| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsdsval2 | Structured version Visualization version GIF version | ||
| Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| prdsbasmpt2.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| prdsbasmpt2.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsbasmpt2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdsbasmpt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdsbasmpt2.r | ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) |
| prdsdsval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| prdsdsval2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| prdsdsval2.e | ⊢ 𝐸 = (dist‘𝑅) |
| prdsdsval2.d | ⊢ 𝐷 = (dist‘𝑌) |
| Ref | Expression |
|---|---|
| prdsdsval2 | ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
| 2 | prdsbasmpt2.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | prdsbasmpt2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | prdsbasmpt2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | prdsbasmpt2.r | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
| 7 | 6 | fnmpt 6661 | . . . 4 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
| 9 | prdsdsval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 10 | prdsdsval2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 11 | prdsdsval2.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
| 12 | 1, 2, 3, 4, 8, 9, 10, 11 | prdsdsval 17448 | . 2 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}), ℝ*, < )) |
| 13 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝑦) | |
| 14 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑥dist | |
| 15 | nffvmpt1 6872 | . . . . . . . . 9 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦) | |
| 16 | 14, 15 | nffv 6871 | . . . . . . . 8 ⊢ Ⅎ𝑥(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) |
| 17 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐺‘𝑦) | |
| 18 | 13, 16, 17 | nfov 7420 | . . . . . . 7 ⊢ Ⅎ𝑥((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦)) |
| 19 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑦((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) | |
| 20 | 2fveq3 6866 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) = (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))) | |
| 21 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
| 22 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐺‘𝑦) = (𝐺‘𝑥)) | |
| 23 | 20, 21, 22 | oveq123d 7411 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦)) = ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) |
| 24 | 18, 19, 23 | cbvmpt 5212 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) |
| 25 | eqidd 2731 | . . . . . . 7 ⊢ (𝜑 → 𝐼 = 𝐼) | |
| 26 | 6 | fvmpt2 6982 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥) = 𝑅) |
| 27 | 26 | fveq2d 6865 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = (dist‘𝑅)) |
| 28 | prdsdsval2.e | . . . . . . . . . . 11 ⊢ 𝐸 = (dist‘𝑅) | |
| 29 | 27, 28 | eqtr4di 2783 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = 𝐸) |
| 30 | 29 | oveqd 7407 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
| 31 | 30 | ralimiaa 3066 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
| 32 | 5, 31 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
| 33 | mpteq12 5198 | . . . . . . 7 ⊢ ((𝐼 = 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) | |
| 34 | 25, 32, 33 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
| 35 | 24, 34 | eqtrid 2777 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
| 36 | 35 | rneqd 5905 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
| 37 | 36 | uneq1d 4133 | . . 3 ⊢ (𝜑 → (ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}) = (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0})) |
| 38 | 37 | supeq1d 9404 | . 2 ⊢ (𝜑 → sup((ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| 39 | 12, 38 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∪ cun 3915 {csn 4592 ↦ cmpt 5191 ran crn 5642 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 supcsup 9398 0cc0 11075 ℝ*cxr 11214 < clt 11215 Basecbs 17186 distcds 17236 Xscprds 17415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-prds 17417 |
| This theorem is referenced by: prdsdsval3 17455 ressprdsds 24266 |
| Copyright terms: Public domain | W3C validator |