MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelixpg Structured version   Visualization version   GIF version

Theorem mptelixpg 8869
Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
Assertion
Ref Expression
mptelixpg (𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
Distinct variable group:   𝑥,𝐼
Allowed substitution hints:   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem mptelixpg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐼𝑉𝐼 ∈ V)
2 nfcv 2891 . . . . . 6 𝑦𝐾
3 nfcsb1v 3877 . . . . . 6 𝑥𝑦 / 𝑥𝐾
4 csbeq1a 3867 . . . . . 6 (𝑥 = 𝑦𝐾 = 𝑦 / 𝑥𝐾)
52, 3, 4cbvixp 8848 . . . . 5 X𝑥𝐼 𝐾 = X𝑦𝐼 𝑦 / 𝑥𝐾
65eleq2i 2820 . . . 4 ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ (𝑥𝐼𝐽) ∈ X𝑦𝐼 𝑦 / 𝑥𝐾)
7 elixp2 8835 . . . 4 ((𝑥𝐼𝐽) ∈ X𝑦𝐼 𝑦 / 𝑥𝐾 ↔ ((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
8 3anass 1094 . . . 4 (((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾) ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)))
96, 7, 83bitri 297 . . 3 ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)))
10 eqid 2729 . . . . . . . 8 (𝑥𝐼𝐽) = (𝑥𝐼𝐽)
1110fnmpt 6626 . . . . . . 7 (∀𝑥𝐼 𝐽𝐾 → (𝑥𝐼𝐽) Fn 𝐼)
1210fvmpt2 6945 . . . . . . . . 9 ((𝑥𝐼𝐽𝐾) → ((𝑥𝐼𝐽)‘𝑥) = 𝐽)
13 simpr 484 . . . . . . . . 9 ((𝑥𝐼𝐽𝐾) → 𝐽𝐾)
1412, 13eqeltrd 2828 . . . . . . . 8 ((𝑥𝐼𝐽𝐾) → ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾)
1514ralimiaa 3065 . . . . . . 7 (∀𝑥𝐼 𝐽𝐾 → ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾)
1611, 15jca 511 . . . . . 6 (∀𝑥𝐼 𝐽𝐾 → ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾))
17 dffn2 6658 . . . . . . . 8 ((𝑥𝐼𝐽) Fn 𝐼 ↔ (𝑥𝐼𝐽):𝐼⟶V)
1810fmpt 7048 . . . . . . . . 9 (∀𝑥𝐼 𝐽 ∈ V ↔ (𝑥𝐼𝐽):𝐼⟶V)
1910fvmpt2 6945 . . . . . . . . . . . . 13 ((𝑥𝐼𝐽 ∈ V) → ((𝑥𝐼𝐽)‘𝑥) = 𝐽)
2019eleq1d 2813 . . . . . . . . . . . 12 ((𝑥𝐼𝐽 ∈ V) → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
2120biimpd 229 . . . . . . . . . . 11 ((𝑥𝐼𝐽 ∈ V) → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
2221ralimiaa 3065 . . . . . . . . . 10 (∀𝑥𝐼 𝐽 ∈ V → ∀𝑥𝐼 (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾))
23 ralim 3069 . . . . . . . . . 10 (∀𝑥𝐼 (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾𝐽𝐾) → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2422, 23syl 17 . . . . . . . . 9 (∀𝑥𝐼 𝐽 ∈ V → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2518, 24sylbir 235 . . . . . . . 8 ((𝑥𝐼𝐽):𝐼⟶V → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2617, 25sylbi 217 . . . . . . 7 ((𝑥𝐼𝐽) Fn 𝐼 → (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥𝐼 𝐽𝐾))
2726imp 406 . . . . . 6 (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾) → ∀𝑥𝐼 𝐽𝐾)
2816, 27impbii 209 . . . . 5 (∀𝑥𝐼 𝐽𝐾 ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾))
29 nfv 1914 . . . . . . 7 𝑦((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾
30 nffvmpt1 6837 . . . . . . . 8 𝑥((𝑥𝐼𝐽)‘𝑦)
3130, 3nfel 2906 . . . . . . 7 𝑥((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾
32 fveq2 6826 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐼𝐽)‘𝑥) = ((𝑥𝐼𝐽)‘𝑦))
3332, 4eleq12d 2822 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 ↔ ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
3429, 31, 33cbvralw 3272 . . . . . 6 (∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾 ↔ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)
3534anbi2i 623 . . . . 5 (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝑥𝐼𝐽)‘𝑥) ∈ 𝐾) ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
3628, 35bitri 275 . . . 4 (∀𝑥𝐼 𝐽𝐾 ↔ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))
37 mptexg 7161 . . . . 5 (𝐼 ∈ V → (𝑥𝐼𝐽) ∈ V)
3837biantrurd 532 . . . 4 (𝐼 ∈ V → (((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾) ↔ ((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾))))
3936, 38bitr2id 284 . . 3 (𝐼 ∈ V → (((𝑥𝐼𝐽) ∈ V ∧ ((𝑥𝐼𝐽) Fn 𝐼 ∧ ∀𝑦𝐼 ((𝑥𝐼𝐽)‘𝑦) ∈ 𝑦 / 𝑥𝐾)) ↔ ∀𝑥𝐼 𝐽𝐾))
409, 39bitrid 283 . 2 (𝐼 ∈ V → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
411, 40syl 17 1 (𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3044  Vcvv 3438  csb 3853  cmpt 5176   Fn wfn 6481  wf 6482  cfv 6486  Xcixp 8831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ixp 8832
This theorem is referenced by:  resixpfo  8870  ixpiunwdom  9501  dfac9  10050  prdsbasmpt  17392  prdsbasmpt2  17404  idfucl  17806  fuccocl  17892  fucidcl  17893  invfuc  17902  curf2cl  18155  yonedalem4c  18201  dprdwd  19910  ptpjopn  23515  dfac14lem  23520  ptcnplem  23524  ptcnp  23525  ptcn  23530  ptcmplem2  23956  tmdgsum2  23999  upixp  37708  kelac1  43036
  Copyright terms: Public domain W3C validator