Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptunimpt | Structured version Visualization version GIF version |
Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
ptunimpt.j | ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) |
Ref | Expression |
---|---|
ptunimpt | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐾) = (𝑥 ∈ 𝐴 ↦ 𝐾) | |
2 | 1 | fvmpt2 6868 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) = 𝐾) |
3 | 2 | eqcomd 2744 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → 𝐾 = ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
4 | 3 | unieqd 4850 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
5 | 4 | ralimiaa 3085 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top → ∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → ∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
7 | ixpeq2 8657 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
9 | nffvmpt1 6767 | . . . . 5 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) | |
10 | 9 | nfuni 4843 | . . . 4 ⊢ Ⅎ𝑥∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) |
11 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑦∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) | |
12 | fveq2 6756 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) | |
13 | 12 | unieqd 4850 | . . . 4 ⊢ (𝑦 = 𝑥 → ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
14 | 10, 11, 13 | cbvixp 8660 | . . 3 ⊢ X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) |
15 | 8, 14 | eqtr4di 2797 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦)) |
16 | 1 | fmpt 6966 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) |
17 | ptunimpt.j | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) | |
18 | 17 | ptuni 22653 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ 𝐽) |
19 | 16, 18 | sylan2b 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ 𝐽) |
20 | 15, 19 | eqtrd 2778 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∪ cuni 4836 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 Xcixp 8643 ∏tcpt 17066 Topctop 21950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-er 8456 df-ixp 8644 df-en 8692 df-fin 8695 df-fi 9100 df-topgen 17071 df-pt 17072 df-top 21951 df-bases 22004 |
This theorem is referenced by: pttopon 22655 kelac1 40804 |
Copyright terms: Public domain | W3C validator |