Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ctbssinf Structured version   Visualization version   GIF version

Theorem ctbssinf 37372
Description: Using the axiom of choice, any infinite class has a countable subset. (Contributed by ML, 14-Dec-2020.)
Assertion
Ref Expression
ctbssinf 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ctbssinf
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinf 9323 . 2 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛))
2 omex 9712 . . 3 ω ∈ V
3 sseq1 4034 . . . 4 (𝑥 = (𝑓𝑛) → (𝑥𝐴 ↔ (𝑓𝑛) ⊆ 𝐴))
4 breq1 5169 . . . 4 (𝑥 = (𝑓𝑛) → (𝑥𝑛 ↔ (𝑓𝑛) ≈ 𝑛))
53, 4anbi12d 631 . . 3 (𝑥 = (𝑓𝑛) → ((𝑥𝐴𝑥𝑛) ↔ ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)))
62, 5ac6s2 10555 . 2 (∀𝑛 ∈ ω ∃𝑥(𝑥𝐴𝑥𝑛) → ∃𝑓(𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)))
7 simpl 482 . . . . . 6 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ⊆ 𝐴)
87ralimi 3089 . . . . 5 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴)
9 fvex 6933 . . . . . . . 8 (𝑓𝑛) ∈ V
109elpw 4626 . . . . . . 7 ((𝑓𝑛) ∈ 𝒫 𝐴 ↔ (𝑓𝑛) ⊆ 𝐴)
1110ralbii 3099 . . . . . 6 (∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴 ↔ ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴)
12 fnfvrnss 7155 . . . . . . 7 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴) → ran 𝑓 ⊆ 𝒫 𝐴)
13 uniss 4939 . . . . . . . 8 (ran 𝑓 ⊆ 𝒫 𝐴 ran 𝑓 𝒫 𝐴)
14 unipw 5470 . . . . . . . 8 𝒫 𝐴 = 𝐴
1513, 14sseqtrdi 4059 . . . . . . 7 (ran 𝑓 ⊆ 𝒫 𝐴 ran 𝑓𝐴)
1612, 15syl 17 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ∈ 𝒫 𝐴) → ran 𝑓𝐴)
1711, 16sylan2br 594 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω (𝑓𝑛) ⊆ 𝐴) → ran 𝑓𝐴)
188, 17sylan2 592 . . . 4 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓𝐴)
19 dffn5 6980 . . . . . . . . . . 11 (𝑓 Fn ω ↔ 𝑓 = (𝑛 ∈ ω ↦ (𝑓𝑛)))
2019biimpi 216 . . . . . . . . . 10 (𝑓 Fn ω → 𝑓 = (𝑛 ∈ ω ↦ (𝑓𝑛)))
2120rneqd 5963 . . . . . . . . 9 (𝑓 Fn ω → ran 𝑓 = ran (𝑛 ∈ ω ↦ (𝑓𝑛)))
2221unieqd 4944 . . . . . . . 8 (𝑓 Fn ω → ran 𝑓 = ran (𝑛 ∈ ω ↦ (𝑓𝑛)))
239dfiun3 5992 . . . . . . . 8 𝑛 ∈ ω (𝑓𝑛) = ran (𝑛 ∈ ω ↦ (𝑓𝑛))
2422, 23eqtr4di 2798 . . . . . . 7 (𝑓 Fn ω → ran 𝑓 = 𝑛 ∈ ω (𝑓𝑛))
2524adantr 480 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 = 𝑛 ∈ ω (𝑓𝑛))
26 simpr 484 . . . . . . . . 9 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ≈ 𝑛)
2726ralimi 3089 . . . . . . . 8 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω (𝑓𝑛) ≈ 𝑛)
28 endom 9039 . . . . . . . . . 10 ((𝑓𝑛) ≈ 𝑛 → (𝑓𝑛) ≼ 𝑛)
29 nnsdom 9723 . . . . . . . . . 10 (𝑛 ∈ ω → 𝑛 ≺ ω)
30 domsdomtr 9178 . . . . . . . . . . 11 (((𝑓𝑛) ≼ 𝑛𝑛 ≺ ω) → (𝑓𝑛) ≺ ω)
31 sdomdom 9040 . . . . . . . . . . 11 ((𝑓𝑛) ≺ ω → (𝑓𝑛) ≼ ω)
3230, 31syl 17 . . . . . . . . . 10 (((𝑓𝑛) ≼ 𝑛𝑛 ≺ ω) → (𝑓𝑛) ≼ ω)
3328, 29, 32syl2anr 596 . . . . . . . . 9 ((𝑛 ∈ ω ∧ (𝑓𝑛) ≈ 𝑛) → (𝑓𝑛) ≼ ω)
3433ralimiaa 3088 . . . . . . . 8 (∀𝑛 ∈ ω (𝑓𝑛) ≈ 𝑛 → ∀𝑛 ∈ ω (𝑓𝑛) ≼ ω)
