MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelixpg Structured version   Visualization version   GIF version

Theorem mptelixpg 8488
Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
Assertion
Ref Expression
mptelixpg (𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
Distinct variable group:   𝑥,𝐼
Allowed substitution hints:   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem mptelixpg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3518 . 2 (𝐼𝑉𝐼 ∈ V)
2 nfcv 2982 . . . . . 6 𝑦𝐾
3 nfcsb1v 3911 . . . . . 6 𝑥𝑦 / 𝑥𝐾
4 csbeq1a 3901 . . . . . 6 (𝑥 = 𝑦𝐾 = 𝑦 / 𝑥𝐾)
52, 3, 4cbvixp 8467 . . . . 5 X𝑥𝐼 𝐾 = X𝑦𝐼 𝑦 / 𝑥𝐾
65eleq2i 2909 . . . 4 ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ (𝑥𝐼𝐽) ∈ X𝑦𝐼 𝑦 / 𝑥𝐾)
7 elixp2 8454 . . . 4 ((𝑥𝐼𝐽) ∈ X𝑦𝐼 𝑦 / 𝑥𝐾 ↔ ((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
8 3anass 1089 . . . 4 (((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾) ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)))
96, 7, 83bitri 298 . . 3 ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)))
10 eqid 2826 . . . . . . . 8 (𝑥𝐼𝐽) = (𝑥𝐼𝐽)
1110fnmpt 6485 . . . . . . 7 (∀𝑥𝐼 𝐽𝐾 → (𝑥𝐼𝐽) Fn 𝐼)
1210fvmpt2 6775 . . . . . . . . 9 ((𝑥𝐼𝐽𝐾) → ((𝑥𝐼𝐽)‘𝑥) = 𝐽)
13 simpr 485 . . . . . . . . 9 ((𝑥𝐼𝐽𝐾) → 𝐽𝐾)
1412, 13eqeltrd 2918 . . . . . . . 8 ((𝑥𝐼𝐽𝐾) → ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾)
1514ralimiaa 3164 . . . . . . 7 (∀𝑥𝐼 𝐽𝐾 → ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾)
1611, 15jca 512 . . . . . 6 (∀𝑥𝐼 𝐽𝐾 → ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾))
17 dffn2 6513 . . . . . . . 8 ((𝑥𝐼𝐽) Fn 𝐼 ↔ (𝑥𝐼𝐽):𝐼⟶V)
1810fmpt 6870 . . . . . . . . 9 (∀𝑥𝐼 𝐽 ∈ V ↔ (𝑥𝐼𝐽):𝐼⟶V)
1910fvmpt2 6775 . . . . . . . . . . . . 13 ((𝑥𝐼𝐽 ∈ V) → ((𝑥𝐼𝐽)‘𝑥) = 𝐽)
2019eleq1d 2902 . . . . . . . . . . . 12 ((𝑥𝐼𝐽 ∈ V) → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
2120biimpd 230 . . . . . . . . . . 11 ((𝑥𝐼𝐽 ∈ V) → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
2221ralimiaa 3164 . . . . . . . . . 10 (∀𝑥𝐼 𝐽 ∈ V → ∀𝑥𝐼 (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
23 ralim 3167 . . . . . . . . . 10 (∀𝑥𝐼 (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾) → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2422, 23syl 17 . . . . . . . . 9 (∀𝑥𝐼 𝐽 ∈ V → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2518, 24sylbir 236 . . . . . . . 8 ((𝑥𝐼𝐽):𝐼⟶V → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2617, 25sylbi 218 . . . . . . 7 ((𝑥𝐼𝐽) Fn 𝐼 → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2726imp 407 . . . . . 6 (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾) → ∀𝑥𝐼 𝐽𝐾)
2816, 27impbii 210 . . . . 5 (∀𝑥𝐼 𝐽𝐾 ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾))
29 nfv 1908 . . . . . . 7 𝑦((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾
30 nffvmpt1 6678 . . . . . . . 8 𝑥((𝑥𝐼𝐽)‘𝑦)
3130, 3nfel 2997 . . . . . . 7 𝑥((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾
32 fveq2 6667 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐼𝐽)‘𝑥) = ((𝑥𝐼𝐽)‘𝑦))
3332, 4eleq12d 2912 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 ↔ ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
3429, 31, 33cbvralw 3447 . . . . . 6 (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 ↔ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)
3534anbi2i 622 . . . . 5 (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾) ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
3628, 35bitri 276 . . . 4 (∀𝑥𝐼 𝐽𝐾 ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
37 mptexg 6979 . . . . 5 (𝐼 ∈ V → (𝑥𝐼𝐽) ∈ V)
3837biantrurd 533 . . . 4 (𝐼 ∈ V → (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾) ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))))
3936, 38syl5rbb 285 . . 3 (𝐼 ∈ V → (((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)) ↔ ∀𝑥𝐼 𝐽𝐾))
409, 39syl5bb 284 . 2 (𝐼 ∈ V → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
411, 40syl 17 1 (𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081  wcel 2107  wral 3143  Vcvv 3500  csb 3887  cmpt 5143   Fn wfn 6347  wf 6348  cfv 6352  Xcixp 8450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ixp 8451
This theorem is referenced by:  resixpfo  8489  ixpiunwdom  9044  dfac9  9551  prdsbasmpt  16733  prdsbasmpt2  16745  idfucl  17141  fuccocl  17224  fucidcl  17225  invfuc  17234  curf2cl  17471  yonedalem4c  17517  dprdwd  19053  ptpjopn  22139  dfac14lem  22144  ptcnplem  22148  ptcnp  22149  ptcn  22154  ptcmplem2  22580  tmdgsum2  22623  upixp  34875  kelac1  39531
  Copyright terms: Public domain W3C validator