MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2 Structured version   Visualization version   GIF version

Theorem rlim2 15403
Description: Rewrite rlim 15402 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
rlim2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 eqid 2731 . . . . 5 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
32fmpt 7043 . . . 4 (∀𝑧𝐴 𝐵 ∈ ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ)
41, 3sylib 218 . . 3 (𝜑 → (𝑧𝐴𝐵):𝐴⟶ℂ)
5 rlim2.2 . . 3 (𝜑𝐴 ⊆ ℝ)
6 eqidd 2732 . . 3 ((𝜑𝑤𝐴) → ((𝑧𝐴𝐵)‘𝑤) = ((𝑧𝐴𝐵)‘𝑤))
74, 5, 6rlim 15402 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥))))
8 rlim2.3 . . 3 (𝜑𝐶 ∈ ℂ)
98biantrurd 532 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥))))
10 nfv 1915 . . . . . . 7 𝑧 𝑦𝑤
11 nfcv 2894 . . . . . . . . 9 𝑧abs
12 nffvmpt1 6833 . . . . . . . . . 10 𝑧((𝑧𝐴𝐵)‘𝑤)
13 nfcv 2894 . . . . . . . . . 10 𝑧
14 nfcv 2894 . . . . . . . . . 10 𝑧𝐶
1512, 13, 14nfov 7376 . . . . . . . . 9 𝑧(((𝑧𝐴𝐵)‘𝑤) − 𝐶)
1611, 15nffv 6832 . . . . . . . 8 𝑧(abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶))
17 nfcv 2894 . . . . . . . 8 𝑧 <
18 nfcv 2894 . . . . . . . 8 𝑧𝑥
1916, 17, 18nfbr 5138 . . . . . . 7 𝑧(abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥
2010, 19nfim 1897 . . . . . 6 𝑧(𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥)
21 nfv 1915 . . . . . 6 𝑤(𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥)
22 breq2 5095 . . . . . . 7 (𝑤 = 𝑧 → (𝑦𝑤𝑦𝑧))
2322imbrov2fvoveq 7371 . . . . . 6 (𝑤 = 𝑧 → ((𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥)))
2420, 21, 23cbvralw 3274 . . . . 5 (∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥))
252fvmpt2 6940 . . . . . . . . . 10 ((𝑧𝐴𝐵 ∈ ℂ) → ((𝑧𝐴𝐵)‘𝑧) = 𝐵)
2625fvoveq1d 7368 . . . . . . . . 9 ((𝑧𝐴𝐵 ∈ ℂ) → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) = (abs‘(𝐵𝐶)))
2726breq1d 5101 . . . . . . . 8 ((𝑧𝐴𝐵 ∈ ℂ) → ((abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑥))
2827imbi2d 340 . . . . . . 7 ((𝑧𝐴𝐵 ∈ ℂ) → ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2928ralimiaa 3068 . . . . . 6 (∀𝑧𝐴 𝐵 ∈ ℂ → ∀𝑧𝐴 ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
30 ralbi 3087 . . . . . 6 (∀𝑧𝐴 ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
311, 29, 303syl 18 . . . . 5 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3224, 31bitrid 283 . . . 4 (𝜑 → (∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3332rexbidv 3156 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3433ralbidv 3155 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
357, 9, 343bitr2d 307 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005   < clt 11146  cle 11147  cmin 11344  +crp 12890  abscabs 15141  𝑟 crli 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-pm 8753  df-rlim 15396
This theorem is referenced by:  rlim2lt  15404  rlim3  15405  rlim0  15415  rlimi  15420  rlimconst  15451  climrlim2  15454  rlimcn1  15495  rlimcn3  15497  chtppilim  27414  pntlem3  27548
  Copyright terms: Public domain W3C validator