MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2 Structured version   Visualization version   GIF version

Theorem rlim2 15133
Description: Rewrite rlim 15132 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
rlim2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 eqid 2738 . . . . 5 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
32fmpt 6966 . . . 4 (∀𝑧𝐴 𝐵 ∈ ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ)
41, 3sylib 217 . . 3 (𝜑 → (𝑧𝐴𝐵):𝐴⟶ℂ)
5 rlim2.2 . . 3 (𝜑𝐴 ⊆ ℝ)
6 eqidd 2739 . . 3 ((𝜑𝑤𝐴) → ((𝑧𝐴𝐵)‘𝑤) = ((𝑧𝐴𝐵)‘𝑤))
74, 5, 6rlim 15132 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥))))
8 rlim2.3 . . 3 (𝜑𝐶 ∈ ℂ)
98biantrurd 532 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥))))
10 nfv 1918 . . . . . . 7 𝑧 𝑦𝑤
11 nfcv 2906 . . . . . . . . 9 𝑧abs
12 nffvmpt1 6767 . . . . . . . . . 10 𝑧((𝑧𝐴𝐵)‘𝑤)
13 nfcv 2906 . . . . . . . . . 10 𝑧
14 nfcv 2906 . . . . . . . . . 10 𝑧𝐶
1512, 13, 14nfov 7285 . . . . . . . . 9 𝑧(((𝑧𝐴𝐵)‘𝑤) − 𝐶)
1611, 15nffv 6766 . . . . . . . 8 𝑧(abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶))
17 nfcv 2906 . . . . . . . 8 𝑧 <
18 nfcv 2906 . . . . . . . 8 𝑧𝑥
1916, 17, 18nfbr 5117 . . . . . . 7 𝑧(abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥
2010, 19nfim 1900 . . . . . 6 𝑧(𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥)
21 nfv 1918 . . . . . 6 𝑤(𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥)
22 breq2 5074 . . . . . . 7 (𝑤 = 𝑧 → (𝑦𝑤𝑦𝑧))
2322imbrov2fvoveq 7280 . . . . . 6 (𝑤 = 𝑧 → ((𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥)))
2420, 21, 23cbvralw 3363 . . . . 5 (∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥))
252fvmpt2 6868 . . . . . . . . . 10 ((𝑧𝐴𝐵 ∈ ℂ) → ((𝑧𝐴𝐵)‘𝑧) = 𝐵)
2625fvoveq1d 7277 . . . . . . . . 9 ((𝑧𝐴𝐵 ∈ ℂ) → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) = (abs‘(𝐵𝐶)))
2726breq1d 5080 . . . . . . . 8 ((𝑧𝐴𝐵 ∈ ℂ) → ((abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑥))
2827imbi2d 340 . . . . . . 7 ((𝑧𝐴𝐵 ∈ ℂ) → ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2928ralimiaa 3085 . . . . . 6 (∀𝑧𝐴 𝐵 ∈ ℂ → ∀𝑧𝐴 ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
30 ralbi 3092 . . . . . 6 (∀𝑧𝐴 ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
311, 29, 303syl 18 . . . . 5 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3224, 31syl5bb 282 . . . 4 (𝜑 → (∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3332rexbidv 3225 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3433ralbidv 3120 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
357, 9, 343bitr2d 306 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801   < clt 10940  cle 10941  cmin 11135  +crp 12659  abscabs 14873  𝑟 crli 15122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-pm 8576  df-rlim 15126
This theorem is referenced by:  rlim2lt  15134  rlim3  15135  rlim0  15145  rlimi  15150  rlimconst  15181  climrlim2  15184  rlimcn1  15225  rlimcn3  15227  chtppilim  26528  pntlem3  26662
  Copyright terms: Public domain W3C validator