![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > riesz4i | Structured version Visualization version GIF version |
Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nlelch.1 | ⊢ 𝑇 ∈ LinFn |
nlelch.2 | ⊢ 𝑇 ∈ ContFn |
Ref | Expression |
---|---|
riesz4i | ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlelch.1 | . . 3 ⊢ 𝑇 ∈ LinFn | |
2 | nlelch.2 | . . 3 ⊢ 𝑇 ∈ ContFn | |
3 | 1, 2 | riesz3i 32094 | . 2 ⊢ ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
4 | r19.26 3117 | . . . . 5 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) ↔ (∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) | |
5 | oveq12 7457 | . . . . . . . 8 ⊢ (((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢))) | |
6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢))) |
7 | 1 | lnfnfi 32073 | . . . . . . . . . 10 ⊢ 𝑇: ℋ⟶ℂ |
8 | 7 | ffvelcdmi 7117 | . . . . . . . . 9 ⊢ (𝑣 ∈ ℋ → (𝑇‘𝑣) ∈ ℂ) |
9 | 8 | subidd 11635 | . . . . . . . 8 ⊢ (𝑣 ∈ ℋ → ((𝑇‘𝑣) − (𝑇‘𝑣)) = 0) |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑇‘𝑣) − (𝑇‘𝑣)) = 0) |
11 | 6, 10 | eqtr3d 2782 | . . . . . 6 ⊢ ((𝑣 ∈ ℋ ∧ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) → ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
12 | 11 | ralimiaa 3088 | . . . . 5 ⊢ (∀𝑣 ∈ ℋ ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
13 | 4, 12 | sylbir 235 | . . . 4 ⊢ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → ∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0) |
14 | hvsubcl 31049 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑤 −ℎ 𝑢) ∈ ℋ) | |
15 | oveq1 7455 | . . . . . . . . 9 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (𝑣 ·ih 𝑤) = ((𝑤 −ℎ 𝑢) ·ih 𝑤)) | |
16 | oveq1 7455 | . . . . . . . . 9 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (𝑣 ·ih 𝑢) = ((𝑤 −ℎ 𝑢) ·ih 𝑢)) | |
17 | 15, 16 | oveq12d 7466 | . . . . . . . 8 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
18 | 17 | eqeq1d 2742 | . . . . . . 7 ⊢ (𝑣 = (𝑤 −ℎ 𝑢) → (((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 ↔ (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
19 | 18 | rspcv 3631 | . . . . . 6 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
20 | 14, 19 | syl 17 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
21 | normcl 31157 | . . . . . . . . . 10 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℝ) | |
22 | 21 | recnd 11318 | . . . . . . . . 9 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℂ) |
23 | sqeq0 14170 | . . . . . . . . 9 ⊢ ((normℎ‘(𝑤 −ℎ 𝑢)) ∈ ℂ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (normℎ‘(𝑤 −ℎ 𝑢)) = 0)) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (normℎ‘(𝑤 −ℎ 𝑢)) = 0)) |
25 | norm-i 31161 | . . . . . . . 8 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → ((normℎ‘(𝑤 −ℎ 𝑢)) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) | |
26 | 24, 25 | bitrd 279 | . . . . . . 7 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) |
27 | 14, 26 | syl 17 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (𝑤 −ℎ 𝑢) = 0ℎ)) |
28 | normsq 31166 | . . . . . . . . 9 ⊢ ((𝑤 −ℎ 𝑢) ∈ ℋ → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢))) | |
29 | 14, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢))) |
30 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → 𝑤 ∈ ℋ) | |
31 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → 𝑢 ∈ ℋ) | |
32 | his2sub2 31125 | . . . . . . . . 9 ⊢ (((𝑤 −ℎ 𝑢) ∈ ℋ ∧ 𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) | |
33 | 14, 30, 31, 32 | syl3anc 1371 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) ·ih (𝑤 −ℎ 𝑢)) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
34 | 29, 33 | eqtrd 2780 | . . . . . . 7 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑢))↑2) = (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢))) |
35 | 34 | eqeq1d 2742 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((normℎ‘(𝑤 −ℎ 𝑢))↑2) = 0 ↔ (((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0)) |
36 | hvsubeq0 31100 | . . . . . 6 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑤 −ℎ 𝑢) = 0ℎ ↔ 𝑤 = 𝑢)) | |
37 | 27, 35, 36 | 3bitr3d 309 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((((𝑤 −ℎ 𝑢) ·ih 𝑤) − ((𝑤 −ℎ 𝑢) ·ih 𝑢)) = 0 ↔ 𝑤 = 𝑢)) |
38 | 20, 37 | sylibd 239 | . . . 4 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (∀𝑣 ∈ ℋ ((𝑣 ·ih 𝑤) − (𝑣 ·ih 𝑢)) = 0 → 𝑤 = 𝑢)) |
39 | 13, 38 | syl5 34 | . . 3 ⊢ ((𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢)) |
40 | 39 | rgen2 3205 | . 2 ⊢ ∀𝑤 ∈ ℋ ∀𝑢 ∈ ℋ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢) |
41 | oveq2 7456 | . . . . 5 ⊢ (𝑤 = 𝑢 → (𝑣 ·ih 𝑤) = (𝑣 ·ih 𝑢)) | |
42 | 41 | eqeq2d 2751 | . . . 4 ⊢ (𝑤 = 𝑢 → ((𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) |
43 | 42 | ralbidv 3184 | . . 3 ⊢ (𝑤 = 𝑢 → (∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢))) |
44 | 43 | reu4 3753 | . 2 ⊢ (∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ↔ (∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑤 ∈ ℋ ∀𝑢 ∈ ℋ ((∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) ∧ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑢)) → 𝑤 = 𝑢))) |
45 | 3, 40, 44 | mpbir2an 710 | 1 ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∃!wreu 3386 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 − cmin 11520 2c2 12348 ↑cexp 14112 ℋchba 30951 ·ih csp 30954 normℎcno 30955 0ℎc0v 30956 −ℎ cmv 30957 ContFnccnfn 30985 LinFnclf 30986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 ax-hcompl 31234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-cn 23256 df-cnp 23257 df-lm 23258 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cfil 25308 df-cau 25309 df-cmet 25310 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-ssp 30754 df-ph 30845 df-cbn 30895 df-hnorm 31000 df-hba 31001 df-hvsub 31003 df-hlim 31004 df-hcau 31005 df-sh 31239 df-ch 31253 df-oc 31284 df-ch0 31285 df-nlfn 31878 df-cnfn 31879 df-lnfn 31880 |
This theorem is referenced by: riesz4 32096 |
Copyright terms: Public domain | W3C validator |