Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsdsval2 | Structured version Visualization version GIF version |
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
prdsbasmpt2.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
prdsbasmpt2.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsbasmpt2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbasmpt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsbasmpt2.r | ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) |
prdsdsval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
prdsdsval2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsdsval2.e | ⊢ 𝐸 = (dist‘𝑅) |
prdsdsval2.d | ⊢ 𝐷 = (dist‘𝑌) |
Ref | Expression |
---|---|
prdsdsval2 | ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt2.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
2 | prdsbasmpt2.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsbasmpt2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdsbasmpt2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdsbasmpt2.r | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) | |
6 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
7 | 6 | fnmpt 6557 | . . . 4 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
9 | prdsdsval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
10 | prdsdsval2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
11 | prdsdsval2.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
12 | 1, 2, 3, 4, 8, 9, 10, 11 | prdsdsval 17106 | . 2 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}), ℝ*, < )) |
13 | nfcv 2906 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝑦) | |
14 | nfcv 2906 | . . . . . . . . 9 ⊢ Ⅎ𝑥dist | |
15 | nffvmpt1 6767 | . . . . . . . . 9 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦) | |
16 | 14, 15 | nffv 6766 | . . . . . . . 8 ⊢ Ⅎ𝑥(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) |
17 | nfcv 2906 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐺‘𝑦) | |
18 | 13, 16, 17 | nfov 7285 | . . . . . . 7 ⊢ Ⅎ𝑥((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦)) |
19 | nfcv 2906 | . . . . . . 7 ⊢ Ⅎ𝑦((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) | |
20 | 2fveq3 6761 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) = (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))) | |
21 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
22 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐺‘𝑦) = (𝐺‘𝑥)) | |
23 | 20, 21, 22 | oveq123d 7276 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦)) = ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) |
24 | 18, 19, 23 | cbvmpt 5181 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) |
25 | eqidd 2739 | . . . . . . 7 ⊢ (𝜑 → 𝐼 = 𝐼) | |
26 | 6 | fvmpt2 6868 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥) = 𝑅) |
27 | 26 | fveq2d 6760 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = (dist‘𝑅)) |
28 | prdsdsval2.e | . . . . . . . . . . 11 ⊢ 𝐸 = (dist‘𝑅) | |
29 | 27, 28 | eqtr4di 2797 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = 𝐸) |
30 | 29 | oveqd 7272 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
31 | 30 | ralimiaa 3085 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
32 | 5, 31 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
33 | mpteq12 5162 | . . . . . . 7 ⊢ ((𝐼 = 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) | |
34 | 25, 32, 33 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
35 | 24, 34 | eqtrid 2790 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
36 | 35 | rneqd 5836 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
37 | 36 | uneq1d 4092 | . . 3 ⊢ (𝜑 → (ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}) = (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0})) |
38 | 37 | supeq1d 9135 | . 2 ⊢ (𝜑 → sup((ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
39 | 12, 38 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∪ cun 3881 {csn 4558 ↦ cmpt 5153 ran crn 5581 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 supcsup 9129 0cc0 10802 ℝ*cxr 10939 < clt 10940 Basecbs 16840 distcds 16897 Xscprds 17073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-prds 17075 |
This theorem is referenced by: prdsdsval3 17113 ressprdsds 23432 |
Copyright terms: Public domain | W3C validator |