| Step | Hyp | Ref
| Expression |
| 1 | | rlim2.1 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
| 2 | | eqid 2737 |
. . . . 5
⊢ (𝑧 ∈ 𝐴 ↦ 𝐵) = (𝑧 ∈ 𝐴 ↦ 𝐵) |
| 3 | 2 | fmpt 7130 |
. . . 4
⊢
(∀𝑧 ∈
𝐴 𝐵 ∈ ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 4 | 1, 3 | sylib 218 |
. . 3
⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 5 | | rlim2.2 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 6 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) = ((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤)) |
| 7 | 4, 5, 6 | rlim 15531 |
. 2
⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥)))) |
| 8 | | rlim2.3 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 9 | 8 | biantrurd 532 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥)))) |
| 10 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑧 𝑦 ≤ 𝑤 |
| 11 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑧abs |
| 12 | | nffvmpt1 6917 |
. . . . . . . . . 10
⊢
Ⅎ𝑧((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) |
| 13 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑧
− |
| 14 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑧𝐶 |
| 15 | 12, 13, 14 | nfov 7461 |
. . . . . . . . 9
⊢
Ⅎ𝑧(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶) |
| 16 | 11, 15 | nffv 6916 |
. . . . . . . 8
⊢
Ⅎ𝑧(abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) |
| 17 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑧
< |
| 18 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑧𝑥 |
| 19 | 16, 17, 18 | nfbr 5190 |
. . . . . . 7
⊢
Ⅎ𝑧(abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥 |
| 20 | 10, 19 | nfim 1896 |
. . . . . 6
⊢
Ⅎ𝑧(𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) |
| 21 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑤(𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) |
| 22 | | breq2 5147 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → (𝑦 ≤ 𝑤 ↔ 𝑦 ≤ 𝑧)) |
| 23 | 22 | imbrov2fvoveq 7456 |
. . . . . 6
⊢ (𝑤 = 𝑧 → ((𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥))) |
| 24 | 20, 21, 23 | cbvralw 3306 |
. . . . 5
⊢
(∀𝑤 ∈
𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥)) |
| 25 | 2 | fvmpt2 7027 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) = 𝐵) |
| 26 | 25 | fvoveq1d 7453 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) = (abs‘(𝐵 − 𝐶))) |
| 27 | 26 | breq1d 5153 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵 − 𝐶)) < 𝑥)) |
| 28 | 27 | imbi2d 340 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 29 | 28 | ralimiaa 3082 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐴 𝐵 ∈ ℂ → ∀𝑧 ∈ 𝐴 ((𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 30 | | ralbi 3103 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐴 ((𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 31 | 1, 29, 30 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 32 | 24, 31 | bitrid 283 |
. . . 4
⊢ (𝜑 → (∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 33 | 32 | rexbidv 3179 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 34 | 33 | ralbidv 3178 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑤 ∈ 𝐴 (𝑦 ≤ 𝑤 → (abs‘(((𝑧 ∈ 𝐴 ↦ 𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 35 | 7, 9, 34 | 3bitr2d 307 |
1
⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |