ∈
Fin) |
48 | 46, 47 | syl 17 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ω ((𝑓‘𝑛) ⊆ ∪ ran 𝑓 ∧ (𝑓‘𝑛) ≈ 𝑛) → ¬ ∪
ran 𝑓 ∈
Fin) |
49 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
50 | 49 | rnex 7759 |
. . . . . . . . . 10
⊢ ran 𝑓 ∈ V |
51 | 50 | uniex 7594 |
. . . . . . . . 9
⊢ ∪ ran 𝑓 ∈ V |
52 | | infinf 10322 |
. . . . . . . . 9
⊢ (∪ ran 𝑓 ∈ V → (¬ ∪ ran 𝑓 ∈ Fin ↔ ω ≼ ∪ ran 𝑓)) |
53 | 51, 52 | ax-mp 5 |
. . . . . . . 8
⊢ (¬
∪ ran 𝑓 ∈ Fin ↔ ω ≼ ∪ ran 𝑓) |
54 | 48, 53 | sylib 217 |
. . . . . . 7
⊢
(∀𝑛 ∈
ω ((𝑓‘𝑛) ⊆ ∪ ran 𝑓 ∧ (𝑓‘𝑛) ≈ 𝑛) → ω ≼ ∪ ran 𝑓) |
55 | 42, 54 | syl 17 |
. . . . . 6
⊢
(∀𝑛 ∈
ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛) → ω ≼ ∪ ran 𝑓) |
56 | 55 | adantl 482 |
. . . . 5
⊢ ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛)) → ω ≼ ∪ ran 𝑓) |
57 | | sbth 8880 |
. . . . 5
⊢ ((∪ ran 𝑓 ≼ ω ∧ ω ≼ ∪ ran 𝑓) → ∪ ran
𝑓 ≈
ω) |
58 | 38, 56, 57 | syl2anc 584 |
. . . 4
⊢ ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛)) → ∪ ran
𝑓 ≈
ω) |
59 | | sseq1 3946 |
. . . . . 6
⊢ (𝑥 = ∪
ran 𝑓 → (𝑥 ⊆ 𝐴 ↔ ∪ ran
𝑓 ⊆ 𝐴)) |
60 | | breq1 5077 |
. . . . . 6
⊢ (𝑥 = ∪
ran 𝑓 → (𝑥 ≈ ω ↔ ∪ ran 𝑓 ≈ ω)) |
61 | 59, 60 | anbi12d 631 |
. . . . 5
⊢ (𝑥 = ∪
ran 𝑓 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω) ↔ (∪ ran 𝑓 ⊆ 𝐴 ∧ ∪ ran
𝑓 ≈
ω))) |
62 | 51, 61 | spcev 3545 |
. . . 4
⊢ ((∪ ran 𝑓 ⊆ 𝐴 ∧ ∪ ran
𝑓 ≈ ω) →
∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
63 | 18, 58, 62 | syl2anc 584 |
. . 3
⊢ ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
64 | 63 | exlimiv 1933 |
. 2
⊢
(∃𝑓(𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓‘𝑛) ⊆ 𝐴 ∧ (𝑓‘𝑛) ≈ 𝑛)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
65 | 1, 6, 64 | 3syl 18 |
1
⊢ (¬
𝐴 ∈ Fin →
∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |