MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem6 Structured version   Visualization version   GIF version

Theorem lgamgulmlem6 27092
Description: The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem6 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)))
Distinct variable groups:   𝐺,𝑟   𝑘,𝑚,𝑟,𝑥,𝑧,𝑅   𝑈,𝑚,𝑟,𝑧   𝑂,𝑟   𝜑,𝑚,𝑟,𝑥,𝑧   𝑇,𝑟
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)   𝑂(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem6
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12919 . . 3 ℕ = (ℤ‘1)
2 1zzd 12646 . . 3 (𝜑 → 1 ∈ ℤ)
3 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
4 cnex 11234 . . . . 5 ℂ ∈ V
53, 4rabex2 5347 . . . 4 𝑈 ∈ V
65a1i 11 . . 3 (𝜑𝑈 ∈ V)
7 lgamgulm.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
87, 3lgamgulmlem1 27087 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
98ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
10 simpr 484 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧𝑈)
119, 10sseldd 3996 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1211eldifad 3975 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧 ∈ ℂ)
13 simplr 769 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℕ)
1413peano2nnd 12281 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑚 + 1) ∈ ℕ)
1514nnrpd 13073 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑚 + 1) ∈ ℝ+)
1613nnrpd 13073 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℝ+)
1715, 16rpdivcld 13092 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
1817relogcld 26680 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
1918recnd 11287 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
2012, 19mulcld 11279 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ)
2113nncnd 12280 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℂ)
2213nnne0d 12314 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ≠ 0)
2312, 21, 22divcld 12041 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑧 / 𝑚) ∈ ℂ)
24 1cnd 11254 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 1 ∈ ℂ)
2523, 24addcld 11278 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 / 𝑚) + 1) ∈ ℂ)
2611, 13dmgmdivn0 27086 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 / 𝑚) + 1) ≠ 0)
2725, 26logcld 26627 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑧 / 𝑚) + 1)) ∈ ℂ)
2820, 27subcld 11618 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ ℂ)
2928fmpttd 7135 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ)
304, 5elmap 8910 . . . . 5 ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑m 𝑈) ↔ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ)
3129, 30sylibr 234 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑m 𝑈))
32 lgamgulm.g . . . 4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
3331, 32fmptd 7134 . . 3 (𝜑𝐺:ℕ⟶(ℂ ↑m 𝑈))
34 lgamgulm.t . . . . 5 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
35 nnex 12270 . . . . . 6 ℕ ∈ V
3635mptex 7243 . . . . 5 (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ∈ V
3734, 36eqeltri 2835 . . . 4 𝑇 ∈ V
3837a1i 11 . . 3 (𝜑𝑇 ∈ V)
397adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑅 ∈ ℕ)
4039nnred 12279 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑅 ∈ ℝ)
41 2re 12338 . . . . . . . . . 10 2 ∈ ℝ
4241a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 2 ∈ ℝ)
43 1red 11260 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℝ)
4440, 43readdcld 11288 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ)
4542, 44remulcld 11289 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℝ)
46 simpr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4746nnsqcld 14280 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑚↑2) ∈ ℕ)
4845, 47nndivred 12318 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑚↑2)) ∈ ℝ)
4940, 48remulcld 11289 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) ∈ ℝ)
5046peano2nnd 12281 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
5150nnrpd 13073 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+)
5246nnrpd 13073 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
5351, 52rpdivcld 13092 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
5453relogcld 26680 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
5540, 54remulcld 11289 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℝ)
5639peano2nnd 12281 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℕ)
5756nnrpd 13073 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ+)
