MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsdsval2 Structured version   Visualization version   GIF version

Theorem prdsdsval2 17392
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt2.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsbasmpt2.b 𝐵 = (Base‘𝑌)
prdsbasmpt2.s (𝜑𝑆𝑉)
prdsbasmpt2.i (𝜑𝐼𝑊)
prdsbasmpt2.r (𝜑 → ∀𝑥𝐼 𝑅𝑋)
prdsdsval2.f (𝜑𝐹𝐵)
prdsdsval2.g (𝜑𝐺𝐵)
prdsdsval2.e 𝐸 = (dist‘𝑅)
prdsdsval2.d 𝐷 = (dist‘𝑌)
Assertion
Ref Expression
prdsdsval2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem prdsdsval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt2.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsbasmpt2.b . . 3 𝐵 = (Base‘𝑌)
3 prdsbasmpt2.s . . 3 (𝜑𝑆𝑉)
4 prdsbasmpt2.i . . 3 (𝜑𝐼𝑊)
5 prdsbasmpt2.r . . . 4 (𝜑 → ∀𝑥𝐼 𝑅𝑋)
6 eqid 2733 . . . . 5 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
76fnmpt 6628 . . . 4 (∀𝑥𝐼 𝑅𝑋 → (𝑥𝐼𝑅) Fn 𝐼)
85, 7syl 17 . . 3 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
9 prdsdsval2.f . . 3 (𝜑𝐹𝐵)
10 prdsdsval2.g . . 3 (𝜑𝐺𝐵)
11 prdsdsval2.d . . 3 𝐷 = (dist‘𝑌)
121, 2, 3, 4, 8, 9, 10, 11prdsdsval 17386 . 2 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}), ℝ*, < ))
13 nfcv 2895 . . . . . . . 8 𝑥(𝐹𝑦)
14 nfcv 2895 . . . . . . . . 9 𝑥dist
15 nffvmpt1 6841 . . . . . . . . 9 𝑥((𝑥𝐼𝑅)‘𝑦)
1614, 15nffv 6840 . . . . . . . 8 𝑥(dist‘((𝑥𝐼𝑅)‘𝑦))
17 nfcv 2895 . . . . . . . 8 𝑥(𝐺𝑦)
1813, 16, 17nfov 7384 . . . . . . 7 𝑥((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))
19 nfcv 2895 . . . . . . 7 𝑦((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))
20 2fveq3 6835 . . . . . . . 8 (𝑦 = 𝑥 → (dist‘((𝑥𝐼𝑅)‘𝑦)) = (dist‘((𝑥𝐼𝑅)‘𝑥)))
21 fveq2 6830 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
22 fveq2 6830 . . . . . . . 8 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
2320, 21, 22oveq123d 7375 . . . . . . 7 (𝑦 = 𝑥 → ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦)) = ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)))
2418, 19, 23cbvmpt 5197 . . . . . 6 (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)))
25 eqidd 2734 . . . . . . 7 (𝜑𝐼 = 𝐼)
266fvmpt2 6948 . . . . . . . . . . . 12 ((𝑥𝐼𝑅𝑋) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
2726fveq2d 6834 . . . . . . . . . . 11 ((𝑥𝐼𝑅𝑋) → (dist‘((𝑥𝐼𝑅)‘𝑥)) = (dist‘𝑅))
28 prdsdsval2.e . . . . . . . . . . 11 𝐸 = (dist‘𝑅)
2927, 28eqtr4di 2786 . . . . . . . . . 10 ((𝑥𝐼𝑅𝑋) → (dist‘((𝑥𝐼𝑅)‘𝑥)) = 𝐸)
3029oveqd 7371 . . . . . . . . 9 ((𝑥𝐼𝑅𝑋) → ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
3130ralimiaa 3069 . . . . . . . 8 (∀𝑥𝐼 𝑅𝑋 → ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
325, 31syl 17 . . . . . . 7 (𝜑 → ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥)))
33 mpteq12 5183 . . . . . . 7 ((𝐼 = 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥)) = ((𝐹𝑥)𝐸(𝐺𝑥))) → (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3425, 32, 33syl2anc 584 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(dist‘((𝑥𝐼𝑅)‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3524, 34eqtrid 2780 . . . . 5 (𝜑 → (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3635rneqd 5884 . . . 4 (𝜑 → ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) = ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))))
3736uneq1d 4116 . . 3 (𝜑 → (ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}) = (ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}))
3837supeq1d 9339 . 2 (𝜑 → sup((ran (𝑦𝐼 ↦ ((𝐹𝑦)(dist‘((𝑥𝐼𝑅)‘𝑦))(𝐺𝑦))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
3912, 38eqtrd 2768 1 (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥𝐼 ↦ ((𝐹𝑥)𝐸(𝐺𝑥))) ∪ {0}), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  cun 3896  {csn 4577  cmpt 5176  ran crn 5622   Fn wfn 6483  cfv 6488  (class class class)co 7354  supcsup 9333  0cc0 11015  *cxr 11154   < clt 11155  Basecbs 17124  distcds 17174  Xscprds 17353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-struct 17062  df-slot 17097  df-ndx 17109  df-base 17125  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-hom 17189  df-cco 17190  df-prds 17355
This theorem is referenced by:  prdsdsval3  17393  ressprdsds  24289
  Copyright terms: Public domain W3C validator