| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > riesz4i | Structured version Visualization version GIF version | ||
| Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nlelch.1 | ⊢ 𝑇 ∈ LinFn |
| nlelch.2 | ⊢ 𝑇 ∈ ContFn |
| Ref | Expression |
|---|---|
| riesz4i | ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlelch.1 | . . 3 ⊢ 𝑇 ∈ LinFn | |
| 2 | nlelch.2 | . . 3 ⊢ 𝑇 ∈ ContFn | |
| 3 | 1, 2 | riesz3i 32042 | . 2 ⊢ ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
| 4 | r19.26 3092 | . . . . 5 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) ↔ (∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) | |
| 5 | oveq12 7355 | . . . . . . . 8 ⊢ (((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢))) | |
| 6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢))) |
| 7 | 1 | lnfnfi 32021 | . . . . . . . . . 10 ⊢ 𝑇: ℋ⟶ℂ |
| 8 | 7 | ffvelcdmi 7016 | . . . . . . . . 9 ⊢ (𝑣 ∈ ℋ → (𝑇‘𝑣) ∈ ℂ) |
| 9 | 8 | subidd 11460 | . . . . . . . 8 ⊢ (𝑣 ∈ ℋ → ((𝑇‘𝑣) − (𝑇‘𝑣)) = 0) |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = 0) |
| 11 | 6, 10 | eqtr3d 2768 | . . . . . 6 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
| 12 | 11 | ralimiaa 3068 | . . . . 5 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
| 13 | 4, 12 | sylbir 235 | . . . 4 ⊢ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
| 14 | hvsubcl 30997 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑤 −ℎ 𝑢) ∈ ℋ) | |
| 15 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (𝑣 ·ih 𝑤) = ((𝑤 −ℎ 𝑢) ·ih 𝑤)) | |
| 16 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (𝑣 ·ih 𝑢) = ((𝑤 −ℎ 𝑢) ·ih 𝑢)) | |
| 17 | 15, 16 | oveq12d 7364 | . . . . . . . 8 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
| 18 | 17 | eqeq1d 2733 | . . . . . . 7 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 ↔ (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
| 19 | 18 | rspcv 3568 | . . . . . 6 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
| 20 | 14, 19 | syl 17 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
| 21 | normcl 31105 | . . . . . . . . . 10 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℝ) | |
| 22 | 21 | recnd 11140 | . . . . . . . . 9 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℂ) |
| 23 | sqeq0 14027 | . . . . . . . . 9 ⊢ ((normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℂ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (normℎ‘(𝑤 −ℎ 𝑢)) = 0)) | |
| 24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (normℎ‘(𝑤 −ℎ 𝑢)) = 0)) |
| 25 | norm-i 31109 | . . . . . . . 8 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → ((normℎ‘(𝑤 −ℎ 𝑢)) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) | |
| 26 | 24, 25 | bitrd 279 | . . . . . . 7 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) |
| 27 | 14, 26 | syl 17 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) |
| 28 | normsq 31114 | . . . . . . . . 9 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢))) | |
| 29 | 14, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢))) |
| 30 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → 𝑤 ∈ ℋ) | |
| 31 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → 𝑢 ∈ ℋ) | |
| 32 | his2sub2 31073 | . . . . . . . . 9 ⊢ (((𝑤 −ℎ 𝑢) ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) | |
| 33 | 14, 30, 31, 32 | syl3anc 1373 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
| 34 | 29, 33 | eqtrd 2766 | . . . . . . 7 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
| 35 | 34 | eqeq1d 2733 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
| 36 | hvsubeq0 31048 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) = 0ℎ ↔ 𝑤 = 𝑢)) | |
| 37 | 27, 35, 36 | 3bitr3d 309 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0 ↔ 𝑤 = 𝑢)) |
| 38 | 20, 37 | sylibd 239 | . . . 4 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → 𝑤 = 𝑢)) |
| 39 | 13, 38 | syl5 34 | . . 3 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢)) |
| 40 | 39 | rgen2 3172 | . 2 ⊢ ∀𝑤 ∈ ℋ ∀𝑢 ∈ ℋ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢) |
| 41 | oveq2 7354 | . . . . 5 ⊢ (𝑤 = 𝑢 → (𝑣 ·ih 𝑤) = (𝑣 ·ih 𝑢)) | |
| 42 | 41 | eqeq2d 2742 | . . . 4 ⊢ (𝑤 = 𝑢 → ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) |
| 43 | 42 | ralbidv 3155 | . . 3 ⊢ (𝑤 = 𝑢 → (∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) |
| 44 | 43 | reu4 3685 | . 2 ⊢ (∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ (∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑤 ∈ ℋ ∀𝑢 ∈ ℋ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢))) |
| 45 | 3, 40, 44 | mpbir2an 711 | 1 ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 − cmin 11344 2c2 12180 ↑cexp 13968 ℋchba 30899 ·ih csp 30902 normℎcno 30903 0ℎc0v 30904 −ℎ cmv 30905 ContFnccnfn 30933 LinFnclf 30934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 ax-hcompl 31182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-cn 23142 df-cnp 23143 df-lm 23144 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cfil 25182 df-cau 25183 df-cmet 25184 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-dip 30681 df-ssp 30702 df-ph 30793 df-cbn 30843 df-hnorm 30948 df-hba 30949 df-hvsub 30951 df-hlim 30952 df-hcau 30953 df-sh 31187 df-ch 31201 df-oc 31232 df-ch0 31233 df-nlfn 31826 df-cnfn 31827 df-lnfn 31828 |
| This theorem is referenced by: riesz4 32044 |
| Copyright terms: Public domain | W3C validator |