MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptunimpt Structured version   Visualization version   GIF version

Theorem ptunimpt 23489
Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
ptunimpt.j 𝐽 = (∏t‘(𝑥𝐴𝐾))
Assertion
Ref Expression
ptunimpt ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem ptunimpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . . 9 (𝑥𝐴𝐾) = (𝑥𝐴𝐾)
21fvmpt2 6982 . . . . . . . 8 ((𝑥𝐴𝐾 ∈ Top) → ((𝑥𝐴𝐾)‘𝑥) = 𝐾)
32eqcomd 2736 . . . . . . 7 ((𝑥𝐴𝐾 ∈ Top) → 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
43unieqd 4887 . . . . . 6 ((𝑥𝐴𝐾 ∈ Top) → 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
54ralimiaa 3066 . . . . 5 (∀𝑥𝐴 𝐾 ∈ Top → ∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
65adantl 481 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → ∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
7 ixpeq2 8887 . . . 4 (∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥) → X𝑥𝐴 𝐾 = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥))
86, 7syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥))
9 nffvmpt1 6872 . . . . 5 𝑥((𝑥𝐴𝐾)‘𝑦)
109nfuni 4881 . . . 4 𝑥 ((𝑥𝐴𝐾)‘𝑦)
11 nfcv 2892 . . . 4 𝑦 ((𝑥𝐴𝐾)‘𝑥)
12 fveq2 6861 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐾)‘𝑦) = ((𝑥𝐴𝐾)‘𝑥))
1312unieqd 4887 . . . 4 (𝑦 = 𝑥 ((𝑥𝐴𝐾)‘𝑦) = ((𝑥𝐴𝐾)‘𝑥))
1410, 11, 13cbvixp 8890 . . 3 X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥)
158, 14eqtr4di 2783 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦))
161fmpt 7085 . . 3 (∀𝑥𝐴 𝐾 ∈ Top ↔ (𝑥𝐴𝐾):𝐴⟶Top)
17 ptunimpt.j . . . 4 𝐽 = (∏t‘(𝑥𝐴𝐾))
1817ptuni 23488 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = 𝐽)
1916, 18sylan2b 594 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = 𝐽)
2015, 19eqtrd 2765 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045   cuni 4874  cmpt 5191  wf 6510  cfv 6514  Xcixp 8873  tcpt 17408  Topctop 22787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-ixp 8874  df-en 8922  df-fin 8925  df-fi 9369  df-topgen 17413  df-pt 17414  df-top 22788  df-bases 22840
This theorem is referenced by:  pttopon  23490  kelac1  43059
  Copyright terms: Public domain W3C validator