5857, 52rpmulcld 13091 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑅 + 1) · 𝑚) ∈ ℝ+)
5958relogcld 26680 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑚)) ∈ ℝ)
60 pire 26515 . . . . . . . . 9 π ∈ ℝ
6160a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → π ∈ ℝ)
6259, 61readdcld 11288 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑚)) + π) ∈ ℝ)
6355, 62readdcld 11288 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) ∈ ℝ)
6449, 63ifcld 4577 . . . . 5 ((𝜑𝑚 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) ∈ ℝ)
6564, 34fmptd 7134 . . . 4 (𝜑𝑇:ℕ⟶ℝ)
6665ffvelcdmda 7104 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
677, 3, 32, 34lgamgulmlem5 27091 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
687, 3, 32, 34lgamgulmlem4 27090 . . 3 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
691, 2, 6, 33, 38, 66, 67, 68mtest 26462 . 2 (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈))
70 1zzd 12646 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 1 ∈ ℤ)
715a1i 11 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝑈 ∈ V)
7233adantr 480 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝐺:ℕ⟶(ℂ ↑m 𝑈))
7337a1i 11 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝑇 ∈ V)
7466adantlr 715 . . . . 5 (((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) ∧ 𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
7567adantlr 715 . . . . 5 (((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
7668adantr 480 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → seq1( + , 𝑇) ∈ dom ⇝ )
77 simpr 484 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂))
781, 70, 71, 72, 73, 74, 75, 76, 77mtestbdd 26463 . . . 4 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∃𝑟 ∈ ℝ ∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟)
79 nfcv 2903 . . . . . . . . 9 𝑧abs
80 nffvmpt1 6918 . . . . . . . . 9 𝑧((𝑧𝑈𝑂)‘𝑦)
8179, 80nffv 6917 . . . . . . . 8 𝑧(abs‘((𝑧𝑈𝑂)‘𝑦))
82 nfcv 2903 . . . . . . . 8 𝑧
83 nfcv 2903 . . . . . . . 8 𝑧𝑟
8481, 82, 83nfbr 5195 . . . . . . 7 𝑧(abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟
85 nfv 1912 . . . . . . 7 𝑦(abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟
86 2fveq3 6912 . . . . . . . 8 (𝑦 = 𝑧 → (abs‘((𝑧𝑈𝑂)‘𝑦)) = (abs‘((𝑧𝑈𝑂)‘𝑧)))
8786breq1d 5158 . . . . . . 7 (𝑦 = 𝑧 → ((abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟))
8884, 85, 87cbvralw 3304 . . . . . 6 (∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟)
89 ulmcl 26439 . . . . . . . . 9 (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → (𝑧𝑈𝑂):𝑈⟶ℂ)
9089adantl 481 . . . . . . . 8 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (𝑧𝑈𝑂):𝑈⟶ℂ)
91 eqid 2735 . . . . . . . . 9 (𝑧𝑈𝑂) = (𝑧𝑈𝑂)
9291fmpt 7130 . . . . . . . 8 (∀𝑧𝑈 𝑂 ∈ ℂ ↔ (𝑧𝑈𝑂):𝑈⟶ℂ)
9390, 92sylibr 234 . . . . . . 7 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∀𝑧𝑈 𝑂 ∈ ℂ)
9491fvmpt2 7027 . . . . . . . . . 10 ((𝑧𝑈𝑂 ∈ ℂ) → ((𝑧𝑈𝑂)‘𝑧) = 𝑂)
9594fveq2d 6911 . . . . . . . . 9 ((𝑧𝑈𝑂 ∈ ℂ) → (abs‘((𝑧𝑈𝑂)‘𝑧)) = (abs‘𝑂))
9695breq1d 5158 . . . . . . . 8 ((𝑧𝑈𝑂 ∈ ℂ) → ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟))
9796ralimiaa 3080 . . . . . . 7 (∀𝑧𝑈 𝑂 ∈ ℂ → ∀𝑧𝑈 ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟))
98 ralbi 3101 . . . . . . 7 (∀𝑧𝑈 ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟) → (∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
9993, 97, 983syl 18 . . . . . 6 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10088, 99bitrid 283 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
101100rexbidv 3177 . . . 4 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∃𝑟 ∈ ℝ ∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10278, 101mpbid 232 . . 3 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)
103102ex 412 . 2 (𝜑 → (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10469, 103jca 511 1 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cdif 3960  wss 3963  ifcif 4531   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  cc 11151  cr 11152  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  seqcseq 14039  cexp 14099  abscabs 15270  cli 15517  πcpi 16099  𝑢culm 26434  logclog 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-tan 16104  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-ulm 26435  df-log 26613  df-cxp 26614
This theorem is referenced by:  lgamgulm  27093  lgambdd  27095
  Copyright terms: Public domain W3C validator