Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > riesz4i | Structured version Visualization version GIF version |
Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nlelch.1 | ⊢ 𝑇 ∈ LinFn |
nlelch.2 | ⊢ 𝑇 ∈ ContFn |
Ref | Expression |
---|---|
riesz4i | ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlelch.1 | . . 3 ⊢ 𝑇 ∈ LinFn | |
2 | nlelch.2 | . . 3 ⊢ 𝑇 ∈ ContFn | |
3 | 1, 2 | riesz3i 30325 | . 2 ⊢ ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
4 | r19.26 3094 | . . . . 5 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) ↔ (∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) | |
5 | oveq12 7264 | . . . . . . . 8 ⊢ (((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢))) | |
6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢))) |
7 | 1 | lnfnfi 30304 | . . . . . . . . . 10 ⊢ 𝑇: ℋ⟶ℂ |
8 | 7 | ffvelrni 6942 | . . . . . . . . 9 ⊢ (𝑣 ∈ ℋ → (𝑇‘𝑣) ∈ ℂ) |
9 | 8 | subidd 11250 | . . . . . . . 8 ⊢ (𝑣 ∈ ℋ → ((𝑇‘𝑣) − (𝑇‘𝑣)) = 0) |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = 0) |
11 | 6, 10 | eqtr3d 2780 | . . . . . 6 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
12 | 11 | ralimiaa 3085 | . . . . 5 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
13 | 4, 12 | sylbir 234 | . . . 4 ⊢ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
14 | hvsubcl 29280 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑤 −ℎ 𝑢) ∈ ℋ) | |
15 | oveq1 7262 | . . . . . . . . 9 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (𝑣 ·ih 𝑤) = ((𝑤 −ℎ 𝑢) ·ih 𝑤)) | |
16 | oveq1 7262 | . . . . . . . . 9 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (𝑣 ·ih 𝑢) = ((𝑤 −ℎ 𝑢) ·ih 𝑢)) | |
17 | 15, 16 | oveq12d 7273 | . . . . . . . 8 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
18 | 17 | eqeq1d 2740 | . . . . . . 7 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 ↔ (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
19 | 18 | rspcv 3547 | . . . . . 6 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
20 | 14, 19 | syl 17 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
21 | normcl 29388 | . . . . . . . . . 10 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℝ) | |
22 | 21 | recnd 10934 | . . . . . . . . 9 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℂ) |
23 | sqeq0 13768 | . . . . . . . . 9 ⊢ ((normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℂ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (normℎ‘(𝑤 −ℎ 𝑢)) = 0)) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (normℎ‘(𝑤 −ℎ 𝑢)) = 0)) |
25 | norm-i 29392 | . . . . . . . 8 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → ((normℎ‘(𝑤 −ℎ 𝑢)) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) | |
26 | 24, 25 | bitrd 278 | . . . . . . 7 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) |
27 | 14, 26 | syl 17 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) |
28 | normsq 29397 | . . . . . . . . 9 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢))) | |
29 | 14, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢))) |
30 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → 𝑤 ∈ ℋ) | |
31 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → 𝑢 ∈ ℋ) | |
32 | his2sub2 29356 | . . . . . . . . 9 ⊢ (((𝑤 −ℎ 𝑢) ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) | |
33 | 14, 30, 31, 32 | syl3anc 1369 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
34 | 29, 33 | eqtrd 2778 | . . . . . . 7 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
35 | 34 | eqeq1d 2740 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
36 | hvsubeq0 29331 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) = 0ℎ ↔ 𝑤 = 𝑢)) | |
37 | 27, 35, 36 | 3bitr3d 308 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0 ↔ 𝑤 = 𝑢)) |
38 | 20, 37 | sylibd 238 | . . . 4 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → 𝑤 = 𝑢)) |
39 | 13, 38 | syl5 34 | . . 3 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢)) |
40 | 39 | rgen2 3126 | . 2 ⊢ ∀𝑤 ∈ ℋ ∀𝑢 ∈ ℋ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢) |
41 | oveq2 7263 | . . . . 5 ⊢ (𝑤 = 𝑢 → (𝑣 ·ih 𝑤) = (𝑣 ·ih 𝑢)) | |
42 | 41 | eqeq2d 2749 | . . . 4 ⊢ (𝑤 = 𝑢 → ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) |
43 | 42 | ralbidv 3120 | . . 3 ⊢ (𝑤 = 𝑢 → (∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) |
44 | 43 | reu4 3661 | . 2 ⊢ (∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ (∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑤 ∈ ℋ ∀𝑢 ∈ ℋ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢))) |
45 | 3, 40, 44 | mpbir2an 707 | 1 ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∃!wreu 3065 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 − cmin 11135 2c2 11958 ↑cexp 13710 ℋchba 29182 ·ih csp 29185 normℎcno 29186 0ℎc0v 29187 −ℎ cmv 29188 ContFnccnfn 29216 LinFnclf 29217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvdistr1 29271 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 ax-hcompl 29465 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cn 22286 df-cnp 22287 df-lm 22288 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cfil 24324 df-cau 24325 df-cmet 24326 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-dip 28964 df-ssp 28985 df-ph 29076 df-cbn 29126 df-hnorm 29231 df-hba 29232 df-hvsub 29234 df-hlim 29235 df-hcau 29236 df-sh 29470 df-ch 29484 df-oc 29515 df-ch0 29516 df-nlfn 30109 df-cnfn 30110 df-lnfn 30111 |
This theorem is referenced by: riesz4 30327 |
Copyright terms: Public domain | W3C validator |