MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval2 Structured version   Visualization version   GIF version

Theorem prdsdsval2 16961
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbasmpt2.b 𝐵 = (Base‘𝑌)
prdsbasmpt2.s (𝜑𝑆𝑉)
prdsbasmpt2.i (𝜑𝐼𝑊)
prdsbasmpt2.r (𝜑 → ∀𝑥𝐼 𝑅𝑋)
prdsdsval2.f (𝜑𝐹𝐵)
prdsdsval2.g (𝜑𝐺𝐵)
prdsdsval2.e 𝐸 = (dist‘𝑅)
prdsdsval2.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem prdsdsval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt2.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbasmpt2.b . . 3 𝐵 = (Base‘𝑌)
3 prdsbasmpt2.s . . 3 (𝜑𝑆𝑉)
4 prdsbasmpt2.i . . 3 (𝜑𝐼𝑊)
5 prdsbasmpt2.r . . . 4 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
6 eqid 2734 . . . . 5 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
76fnmpt 6507 . . . 4 (∀𝑥𝐼 𝑅𝑋 → (𝑥𝐼𝑅) Fn 𝐼)
85, 7syl 17 . . 3 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
9 prdsdsval2.f . . 3 (𝜑𝐹𝐵)
10 prdsdsval2.g . . 3 (𝜑𝐺𝐵)
11 prdsdsval2.d . . 3 𝐷 = (dist‘𝑌)
121, 2, 3, 4, 8, 9, 10, 11prdsdsval 16955 . 2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}), ℝ*, < ))
13 nfcv 2900 . . . . . . . 8 𝑥(𝐹𝑦)
14 nfcv 2900 . . . . . . . . 9 𝑥dist
15 nffvmpt1 6717 . . . . . . . . 9 𝑥((𝑥𝐼𝑅)‘𝑦)
1614, 15nffv 6716 . . . . . . . 8 𝑥(dist‘((𝑥𝐼𝑅)‘𝑦))
17 nfcv 2900 . . . . . . . 8 𝑥(𝐺𝑦)
1813, 16, 17nfov 7232 . . . . . . 7 𝑥((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))
19 nfcv 2900 . . . . . . 7 𝑦((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))
20 2fveq3 6711 . . . . . . . 8 (𝑦 = 𝑥 → (dist‘((𝑥𝐼𝑅)‘𝑦)) = (dist‘((𝑥𝐼𝑅)‘𝑥)))
21 fveq2 6706 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
22 fveq2 6706 . . . . . . . 8 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
2320, 21, 22oveq123d 7223 . . . . . . 7 (𝑦 = 𝑥 → ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦)) = ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)))
2418, 19, 23cbvmpt 5145 . . . . . 6 (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)))
25 eqidd 2735 . . . . . . 7 (𝜑𝐼 = 𝐼)
266fvmpt2 6818 . . . . . . . . . . . 12 ((𝑥𝐼𝑅𝑋) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
2726fveq2d 6710 . . . . . . . . . . 11 ((𝑥𝐼𝑅𝑋) → (dist‘((𝑥𝐼𝑅)‘𝑥)) = (dist‘𝑅))
28 prdsdsval2.e . . . . . . . . . . 11 𝐸 = (dist‘𝑅)
2927, 28eqtr4di 2792 . . . . . . . . . 10 ((𝑥𝐼𝑅𝑋) → (dist‘((𝑥𝐼𝑅)‘𝑥)) = 𝐸)
3029oveqd 7219 . . . . . . . . 9 ((𝑥𝐼𝑅𝑋) → ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
3130ralimiaa 3075 . . . . . . . 8 (∀𝑥𝐼 𝑅𝑋 → ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
325, 31syl 17 . . . . . . 7 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
33 mpteq12 5131 . . . . . . 7 ((𝐼 = 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥))) → (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3425, 32, 33syl2anc 587 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3524, 34syl5eq 2786 . . . . 5 (𝜑 → (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3635rneqd 5796 . . . 4 (𝜑 → ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3736uneq1d 4066 . . 3 (𝜑 → (ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}))
3837supeq1d 9051 . 2 (𝜑 → sup((ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
3912, 38eqtrd 2774 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3054  cun 3855  {csn 4531  cmpt 5124  ran crn 5541   Fn wfn 6364  cfv 6369  (class class class)co 7202  supcsup 9045  0cc0 10712  *cxr 10849   < clt 10850  Basecbs 16684  distcds 16776  Xscprds 16922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-fz 13079  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-hom 16791  df-cco 16792  df-prds 16924
This theorem is referenced by:  prdsdsval3  16962  ressprdsds  23241
  Copyright terms: Public domain W3C validator