MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelixpg Structured version   Visualization version   GIF version

Theorem mptelixpg 8854
Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
Assertion
Ref Expression
mptelixpg (𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
Distinct variable group:   𝑥,𝐼
Allowed substitution hints:   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem mptelixpg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3455 . 2 (𝐼𝑉𝐼 ∈ V)
2 nfcv 2892 . . . . . 6 𝑦𝐾
3 nfcsb1v 3872 . . . . . 6 𝑥𝑦 / 𝑥𝐾
4 csbeq1a 3862 . . . . . 6 (𝑥 = 𝑦𝐾 = 𝑦 / 𝑥𝐾)
52, 3, 4cbvixp 8833 . . . . 5 X𝑥𝐼 𝐾 = X𝑦𝐼 𝑦 / 𝑥𝐾
65eleq2i 2821 . . . 4 ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ (𝑥𝐼𝐽) ∈ X𝑦𝐼 𝑦 / 𝑥𝐾)
7 elixp2 8820 . . . 4 ((𝑥𝐼𝐽) ∈ X𝑦𝐼 𝑦 / 𝑥𝐾 ↔ ((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
8 3anass 1094 . . . 4 (((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾) ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)))
96, 7, 83bitri 297 . . 3 ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)))
10 eqid 2730 . . . . . . . 8 (𝑥𝐼𝐽) = (𝑥𝐼𝐽)
1110fnmpt 6617 . . . . . . 7 (∀𝑥𝐼 𝐽𝐾 → (𝑥𝐼𝐽) Fn 𝐼)
1210fvmpt2 6935 . . . . . . . . 9 ((𝑥𝐼𝐽𝐾) → ((𝑥𝐼𝐽)‘𝑥) = 𝐽)
13 simpr 484 . . . . . . . . 9 ((𝑥𝐼𝐽𝐾) → 𝐽𝐾)
1412, 13eqeltrd 2829 . . . . . . . 8 ((𝑥𝐼𝐽𝐾) → ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾)
1514ralimiaa 3066 . . . . . . 7 (∀𝑥𝐼 𝐽𝐾 → ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾)
1611, 15jca 511 . . . . . 6 (∀𝑥𝐼 𝐽𝐾 → ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾))
17 dffn2 6649 . . . . . . . 8 ((𝑥𝐼𝐽) Fn 𝐼 ↔ (𝑥𝐼𝐽):𝐼⟶V)
1810fmpt 7038 . . . . . . . . 9 (∀𝑥𝐼 𝐽 ∈ V ↔ (𝑥𝐼𝐽):𝐼⟶V)
1910fvmpt2 6935 . . . . . . . . . . . . 13 ((𝑥𝐼𝐽 ∈ V) → ((𝑥𝐼𝐽)‘𝑥) = 𝐽)
2019eleq1d 2814 . . . . . . . . . . . 12 ((𝑥𝐼𝐽 ∈ V) → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
2120biimpd 229 . . . . . . . . . . 11 ((𝑥𝐼𝐽 ∈ V) → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
2221ralimiaa 3066 . . . . . . . . . 10 (∀𝑥𝐼 𝐽 ∈ V → ∀𝑥𝐼 (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
23 ralim 3070 . . . . . . . . . 10 (∀𝑥𝐼 (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾) → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2422, 23syl 17 . . . . . . . . 9 (∀𝑥𝐼 𝐽 ∈ V → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2518, 24sylbir 235 . . . . . . . 8 ((𝑥𝐼𝐽):𝐼⟶V → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2617, 25sylbi 217 . . . . . . 7 ((𝑥𝐼𝐽) Fn 𝐼 → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2726imp 406 . . . . . 6 (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾) → ∀𝑥𝐼 𝐽𝐾)
2816, 27impbii 209 . . . . 5 (∀𝑥𝐼 𝐽𝐾 ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾))
29 nfv 1915 . . . . . . 7 𝑦((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾
30 nffvmpt1 6828 . . . . . . . 8 𝑥((𝑥𝐼𝐽)‘𝑦)
3130, 3nfel 2907 . . . . . . 7 𝑥((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾
32 fveq2 6817 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐼𝐽)‘𝑥) = ((𝑥𝐼𝐽)‘𝑦))
3332, 4eleq12d 2823 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 ↔ ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
3429, 31, 33cbvralw 3272 . . . . . 6 (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 ↔ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)
3534anbi2i 623 . . . . 5 (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾) ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
3628, 35bitri 275 . . . 4 (∀𝑥𝐼 𝐽𝐾 ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
37 mptexg 7150 . . . . 5 (𝐼 ∈ V → (𝑥𝐼𝐽) ∈ V)
3837biantrurd 532 . . . 4 (𝐼 ∈ V → (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾) ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))))
3936, 38bitr2id 284 . . 3 (𝐼 ∈ V → (((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)) ↔ ∀𝑥𝐼 𝐽𝐾))
409, 39bitrid 283 . 2 (𝐼 ∈ V → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
411, 40syl 17 1 (𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2110  wral 3045  Vcvv 3434  csb 3848  cmpt 5170   Fn wfn 6472  wf 6473  cfv 6477  Xcixp 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ixp 8817
This theorem is referenced by:  resixpfo  8855  ixpiunwdom  9471  dfac9  10020  prdsbasmpt  17366  prdsbasmpt2  17378  idfucl  17780  fuccocl  17866  fucidcl  17867  invfuc  17876  curf2cl  18129  yonedalem4c  18175  dprdwd  19918  ptpjopn  23520  dfac14lem  23525  ptcnplem  23529  ptcnp  23530  ptcn  23535  ptcmplem2  23961  tmdgsum2  24004  upixp  37748  kelac1  43075
  Copyright terms: Public domain W3C validator