![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > riesz4i | Structured version Visualization version GIF version |
Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nlelch.1 | ⊢ 𝑇 ∈ LinFn |
nlelch.2 | ⊢ 𝑇 ∈ ContFn |
Ref | Expression |
---|---|
riesz4i | ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlelch.1 | . . 3 ⊢ 𝑇 ∈ LinFn | |
2 | nlelch.2 | . . 3 ⊢ 𝑇 ∈ ContFn | |
3 | 1, 2 | riesz3i 32091 | . 2 ⊢ ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
4 | r19.26 3109 | . . . . 5 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) ↔ (∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) | |
5 | oveq12 7440 | . . . . . . . 8 ⊢ (((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢))) | |
6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢))) |
7 | 1 | lnfnfi 32070 | . . . . . . . . . 10 ⊢ 𝑇: ℋ⟶ℂ |
8 | 7 | ffvelcdmi 7103 | . . . . . . . . 9 ⊢ (𝑣 ∈ ℋ → (𝑇‘𝑣) ∈ ℂ) |
9 | 8 | subidd 11606 | . . . . . . . 8 ⊢ (𝑣 ∈ ℋ → ((𝑇‘𝑣) − (𝑇‘𝑣)) = 0) |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = 0) |
11 | 6, 10 | eqtr3d 2777 | . . . . . 6 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
12 | 11 | ralimiaa 3080 | . . . . 5 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
13 | 4, 12 | sylbir 235 | . . . 4 ⊢ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
14 | hvsubcl 31046 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑤 −ℎ 𝑢) ∈ ℋ) | |
15 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (𝑣 ·ih 𝑤) = ((𝑤 −ℎ 𝑢) ·ih 𝑤)) | |
16 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (𝑣 ·ih 𝑢) = ((𝑤 −ℎ 𝑢) ·ih 𝑢)) | |
17 | 15, 16 | oveq12d 7449 | . . . . . . . 8 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
18 | 17 | eqeq1d 2737 | . . . . . . 7 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 ↔ (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
19 | 18 | rspcv 3618 | . . . . . 6 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
20 | 14, 19 | syl 17 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
21 | normcl 31154 | . . . . . . . . . 10 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℝ) | |
22 | 21 | recnd 11287 | . . . . . . . . 9 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℂ) |
23 | sqeq0 14157 | . . . . . . . . 9 ⊢ ((normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℂ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (normℎ‘(𝑤 −ℎ 𝑢)) = 0)) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (normℎ‘(𝑤 −ℎ 𝑢)) = 0)) |
25 | norm-i 31158 | . . . . . . . 8 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → ((normℎ‘(𝑤 −ℎ 𝑢)) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) | |
26 | 24, 25 | bitrd 279 | . . . . . . 7 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) |
27 | 14, 26 | syl 17 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) |
28 | normsq 31163 | . . . . . . . . 9 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢))) | |
29 | 14, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢))) |
30 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → 𝑤 ∈ ℋ) | |
31 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → 𝑢 ∈ ℋ) | |
32 | his2sub2 31122 | . . . . . . . . 9 ⊢ (((𝑤 −ℎ 𝑢) ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) | |
33 | 14, 30, 31, 32 | syl3anc 1370 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
34 | 29, 33 | eqtrd 2775 | . . . . . . 7 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
35 | 34 | eqeq1d 2737 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
36 | hvsubeq0 31097 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) = 0ℎ ↔ 𝑤 = 𝑢)) | |
37 | 27, 35, 36 | 3bitr3d 309 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0 ↔ 𝑤 = 𝑢)) |
38 | 20, 37 | sylibd 239 | . . . 4 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → 𝑤 = 𝑢)) |
39 | 13, 38 | syl5 34 | . . 3 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢)) |
40 | 39 | rgen2 3197 | . 2 ⊢ ∀𝑤 ∈ ℋ ∀𝑢 ∈ ℋ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢) |
41 | oveq2 7439 | . . . . 5 ⊢ (𝑤 = 𝑢 → (𝑣 ·ih 𝑤) = (𝑣 ·ih 𝑢)) | |
42 | 41 | eqeq2d 2746 | . . . 4 ⊢ (𝑤 = 𝑢 → ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) |
43 | 42 | ralbidv 3176 | . . 3 ⊢ (𝑤 = 𝑢 → (∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) |
44 | 43 | reu4 3740 | . 2 ⊢ (∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ (∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑤 ∈ ℋ ∀𝑢 ∈ ℋ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢))) |
45 | 3, 40, 44 | mpbir2an 711 | 1 ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∃!wreu 3376 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 − cmin 11490 2c2 12319 ↑cexp 14099 ℋchba 30948 ·ih csp 30951 normℎcno 30952 0ℎc0v 30953 −ℎ cmv 30954 ContFnccnfn 30982 LinFnclf 30983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 ax-hilex 31028 ax-hfvadd 31029 ax-hvcom 31030 ax-hvass 31031 ax-hv0cl 31032 ax-hvaddid 31033 ax-hfvmul 31034 ax-hvmulid 31035 ax-hvmulass 31036 ax-hvdistr1 31037 ax-hvdistr2 31038 ax-hvmul0 31039 ax-hfi 31108 ax-his1 31111 ax-his2 31112 ax-his3 31113 ax-his4 31114 ax-hcompl 31231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-cn 23251 df-cnp 23252 df-lm 23253 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cfil 25303 df-cau 25304 df-cmet 25305 df-grpo 30522 df-gid 30523 df-ginv 30524 df-gdiv 30525 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-vs 30628 df-nmcv 30629 df-ims 30630 df-dip 30730 df-ssp 30751 df-ph 30842 df-cbn 30892 df-hnorm 30997 df-hba 30998 df-hvsub 31000 df-hlim 31001 df-hcau 31002 df-sh 31236 df-ch 31250 df-oc 31281 df-ch0 31282 df-nlfn 31875 df-cnfn 31876 df-lnfn 31877 |
This theorem is referenced by: riesz4 32093 |
Copyright terms: Public domain | W3C validator |