MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2 Structured version   Visualization version   GIF version

Theorem rlim2 15542
Description: Rewrite rlim 15541 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
rlim2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 eqid 2740 . . . . 5 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
32fmpt 7144 . . . 4 (∀𝑧𝐴 𝐵 ∈ ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ)
41, 3sylib 218 . . 3 (𝜑 → (𝑧𝐴𝐵):𝐴⟶ℂ)
5 rlim2.2 . . 3 (𝜑𝐴 ⊆ ℝ)
6 eqidd 2741 . . 3 ((𝜑𝑤𝐴) → ((𝑧𝐴𝐵)‘𝑤) = ((𝑧𝐴𝐵)‘𝑤))
74, 5, 6rlim 15541 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥))))
8 rlim2.3 . . 3 (𝜑𝐶 ∈ ℂ)
98biantrurd 532 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥))))
10 nfv 1913 . . . . . . 7 𝑧 𝑦𝑤
11 nfcv 2908 . . . . . . . . 9 𝑧abs
12 nffvmpt1 6931 . . . . . . . . . 10 𝑧((𝑧𝐴𝐵)‘𝑤)
13 nfcv 2908 . . . . . . . . . 10 𝑧
14 nfcv 2908 . . . . . . . . . 10 𝑧𝐶
1512, 13, 14nfov 7478 . . . . . . . . 9 𝑧(((𝑧𝐴𝐵)‘𝑤) − 𝐶)
1611, 15nffv 6930 . . . . . . . 8 𝑧(abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶))
17 nfcv 2908 . . . . . . . 8 𝑧 <
18 nfcv 2908 . . . . . . . 8 𝑧𝑥
1916, 17, 18nfbr 5213 . . . . . . 7 𝑧(abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥
2010, 19nfim 1895 . . . . . 6 𝑧(𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥)
21 nfv 1913 . . . . . 6 𝑤(𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥)
22 breq2 5170 . . . . . . 7 (𝑤 = 𝑧 → (𝑦𝑤𝑦𝑧))
2322imbrov2fvoveq 7473 . . . . . 6 (𝑤 = 𝑧 → ((𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥)))
2420, 21, 23cbvralw 3312 . . . . 5 (∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥))
252fvmpt2 7040 . . . . . . . . . 10 ((𝑧𝐴𝐵 ∈ ℂ) → ((𝑧𝐴𝐵)‘𝑧) = 𝐵)
2625fvoveq1d 7470 . . . . . . . . 9 ((𝑧𝐴𝐵 ∈ ℂ) → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) = (abs‘(𝐵𝐶)))
2726breq1d 5176 . . . . . . . 8 ((𝑧𝐴𝐵 ∈ ℂ) → ((abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑥))
2827imbi2d 340 . . . . . . 7 ((𝑧𝐴𝐵 ∈ ℂ) → ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2928ralimiaa 3088 . . . . . 6 (∀𝑧𝐴 𝐵 ∈ ℂ → ∀𝑧𝐴 ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
30 ralbi 3109 . . . . . 6 (∀𝑧𝐴 ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
311, 29, 303syl 18 . . . . 5 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3224, 31bitrid 283 . . . 4 (𝜑 → (∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3332rexbidv 3185 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3433ralbidv 3184 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
357, 9, 343bitr2d 307 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183   < clt 11324  cle 11325  cmin 11520  +crp 13057  abscabs 15283  𝑟 crli 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-pm 8887  df-rlim 15535
This theorem is referenced by:  rlim2lt  15543  rlim3  15544  rlim0  15554  rlimi  15559  rlimconst  15590  climrlim2  15593  rlimcn1  15634  rlimcn3  15636  chtppilim  27537  pntlem3  27671
  Copyright terms: Public domain W3C validator