![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptunimpt | Structured version Visualization version GIF version |
Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
ptunimpt.j | ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) |
Ref | Expression |
---|---|
ptunimpt | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐾) = (𝑥 ∈ 𝐴 ↦ 𝐾) | |
2 | 1 | fvmpt2 6652 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) = 𝐾) |
3 | 2 | eqcomd 2803 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → 𝐾 = ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
4 | 3 | unieqd 4761 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐾 ∈ Top) → ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
5 | 4 | ralimiaa 3128 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top → ∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
6 | 5 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → ∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
7 | ixpeq2 8331 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
9 | nffvmpt1 6556 | . . . . 5 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) | |
10 | 9 | nfuni 4757 | . . . 4 ⊢ Ⅎ𝑥∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) |
11 | nfcv 2951 | . . . 4 ⊢ Ⅎ𝑦∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) | |
12 | fveq2 6545 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) | |
13 | 12 | unieqd 4761 | . . . 4 ⊢ (𝑦 = 𝑥 → ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥)) |
14 | 10, 11, 13 | cbvixp 8334 | . . 3 ⊢ X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = X𝑥 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑥) |
15 | 8, 14 | syl6eqr 2851 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦)) |
16 | 1 | fmpt 6744 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) |
17 | ptunimpt.j | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) | |
18 | 17 | ptuni 21890 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ 𝐽) |
19 | 16, 18 | sylan2b 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑦 ∈ 𝐴 ∪ ((𝑥 ∈ 𝐴 ↦ 𝐾)‘𝑦) = ∪ 𝐽) |
20 | 15, 19 | eqtrd 2833 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∀wral 3107 ∪ cuni 4751 ↦ cmpt 5047 ⟶wf 6228 ‘cfv 6232 Xcixp 8317 ∏tcpt 16545 Topctop 21189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-ixp 8318 df-en 8365 df-fin 8368 df-fi 8728 df-topgen 16550 df-pt 16551 df-top 21190 df-bases 21242 |
This theorem is referenced by: pttopon 21892 kelac1 39169 |
Copyright terms: Public domain | W3C validator |