Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ctbssinf Structured version   Visualization version   GIF version

Theorem ctbssinf 37394
Description: Using the axiom of choice, any infinite class has a countable subset. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
ctbssinf 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ctbssinf
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinf 9207 . 2 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
2 omex 9596 . . 3 ω ∈ V
3 sseq1 3972 . . . 4 (𝑥 = (𝑓𝑛) → (𝑥𝐴 ↔ (𝑓𝑛) ⊆ 𝐴))
4 breq1 5110 . . . 4 (𝑥 = (𝑓𝑛) → (𝑥𝑛 ↔ (𝑓𝑛) ≈ 𝑛))
53, 4anbi12d 632 . . 3 (𝑥 = (𝑓𝑛) → ((𝑥𝐴𝑥𝑛) ↔ ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)))
62, 5ac6s2 10439 . 2 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ∃𝑓(𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)))
7 simpl 482 . . . . . 6 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ⊆ 𝐴)
87ralimi 3066 . . . . 5 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴)
9 fvex 6871 . . . . . . . 8 (𝑓𝑛) ∈ V
109elpw 4567 . . . . . . 7 ((𝑓𝑛) ∈ 𝒫 𝐴 ↔ (𝑓𝑛) ⊆ 𝐴)
1110ralbii 3075 . . . . . 6 (∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴 ↔ ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴)
12 fnfvrnss 7093 . . . . . . 7 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴) → ran 𝑓 ⊆ 𝒫 𝐴)
13 uniss 4879 . . . . . . . 8 (ran 𝑓 ⊆ 𝒫 𝐴 ran 𝑓 𝒫 𝐴)
14 unipw 5410 . . . . . . . 8 𝒫 𝐴 = 𝐴
1513, 14sseqtrdi 3987 . . . . . . 7 (ran 𝑓 ⊆ 𝒫 𝐴 ran 𝑓𝐴)
1612, 15syl 17 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴) → ran 𝑓𝐴)
1711, 16sylan2br 595 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴) → ran 𝑓𝐴)
188, 17sylan2 593 . . . 4 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓𝐴)
19 dffn5 6919 . . . . . . . . . . 11 (𝑓 Fn ω ↔ 𝑓 = (𝑛 ∈ ω ↦ (𝑓𝑛)))
2019biimpi 216 . . . . . . . . . 10 (𝑓 Fn ω → 𝑓 = (𝑛 ∈ ω ↦ (𝑓𝑛)))
2120rneqd 5902 . . . . . . . . 9 (𝑓 Fn ω → ran 𝑓 = ran (𝑛 ∈ ω ↦ (𝑓𝑛)))
2221unieqd 4884 . . . . . . . 8 (𝑓 Fn ω → ran 𝑓 = ran (𝑛 ∈ ω ↦ (𝑓𝑛)))
239dfiun3 5933 . . . . . . . 8 𝑛 ∈ ω (𝑓𝑛) = ran (𝑛 ∈ ω ↦ (𝑓𝑛))
2422, 23eqtr4di 2782 . . . . . . 7 (𝑓 Fn ω → ran 𝑓 = 𝑛 ∈ ω (𝑓𝑛))
2524adantr 480 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 = 𝑛 ∈ ω (𝑓𝑛))
26 simpr 484 . . . . . . . . 9 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ≈ 𝑛)
2726ralimi 3066 . . . . . . . 8 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω (𝑓𝑛) ≈ 𝑛)
28 endom 8950 . . . . . . . . . 10 ((𝑓𝑛) ≈ 𝑛 → (𝑓𝑛) ≼ 𝑛)
29 nnsdom 9607 . . . . . . . . . 10 (𝑛 ∈ ω → 𝑛 ≺ ω)
30 domsdomtr 9076 . . . . . . . . . . 11 (((𝑓𝑛) ≼ 𝑛𝑛 ≺ ω) → (𝑓𝑛) ≺ ω)
31 sdomdom 8951 . . . . . . . . . . 11 ((𝑓𝑛) ≺ ω → (𝑓𝑛) ≼ ω)
3230, 31syl 17 . . . . . . . . . 10 (((𝑓𝑛) ≼ 𝑛𝑛 ≺ ω) → (𝑓𝑛) ≼ ω)
3328, 29, 32syl2anr 597 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ≼ ω)
3433ralimiaa 3065 . . . . . . . 8 (∀𝑛 ∈ ω (𝑓𝑛) ≈ 𝑛 → ∀𝑛 ∈ ω (𝑓𝑛) ≼ ω)
35 iunctb2 37391 . . . . . . . 8 (∀𝑛 ∈ ω (𝑓𝑛) ≼ ω → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3627, 34, 353syl 18 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3736adantl 481 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3825, 37eqbrtrd 5129 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 ≼ ω)
39 fvssunirn 6891 . . . . . . . . . 10 (𝑓𝑛) ⊆ ran 𝑓
4039jctl 523 . . . . . . . . 9 ((𝑓𝑛) ≈ 𝑛 → ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
4140adantl 481 . . . . . . . 8 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
4241ralimi 3066 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
43 sseq1 3972 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑛) → (𝑥 ran 𝑓 ↔ (𝑓𝑛) ⊆ ran 𝑓))
4443, 4anbi12d 632 . . . . . . . . . . 11 (𝑥 = (𝑓𝑛) → ((𝑥 ran 𝑓𝑥𝑛) ↔ ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛)))
459, 44spcev 3572 . . . . . . . . . 10 (((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ∃𝑥(𝑥 ran 𝑓𝑥𝑛))
4645ralimi 3066 . . . . . . . . 9 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω ∃𝑥(𝑥 ran 𝑓𝑥𝑛))
47 isinf2 37393 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑥(𝑥 ran 𝑓𝑥𝑛) → ¬ ran 𝑓 ∈ Fin)
4846, 47syl 17 . . . . . . . 8 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ¬ ran 𝑓 ∈ Fin)
49 vex 3451 . . . . . . . . . . 11 𝑓 ∈ V
5049rnex 7886 . . . . . . . . . 10 ran 𝑓 ∈ V
5150uniex 7717 . . . . . . . . 9 ran 𝑓 ∈ V
52 infinf 10519 . . . . . . . . 9 ( ran 𝑓 ∈ V → (¬ ran 𝑓 ∈ Fin ↔ ω ≼ ran 𝑓))
5351, 52ax-mp 5 . . . . . . . 8 ran 𝑓 ∈ Fin ↔ ω ≼ ran 𝑓)
5448, 53sylib 218 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ω ≼ ran 𝑓)
5542, 54syl 17 . . . . . 6 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ω ≼ ran 𝑓)
5655adantl 481 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ω ≼ ran 𝑓)
57 sbth 9061 . . . . 5 (( ran 𝑓 ≼ ω ∧ ω ≼ ran 𝑓) → ran 𝑓 ≈ ω)
5838, 56, 57syl2anc 584 . . . 4 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 ≈ ω)
59 sseq1 3972 . . . . . 6 (𝑥 = ran 𝑓 → (𝑥𝐴 ran 𝑓𝐴))
60 breq1 5110 . . . . . 6 (𝑥 = ran 𝑓 → (𝑥 ≈ ω ↔ ran 𝑓 ≈ ω))
6159, 60anbi12d 632 . . . . 5 (𝑥 = ran 𝑓 → ((𝑥𝐴𝑥 ≈ ω) ↔ ( ran 𝑓𝐴 ran 𝑓 ≈ ω)))
6251, 61spcev 3572 . . . 4 (( ran 𝑓𝐴 ran 𝑓 ≈ ω) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
6318, 58, 62syl2anc 584 . . 3 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
6463exlimiv 1930 . 2 (∃𝑓(𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
651, 6, 643syl 18 1 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3447  wss 3914  𝒫 cpw 4563   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188  ran crn 5639   Fn wfn 6506  cfv 6511  ωcom 7842  cen 8915  cdom 8916  csdm 8917  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-cc 10388  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-r1 9717  df-rank 9718  df-card 9892  df-acn 9895  df-ac 10069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator