| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptunimpt | Structured version Visualization version GIF version | ||
| Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| ptunimpt.j | ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) |
| Ref | Expression |
|---|---|
| ptunimpt | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐾) = (𝑥 ∈ 𝐴 ↦ 𝐾) | |
| 2 | 1 | fvmpt2 6940 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) = 𝐾) |
| 3 | 2 | eqcomd 2737 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → 𝐾 = ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
| 4 | 3 | unieqd 4869 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
| 5 | 4 | ralimiaa 3068 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top → ∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → ∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
| 7 | ixpeq2 8835 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
| 9 | nffvmpt1 6833 | . . . . 5 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) | |
| 10 | 9 | nfuni 4863 | . . . 4 ⊢ Ⅎ𝑥∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) |
| 11 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑦∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) | |
| 12 | fveq2 6822 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) | |
| 13 | 12 | unieqd 4869 | . . . 4 ⊢ (𝑦 = 𝑥 → ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
| 14 | 10, 11, 13 | cbvixp 8838 | . . 3 ⊢ X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) |
| 15 | 8, 14 | eqtr4di 2784 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦)) |
| 16 | 1 | fmpt 7043 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) |
| 17 | ptunimpt.j | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) | |
| 18 | 17 | ptuni 23509 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ 𝐽) |
| 19 | 16, 18 | sylan2b 594 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ 𝐽) |
| 20 | 15, 19 | eqtrd 2766 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cuni 4856 ↦ cmpt 5170 ⟶wf 6477 ‘cfv 6481 Xcixp 8821 ∏tcpt 17342 Topctop 22808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-2o 8386 df-ixp 8822 df-en 8870 df-fin 8873 df-fi 9295 df-topgen 17347 df-pt 17348 df-top 22809 df-bases 22861 |
| This theorem is referenced by: pttopon 23511 kelac1 43166 |
| Copyright terms: Public domain | W3C validator |