MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptunimpt Structured version   Visualization version   GIF version

Theorem ptunimpt 22746
Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
ptunimpt.j 𝐽 = (∏t‘(𝑥𝐴𝐾))
Assertion
Ref Expression
ptunimpt ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem ptunimpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . . . 9 (𝑥𝐴𝐾) = (𝑥𝐴𝐾)
21fvmpt2 6886 . . . . . . . 8 ((𝑥𝐴𝐾 ∈ Top) → ((𝑥𝐴𝐾)‘𝑥) = 𝐾)
32eqcomd 2744 . . . . . . 7 ((𝑥𝐴𝐾 ∈ Top) → 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
43unieqd 4853 . . . . . 6 ((𝑥𝐴𝐾 ∈ Top) → 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
54ralimiaa 3086 . . . . 5 (∀𝑥𝐴 𝐾 ∈ Top → ∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
65adantl 482 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → ∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
7 ixpeq2 8699 . . . 4 (∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥) → X𝑥𝐴 𝐾 = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥))
86, 7syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥))
9 nffvmpt1 6785 . . . . 5 𝑥((𝑥𝐴𝐾)‘𝑦)
109nfuni 4846 . . . 4 𝑥 ((𝑥𝐴𝐾)‘𝑦)
11 nfcv 2907 . . . 4 𝑦 ((𝑥𝐴𝐾)‘𝑥)
12 fveq2 6774 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐾)‘𝑦) = ((𝑥𝐴𝐾)‘𝑥))
1312unieqd 4853 . . . 4 (𝑦 = 𝑥 ((𝑥𝐴𝐾)‘𝑦) = ((𝑥𝐴𝐾)‘𝑥))
1410, 11, 13cbvixp 8702 . . 3 X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥)
158, 14eqtr4di 2796 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦))
161fmpt 6984 . . 3 (∀𝑥𝐴 𝐾 ∈ Top ↔ (𝑥𝐴𝐾):𝐴⟶Top)
17 ptunimpt.j . . . 4 𝐽 = (∏t‘(𝑥𝐴𝐾))
1817ptuni 22745 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = 𝐽)
1916, 18sylan2b 594 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = 𝐽)
2015, 19eqtrd 2778 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064   cuni 4839  cmpt 5157  wf 6429  cfv 6433  Xcixp 8685  tcpt 17149  Topctop 22042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-ixp 8686  df-en 8734  df-fin 8737  df-fi 9170  df-topgen 17154  df-pt 17155  df-top 22043  df-bases 22096
This theorem is referenced by:  pttopon  22747  kelac1  40888
  Copyright terms: Public domain W3C validator