| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsdsval2 | Structured version Visualization version GIF version | ||
| Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| prdsbasmpt2.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| prdsbasmpt2.b | ⊢ 𝐵 = (Base‘𝑌) |
| prdsbasmpt2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| prdsbasmpt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| prdsbasmpt2.r | ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) |
| prdsdsval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| prdsdsval2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| prdsdsval2.e | ⊢ 𝐸 = (dist‘𝑅) |
| prdsdsval2.d | ⊢ 𝐷 = (dist‘𝑌) |
| Ref | Expression |
|---|---|
| prdsdsval2 | ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
| 2 | prdsbasmpt2.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | prdsbasmpt2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | prdsbasmpt2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | prdsbasmpt2.r | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
| 7 | 6 | fnmpt 6621 | . . . 4 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
| 9 | prdsdsval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 10 | prdsdsval2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 11 | prdsdsval2.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
| 12 | 1, 2, 3, 4, 8, 9, 10, 11 | prdsdsval 17382 | . 2 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}), ℝ*, < )) |
| 13 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝑦) | |
| 14 | nfcv 2894 | . . . . . . . . 9 ⊢ Ⅎ𝑥dist | |
| 15 | nffvmpt1 6833 | . . . . . . . . 9 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦) | |
| 16 | 14, 15 | nffv 6832 | . . . . . . . 8 ⊢ Ⅎ𝑥(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) |
| 17 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐺‘𝑦) | |
| 18 | 13, 16, 17 | nfov 7376 | . . . . . . 7 ⊢ Ⅎ𝑥((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦)) |
| 19 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑦((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) | |
| 20 | 2fveq3 6827 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) = (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))) | |
| 21 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
| 22 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐺‘𝑦) = (𝐺‘𝑥)) | |
| 23 | 20, 21, 22 | oveq123d 7367 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦)) = ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) |
| 24 | 18, 19, 23 | cbvmpt 5193 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) |
| 25 | eqidd 2732 | . . . . . . 7 ⊢ (𝜑 → 𝐼 = 𝐼) | |
| 26 | 6 | fvmpt2 6940 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥) = 𝑅) |
| 27 | 26 | fveq2d 6826 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = (dist‘𝑅)) |
| 28 | prdsdsval2.e | . . . . . . . . . . 11 ⊢ 𝐸 = (dist‘𝑅) | |
| 29 | 27, 28 | eqtr4di 2784 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = 𝐸) |
| 30 | 29 | oveqd 7363 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
| 31 | 30 | ralimiaa 3068 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
| 32 | 5, 31 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
| 33 | mpteq12 5179 | . . . . . . 7 ⊢ ((𝐼 = 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) | |
| 34 | 25, 32, 33 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
| 35 | 24, 34 | eqtrid 2778 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
| 36 | 35 | rneqd 5878 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
| 37 | 36 | uneq1d 4117 | . . 3 ⊢ (𝜑 → (ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}) = (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0})) |
| 38 | 37 | supeq1d 9330 | . 2 ⊢ (𝜑 → sup((ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| 39 | 12, 38 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cun 3900 {csn 4576 ↦ cmpt 5172 ran crn 5617 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 supcsup 9324 0cc0 11006 ℝ*cxr 11145 < clt 11146 Basecbs 17120 distcds 17170 Xscprds 17349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-prds 17351 |
| This theorem is referenced by: prdsdsval3 17389 ressprdsds 24287 |
| Copyright terms: Public domain | W3C validator |