![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsdsval2 | Structured version Visualization version GIF version |
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
prdsbasmpt2.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
prdsbasmpt2.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsbasmpt2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbasmpt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsbasmpt2.r | ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) |
prdsdsval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
prdsdsval2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsdsval2.e | ⊢ 𝐸 = (dist‘𝑅) |
prdsdsval2.d | ⊢ 𝐷 = (dist‘𝑌) |
Ref | Expression |
---|---|
prdsdsval2 | ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt2.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
2 | prdsbasmpt2.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsbasmpt2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdsbasmpt2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdsbasmpt2.r | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) | |
6 | eqid 2734 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
7 | 6 | fnmpt 6708 | . . . 4 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
9 | prdsdsval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
10 | prdsdsval2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
11 | prdsdsval2.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
12 | 1, 2, 3, 4, 8, 9, 10, 11 | prdsdsval 17524 | . 2 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}), ℝ*, < )) |
13 | nfcv 2902 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝑦) | |
14 | nfcv 2902 | . . . . . . . . 9 ⊢ Ⅎ𝑥dist | |
15 | nffvmpt1 6917 | . . . . . . . . 9 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦) | |
16 | 14, 15 | nffv 6916 | . . . . . . . 8 ⊢ Ⅎ𝑥(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) |
17 | nfcv 2902 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐺‘𝑦) | |
18 | 13, 16, 17 | nfov 7460 | . . . . . . 7 ⊢ Ⅎ𝑥((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦)) |
19 | nfcv 2902 | . . . . . . 7 ⊢ Ⅎ𝑦((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) | |
20 | 2fveq3 6911 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) = (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))) | |
21 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
22 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐺‘𝑦) = (𝐺‘𝑥)) | |
23 | 20, 21, 22 | oveq123d 7451 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦)) = ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) |
24 | 18, 19, 23 | cbvmpt 5258 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) |
25 | eqidd 2735 | . . . . . . 7 ⊢ (𝜑 → 𝐼 = 𝐼) | |
26 | 6 | fvmpt2 7026 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥) = 𝑅) |
27 | 26 | fveq2d 6910 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = (dist‘𝑅)) |
28 | prdsdsval2.e | . . . . . . . . . . 11 ⊢ 𝐸 = (dist‘𝑅) | |
29 | 27, 28 | eqtr4di 2792 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = 𝐸) |
30 | 29 | oveqd 7447 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
31 | 30 | ralimiaa 3079 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
32 | 5, 31 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
33 | mpteq12 5239 | . . . . . . 7 ⊢ ((𝐼 = 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) | |
34 | 25, 32, 33 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
35 | 24, 34 | eqtrid 2786 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
36 | 35 | rneqd 5951 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
37 | 36 | uneq1d 4176 | . . 3 ⊢ (𝜑 → (ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}) = (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0})) |
38 | 37 | supeq1d 9483 | . 2 ⊢ (𝜑 → sup((ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
39 | 12, 38 | eqtrd 2774 | 1 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∪ cun 3960 {csn 4630 ↦ cmpt 5230 ran crn 5689 Fn wfn 6557 ‘cfv 6562 (class class class)co 7430 supcsup 9477 0cc0 11152 ℝ*cxr 11291 < clt 11292 Basecbs 17244 distcds 17306 Xscprds 17491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-prds 17493 |
This theorem is referenced by: prdsdsval3 17531 ressprdsds 24396 |
Copyright terms: Public domain | W3C validator |