Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsdsval2 | Structured version Visualization version GIF version |
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
prdsbasmpt2.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
prdsbasmpt2.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsbasmpt2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbasmpt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsbasmpt2.r | ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) |
prdsdsval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
prdsdsval2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsdsval2.e | ⊢ 𝐸 = (dist‘𝑅) |
prdsdsval2.d | ⊢ 𝐷 = (dist‘𝑌) |
Ref | Expression |
---|---|
prdsdsval2 | ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt2.y | . . 3 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
2 | prdsbasmpt2.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsbasmpt2.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdsbasmpt2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdsbasmpt2.r | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) | |
6 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
7 | 6 | fnmpt 6611 | . . . 4 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
9 | prdsdsval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
10 | prdsdsval2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
11 | prdsdsval2.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
12 | 1, 2, 3, 4, 8, 9, 10, 11 | prdsdsval 17266 | . 2 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}), ℝ*, < )) |
13 | nfcv 2905 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝑦) | |
14 | nfcv 2905 | . . . . . . . . 9 ⊢ Ⅎ𝑥dist | |
15 | nffvmpt1 6823 | . . . . . . . . 9 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦) | |
16 | 14, 15 | nffv 6822 | . . . . . . . 8 ⊢ Ⅎ𝑥(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) |
17 | nfcv 2905 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐺‘𝑦) | |
18 | 13, 16, 17 | nfov 7347 | . . . . . . 7 ⊢ Ⅎ𝑥((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦)) |
19 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑦((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) | |
20 | 2fveq3 6817 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) = (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))) | |
21 | fveq2 6812 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
22 | fveq2 6812 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐺‘𝑦) = (𝐺‘𝑥)) | |
23 | 20, 21, 22 | oveq123d 7338 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦)) = ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) |
24 | 18, 19, 23 | cbvmpt 5198 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) |
25 | eqidd 2738 | . . . . . . 7 ⊢ (𝜑 → 𝐼 = 𝐼) | |
26 | 6 | fvmpt2 6926 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥) = 𝑅) |
27 | 26 | fveq2d 6816 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = (dist‘𝑅)) |
28 | prdsdsval2.e | . . . . . . . . . . 11 ⊢ 𝐸 = (dist‘𝑅) | |
29 | 27, 28 | eqtr4di 2795 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = 𝐸) |
30 | 29 | oveqd 7334 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
31 | 30 | ralimiaa 3082 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
32 | 5, 31 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) |
33 | mpteq12 5179 | . . . . . . 7 ⊢ ((𝐼 = 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) | |
34 | 25, 32, 33 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
35 | 24, 34 | eqtrid 2789 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
36 | 35 | rneqd 5867 | . . . 4 ⊢ (𝜑 → ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) = ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥)))) |
37 | 36 | uneq1d 4107 | . . 3 ⊢ (𝜑 → (ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}) = (ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0})) |
38 | 37 | supeq1d 9282 | . 2 ⊢ (𝜑 → sup((ran (𝑦 ∈ 𝐼 ↦ ((𝐹‘𝑦)(dist‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))(𝐺‘𝑦))) ∪ {0}), ℝ*, < ) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
39 | 12, 38 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝐹𝐷𝐺) = sup((ran (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝐸(𝐺‘𝑥))) ∪ {0}), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ∪ cun 3895 {csn 4571 ↦ cmpt 5170 ran crn 5609 Fn wfn 6461 ‘cfv 6466 (class class class)co 7317 supcsup 9276 0cc0 10951 ℝ*cxr 11088 < clt 11089 Basecbs 16989 distcds 17048 Xscprds 17233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-ixp 8736 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-sup 9278 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-z 12400 df-dec 12518 df-uz 12663 df-fz 13320 df-struct 16925 df-slot 16960 df-ndx 16972 df-base 16990 df-plusg 17052 df-mulr 17053 df-sca 17055 df-vsca 17056 df-ip 17057 df-tset 17058 df-ple 17059 df-ds 17061 df-hom 17063 df-cco 17064 df-prds 17235 |
This theorem is referenced by: prdsdsval3 17273 ressprdsds 23607 |
Copyright terms: Public domain | W3C validator |