MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval2 Structured version   Visualization version   GIF version

Theorem prdsdsval2 17530
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbasmpt2.b 𝐵 = (Base‘𝑌)
prdsbasmpt2.s (𝜑𝑆𝑉)
prdsbasmpt2.i (𝜑𝐼𝑊)
prdsbasmpt2.r (𝜑 → ∀𝑥𝐼 𝑅𝑋)
prdsdsval2.f (𝜑𝐹𝐵)
prdsdsval2.g (𝜑𝐺𝐵)
prdsdsval2.e 𝐸 = (dist‘𝑅)
prdsdsval2.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem prdsdsval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt2.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbasmpt2.b . . 3 𝐵 = (Base‘𝑌)
3 prdsbasmpt2.s . . 3 (𝜑𝑆𝑉)
4 prdsbasmpt2.i . . 3 (𝜑𝐼𝑊)
5 prdsbasmpt2.r . . . 4 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
6 eqid 2734 . . . . 5 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
76fnmpt 6708 . . . 4 (∀𝑥𝐼 𝑅𝑋 → (𝑥𝐼𝑅) Fn 𝐼)
85, 7syl 17 . . 3 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
9 prdsdsval2.f . . 3 (𝜑𝐹𝐵)
10 prdsdsval2.g . . 3 (𝜑𝐺𝐵)
11 prdsdsval2.d . . 3 𝐷 = (dist‘𝑌)
121, 2, 3, 4, 8, 9, 10, 11prdsdsval 17524 . 2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}), ℝ*, < ))
13 nfcv 2902 . . . . . . . 8 𝑥(𝐹𝑦)
14 nfcv 2902 . . . . . . . . 9 𝑥dist
15 nffvmpt1 6917 . . . . . . . . 9 𝑥((𝑥𝐼𝑅)‘𝑦)
1614, 15nffv 6916 . . . . . . . 8 𝑥(dist‘((𝑥𝐼𝑅)‘𝑦))
17 nfcv 2902 . . . . . . . 8 𝑥(𝐺𝑦)
1813, 16, 17nfov 7460 . . . . . . 7 𝑥((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))
19 nfcv 2902 . . . . . . 7 𝑦((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))
20 2fveq3 6911 . . . . . . . 8 (𝑦 = 𝑥 → (dist‘((𝑥𝐼𝑅)‘𝑦)) = (dist‘((𝑥𝐼𝑅)‘𝑥)))
21 fveq2 6906 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
22 fveq2 6906 . . . . . . . 8 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
2320, 21, 22oveq123d 7451 . . . . . . 7 (𝑦 = 𝑥 → ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦)) = ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)))
2418, 19, 23cbvmpt 5258 . . . . . 6 (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)))
25 eqidd 2735 . . . . . . 7 (𝜑𝐼 = 𝐼)
266fvmpt2 7026 . . . . . . . . . . . 12 ((𝑥𝐼𝑅𝑋) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
2726fveq2d 6910 . . . . . . . . . . 11 ((𝑥𝐼𝑅𝑋) → (dist‘((𝑥𝐼𝑅)‘𝑥)) = (dist‘𝑅))
28 prdsdsval2.e . . . . . . . . . . 11 𝐸 = (dist‘𝑅)
2927, 28eqtr4di 2792 . . . . . . . . . 10 ((𝑥𝐼𝑅𝑋) → (dist‘((𝑥𝐼𝑅)‘𝑥)) = 𝐸)
3029oveqd 7447 . . . . . . . . 9 ((𝑥𝐼𝑅𝑋) → ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
3130ralimiaa 3079 . . . . . . . 8 (∀𝑥𝐼 𝑅𝑋 → ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
325, 31syl 17 . . . . . . 7 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
33 mpteq12 5239 . . . . . . 7 ((𝐼 = 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥))) → (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3425, 32, 33syl2anc 584 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3524, 34eqtrid 2786 . . . . 5 (𝜑 → (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3635rneqd 5951 . . . 4 (𝜑 → ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3736uneq1d 4176 . . 3 (𝜑 → (ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}))
3837supeq1d 9483 . 2 (𝜑 → sup((ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
3912, 38eqtrd 2774 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  cun 3960  {csn 4630  cmpt 5230  ran crn 5689   Fn wfn 6557  cfv 6562  (class class class)co 7430  supcsup 9477  0cc0 11152  *cxr 11291   < clt 11292  Basecbs 17244  distcds 17306  Xscprds 17491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-prds 17493
This theorem is referenced by:  prdsdsval3  17531  ressprdsds  24396
  Copyright terms: Public domain W3C validator