MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2 Structured version   Visualization version   GIF version

Theorem rlim2 14845
Description: Rewrite rlim 14844 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
rlim2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 eqid 2798 . . . . 5 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
32fmpt 6851 . . . 4 (∀𝑧𝐴 𝐵 ∈ ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ)
41, 3sylib 221 . . 3 (𝜑 → (𝑧𝐴𝐵):𝐴⟶ℂ)
5 rlim2.2 . . 3 (𝜑𝐴 ⊆ ℝ)
6 eqidd 2799 . . 3 ((𝜑𝑤𝐴) → ((𝑧𝐴𝐵)‘𝑤) = ((𝑧𝐴𝐵)‘𝑤))
74, 5, 6rlim 14844 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥))))
8 rlim2.3 . . 3 (𝜑𝐶 ∈ ℂ)
98biantrurd 536 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥))))
10 nfv 1915 . . . . . . 7 𝑧 𝑦𝑤
11 nfcv 2955 . . . . . . . . 9 𝑧abs
12 nffvmpt1 6656 . . . . . . . . . 10 𝑧((𝑧𝐴𝐵)‘𝑤)
13 nfcv 2955 . . . . . . . . . 10 𝑧
14 nfcv 2955 . . . . . . . . . 10 𝑧𝐶
1512, 13, 14nfov 7165 . . . . . . . . 9 𝑧(((𝑧𝐴𝐵)‘𝑤) − 𝐶)
1611, 15nffv 6655 . . . . . . . 8 𝑧(abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶))
17 nfcv 2955 . . . . . . . 8 𝑧 <
18 nfcv 2955 . . . . . . . 8 𝑧𝑥
1916, 17, 18nfbr 5077 . . . . . . 7 𝑧(abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥
2010, 19nfim 1897 . . . . . 6 𝑧(𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥)
21 nfv 1915 . . . . . 6 𝑤(𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥)
22 breq2 5034 . . . . . . 7 (𝑤 = 𝑧 → (𝑦𝑤𝑦𝑧))
2322imbrov2fvoveq 7160 . . . . . 6 (𝑤 = 𝑧 → ((𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥)))
2420, 21, 23cbvralw 3387 . . . . 5 (∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥))
252fvmpt2 6756 . . . . . . . . . 10 ((𝑧𝐴𝐵 ∈ ℂ) → ((𝑧𝐴𝐵)‘𝑧) = 𝐵)
2625fvoveq1d 7157 . . . . . . . . 9 ((𝑧𝐴𝐵 ∈ ℂ) → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) = (abs‘(𝐵𝐶)))
2726breq1d 5040 . . . . . . . 8 ((𝑧𝐴𝐵 ∈ ℂ) → ((abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑥))
2827imbi2d 344 . . . . . . 7 ((𝑧𝐴𝐵 ∈ ℂ) → ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2928ralimiaa 3127 . . . . . 6 (∀𝑧𝐴 𝐵 ∈ ℂ → ∀𝑧𝐴 ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
30 ralbi 3135 . . . . . 6 (∀𝑧𝐴 ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
311, 29, 303syl 18 . . . . 5 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3224, 31syl5bb 286 . . . 4 (𝜑 → (∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3332rexbidv 3256 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3433ralbidv 3162 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
357, 9, 343bitr2d 310 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  wral 3106  wrex 3107  wss 3881   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525   < clt 10664  cle 10665  cmin 10859  +crp 12377  abscabs 14585  𝑟 crli 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-pm 8392  df-rlim 14838
This theorem is referenced by:  rlim2lt  14846  rlim3  14847  rlim0  14857  rlimi  14862  rlimconst  14893  climrlim2  14896  rlimcn1  14937  rlimcn2  14939  chtppilim  26059  pntlem3  26193
  Copyright terms: Public domain W3C validator