![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptunimpt | Structured version Visualization version GIF version |
Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
ptunimpt.j | ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) |
Ref | Expression |
---|---|
ptunimpt | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐾) = (𝑥 ∈ 𝐴 ↦ 𝐾) | |
2 | 1 | fvmpt2 7040 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) = 𝐾) |
3 | 2 | eqcomd 2746 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → 𝐾 = ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
4 | 3 | unieqd 4944 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
5 | 4 | ralimiaa 3088 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top → ∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → ∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
7 | ixpeq2 8969 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
9 | nffvmpt1 6931 | . . . . 5 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) | |
10 | 9 | nfuni 4938 | . . . 4 ⊢ Ⅎ𝑥∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) |
11 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑦∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) | |
12 | fveq2 6920 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) | |
13 | 12 | unieqd 4944 | . . . 4 ⊢ (𝑦 = 𝑥 → ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
14 | 10, 11, 13 | cbvixp 8972 | . . 3 ⊢ X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) |
15 | 8, 14 | eqtr4di 2798 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦)) |
16 | 1 | fmpt 7144 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) |
17 | ptunimpt.j | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) | |
18 | 17 | ptuni 23623 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ 𝐽) |
19 | 16, 18 | sylan2b 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ 𝐽) |
20 | 15, 19 | eqtrd 2780 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∪ cuni 4931 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 Xcixp 8955 ∏tcpt 17498 Topctop 22920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-2o 8523 df-ixp 8956 df-en 9004 df-fin 9007 df-fi 9480 df-topgen 17503 df-pt 17504 df-top 22921 df-bases 22974 |
This theorem is referenced by: pttopon 23625 kelac1 43020 |
Copyright terms: Public domain | W3C validator |