35 iunctb2 37369 . . . . . . . 8 (∀𝑛 ∈ ω (𝑓𝑛) ≼ ω → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3627, 34, 353syl 18 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3736adantl 481 . . . . . 6 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → 𝑛 ∈ ω (𝑓𝑛) ≼ ω)
3825, 37eqbrtrd 5188 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 ≼ ω)
39 fvssunirn 6953 . . . . . . . . . 10 (𝑓𝑛) ⊆ ran 𝑓
4039jctl 523 . . . . . . . . 9 ((𝑓𝑛) ≈ 𝑛 → ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
4140adantl 481 . . . . . . . 8 (((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
4241ralimi 3089 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛))
43 sseq1 4034 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑛) → (𝑥 ran 𝑓 ↔ (𝑓𝑛) ⊆ ran 𝑓))
4443, 4anbi12d 631 . . . . . . . . . . 11 (𝑥 = (𝑓𝑛) → ((𝑥 ran 𝑓𝑥𝑛) ↔ ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛)))
459, 44spcev 3619 . . . . . . . . . 10 (((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ∃𝑥(𝑥 ran 𝑓𝑥𝑛))
4645ralimi 3089 . . . . . . . . 9 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ∀𝑛 ∈ ω ∃𝑥(𝑥 ran 𝑓𝑥𝑛))
47 isinf2 37371 . . . . . . . . 9 (∀𝑛 ∈ ω ∃𝑥(𝑥 ran 𝑓𝑥𝑛) → ¬ ran 𝑓 ∈ Fin)
4846, 47syl 17 . . . . . . . 8 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ¬ ran 𝑓 ∈ Fin)
49 vex 3492 . . . . . . . . . . 11 𝑓 ∈ V
5049rnex 7950 . . . . . . . . . 10 ran 𝑓 ∈ V
5150uniex 7776 . . . . . . . . 9 ran 𝑓 ∈ V
52 infinf 10635 . . . . . . . . 9 ( ran 𝑓 ∈ V → (¬ ran 𝑓 ∈ Fin ↔ ω ≼ ran 𝑓))
5351, 52ax-mp 5 . . . . . . . 8 ran 𝑓 ∈ Fin ↔ ω ≼ ran 𝑓)
5448, 53sylib 218 . . . . . . 7 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ ran 𝑓 ∧ (𝑓𝑛) ≈ 𝑛) → ω ≼ ran 𝑓)
5542, 54syl 17 . . . . . 6 (∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛) → ω ≼ ran 𝑓)
5655adantl 481 . . . . 5 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ω ≼ ran 𝑓)
57 sbth 9159 . . . . 5 (( ran 𝑓 ≼ ω ∧ ω ≼ ran 𝑓) → ran 𝑓 ≈ ω)
5838, 56, 57syl2anc 583 . . . 4 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ran 𝑓 ≈ ω)
59 sseq1 4034 . . . . . 6 (𝑥 = ran 𝑓 → (𝑥𝐴 ran 𝑓𝐴))
60 breq1 5169 . . . . . 6 (𝑥 = ran 𝑓 → (𝑥 ≈ ω ↔ ran 𝑓 ≈ ω))
6159, 60anbi12d 631 . . . . 5 (𝑥 = ran 𝑓 → ((𝑥𝐴𝑥 ≈ ω) ↔ ( ran 𝑓𝐴 ran 𝑓 ≈ ω)))
6251, 61spcev 3619 . . . 4 (( ran 𝑓𝐴 ran 𝑓 ≈ ω) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
6318, 58, 62syl2anc 583 . . 3 ((𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
6463exlimiv 1929 . 2 (∃𝑓(𝑓 Fn ω ∧ ∀𝑛 ∈ ω ((𝑓𝑛) ⊆ 𝐴 ∧ (𝑓𝑛) ≈ 𝑛)) → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
651, 6, 643syl 18 1 𝐴 ∈ Fin → ∃𝑥(𝑥𝐴𝑥 ≈ ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  wss 3976  𝒫 cpw 4622   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249  ran crn 5701   Fn wfn 6568  cfv 6573  ωcom 7903  cen 9000  cdom 9001  csdm 9002  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-cc 10504  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-r1 9833  df-rank 9834  df-card 10008  df-acn 10011  df-ac 10185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator