| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elex 3500 | . 2
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | 
| 2 |  | nfcv 2904 | . . . . . 6
⊢
Ⅎ𝑦𝐾 | 
| 3 |  | nfcsb1v 3922 | . . . . . 6
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐾 | 
| 4 |  | csbeq1a 3912 | . . . . . 6
⊢ (𝑥 = 𝑦 → 𝐾 = ⦋𝑦 / 𝑥⦌𝐾) | 
| 5 | 2, 3, 4 | cbvixp 8955 | . . . . 5
⊢ X𝑥 ∈
𝐼 𝐾 = X𝑦 ∈ 𝐼 ⦋𝑦 / 𝑥⦌𝐾 | 
| 6 | 5 | eleq2i 2832 | . . . 4
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ (𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑦 ∈ 𝐼 ⦋𝑦 / 𝑥⦌𝐾) | 
| 7 |  | elixp2 8942 | . . . 4
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑦 ∈ 𝐼 ⦋𝑦 / 𝑥⦌𝐾 ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ (𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)) | 
| 8 |  | 3anass 1094 | . . . 4
⊢ (((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ (𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾) ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾))) | 
| 9 | 6, 7, 8 | 3bitri 297 | . . 3
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾))) | 
| 10 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑥 ∈ 𝐼 ↦ 𝐽) = (𝑥 ∈ 𝐼 ↦ 𝐽) | 
| 11 | 10 | fnmpt 6707 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ 𝐾 → (𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼) | 
| 12 | 10 | fvmpt2 7026 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ 𝐾) → ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) = 𝐽) | 
| 13 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ 𝐾) → 𝐽 ∈ 𝐾) | 
| 14 | 12, 13 | eqeltrd 2840 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ 𝐾) → ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾) | 
| 15 | 14 | ralimiaa 3081 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ 𝐾 → ∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾) | 
| 16 | 11, 15 | jca 511 | . . . . . 6
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ 𝐾 → ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾)) | 
| 17 |  | dffn2 6737 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ↔ (𝑥 ∈ 𝐼 ↦ 𝐽):𝐼⟶V) | 
| 18 | 10 | fmpt 7129 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ V ↔ (𝑥 ∈ 𝐼 ↦ 𝐽):𝐼⟶V) | 
| 19 | 10 | fvmpt2 7026 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ V) → ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) = 𝐽) | 
| 20 | 19 | eleq1d 2825 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ V) → (((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 ↔ 𝐽 ∈ 𝐾)) | 
| 21 | 20 | biimpd 229 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐼 ∧ 𝐽 ∈ V) → (((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → 𝐽 ∈ 𝐾)) | 
| 22 | 21 | ralimiaa 3081 | . . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ V → ∀𝑥 ∈ 𝐼 (((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → 𝐽 ∈ 𝐾)) | 
| 23 |  | ralim 3085 | . . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐼 (((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → 𝐽 ∈ 𝐾) → (∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) | 
| 24 | 22, 23 | syl 17 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ V → (∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) | 
| 25 | 18, 24 | sylbir 235 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽):𝐼⟶V → (∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) | 
| 26 | 17, 25 | sylbi 217 | . . . . . . 7
⊢ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 → (∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 → ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) | 
| 27 | 26 | imp 406 | . . . . . 6
⊢ (((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾) → ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾) | 
| 28 | 16, 27 | impbii 209 | . . . . 5
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ 𝐾 ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾)) | 
| 29 |  | nfv 1913 | . . . . . . 7
⊢
Ⅎ𝑦((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 | 
| 30 |  | nffvmpt1 6916 | . . . . . . . 8
⊢
Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) | 
| 31 | 30, 3 | nfel 2919 | . . . . . . 7
⊢
Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾 | 
| 32 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) = ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦)) | 
| 33 | 32, 4 | eleq12d 2834 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)) | 
| 34 | 29, 31, 33 | cbvralw 3305 | . . . . . 6
⊢
(∀𝑥 ∈
𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾 ↔ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾) | 
| 35 | 34 | anbi2i 623 | . . . . 5
⊢ (((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑥) ∈ 𝐾) ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)) | 
| 36 | 28, 35 | bitri 275 | . . . 4
⊢
(∀𝑥 ∈
𝐼 𝐽 ∈ 𝐾 ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)) | 
| 37 |  | mptexg 7242 | . . . . 5
⊢ (𝐼 ∈ V → (𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V) | 
| 38 | 37 | biantrurd 532 | . . . 4
⊢ (𝐼 ∈ V → (((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾) ↔ ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)))) | 
| 39 | 36, 38 | bitr2id 284 | . . 3
⊢ (𝐼 ∈ V → (((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ ((𝑥 ∈ 𝐼 ↦ 𝐽) Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 ((𝑥 ∈ 𝐼 ↦ 𝐽)‘𝑦) ∈ ⦋𝑦 / 𝑥⦌𝐾)) ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) | 
| 40 | 9, 39 | bitrid 283 | . 2
⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) | 
| 41 | 1, 40 | syl 17 | 1
⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ X𝑥 ∈ 𝐼 𝐾 ↔ ∀𝑥 ∈ 𝐼 𝐽 ∈ 𝐾)) |