MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem6 Structured version   Visualization version   GIF version

Theorem lgamgulmlem6 25297
Description: The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem6 (𝜑 → (seq1( ∘𝑓 + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)))
Distinct variable groups:   𝐺,𝑟   𝑘,𝑚,𝑟,𝑥,𝑧,𝑅   𝑈,𝑚,𝑟,𝑧   𝑂,𝑟   𝜑,𝑚,𝑟,𝑥,𝑧   𝑇,𝑟
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)   𝑂(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem6
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12134 . . 3 ℕ = (ℤ‘1)
2 1zzd 11867 . . 3 (𝜑 → 1 ∈ ℤ)
3 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
4 cnex 10471 . . . . 5 ℂ ∈ V
53, 4rabex2 5135 . . . 4 𝑈 ∈ V
65a1i 11 . . 3 (𝜑𝑈 ∈ V)
7 lgamgulm.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
87, 3lgamgulmlem1 25292 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
98ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
10 simpr 485 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧𝑈)
119, 10sseldd 3896 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1211eldifad 3877 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧 ∈ ℂ)
13 simplr 765 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℕ)
1413peano2nnd 11509 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑚 + 1) ∈ ℕ)
1514nnrpd 12283 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑚 + 1) ∈ ℝ+)
1613nnrpd 12283 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℝ+)
1715, 16rpdivcld 12302 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
1817relogcld 24891 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
1918recnd 10522 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
2012, 19mulcld 10514 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ)
2113nncnd 11508 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℂ)
2213nnne0d 11541 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ≠ 0)
2312, 21, 22divcld 11270 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑧 / 𝑚) ∈ ℂ)
24 1cnd 10489 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 1 ∈ ℂ)
2523, 24addcld 10513 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 / 𝑚) + 1) ∈ ℂ)
2611, 13dmgmdivn0 25291 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 / 𝑚) + 1) ≠ 0)
2725, 26logcld 24839 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑧 / 𝑚) + 1)) ∈ ℂ)
2820, 27subcld 10851 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ ℂ)
2928fmpttd 6749 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ)
304, 5elmap 8292 . . . . 5 ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑𝑚 𝑈) ↔ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ)
3129, 30sylibr 235 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑𝑚 𝑈))
32 lgamgulm.g . . . 4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
3331, 32fmptd 6748 . . 3 (𝜑𝐺:ℕ⟶(ℂ ↑𝑚 𝑈))
34 lgamgulm.t . . . . 5 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
35 nnex 11498 . . . . . 6 ℕ ∈ V
3635mptex 6859 . . . . 5 (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ∈ V
3734, 36eqeltri 2881 . . . 4 𝑇 ∈ V
3837a1i 11 . . 3 (𝜑𝑇 ∈ V)
397adantr 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑅 ∈ ℕ)
4039nnred 11507 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑅 ∈ ℝ)
41 2re 11565 . . . . . . . . . 10 2 ∈ ℝ
4241a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 2 ∈ ℝ)
43 1red 10495 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℝ)
4440, 43readdcld 10523 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ)
4542, 44remulcld 10524 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℝ)
46 simpr 485 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4746nnsqcld 13459 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑚↑2) ∈ ℕ)
4845, 47nndivred 11545 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑚↑2)) ∈ ℝ)
4940, 48remulcld 10524 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) ∈ ℝ)
5046peano2nnd 11509 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
5150nnrpd 12283 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+)
5246nnrpd 12283 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
5351, 52rpdivcld 12302 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
5453relogcld 24891 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
5540, 54remulcld 10524 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℝ)
5639peano2nnd 11509 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℕ)
5756nnrpd 12283 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ+)
5857, 52rpmulcld 12301 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑅 + 1) · 𝑚) ∈ ℝ+)
5958relogcld 24891 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑚)) ∈ ℝ)
60 pire 24731 . . . . . . . . 9 π ∈ ℝ
6160a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → π ∈ ℝ)
6259, 61readdcld 10523 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑚)) + π) ∈ ℝ)
6355, 62readdcld 10523 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) ∈ ℝ)
6449, 63ifcld 4432 . . . . 5 ((𝜑𝑚 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) ∈ ℝ)
6564, 34fmptd 6748 . . . 4 (𝜑𝑇:ℕ⟶ℝ)
6665ffvelrnda 6723 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
677, 3, 32, 34lgamgulmlem5 25296 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
687, 3, 32, 34lgamgulmlem4 25295 . . 3 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
691, 2, 6, 33, 38, 66, 67, 68mtest 24679 . 2 (𝜑 → seq1( ∘𝑓 + , 𝐺) ∈ dom (⇝𝑢𝑈))
70 1zzd 11867 . . . . 5 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 1 ∈ ℤ)
715a1i 11 . . . . 5 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝑈 ∈ V)
7233adantr 481 . . . . 5 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝐺:ℕ⟶(ℂ ↑𝑚 𝑈))
7337a1i 11 . . . . 5 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝑇 ∈ V)
7466adantlr 711 . . . . 5 (((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) ∧ 𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
7567adantlr 711 . . . . 5 (((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
7668adantr 481 . . . . 5 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → seq1( + , 𝑇) ∈ dom ⇝ )
77 simpr 485 . . . . 5 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂))
781, 70, 71, 72, 73, 74, 75, 76, 77mtestbdd 24680 . . . 4 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∃𝑟 ∈ ℝ ∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟)
79 nfcv 2951 . . . . . . . . 9 𝑧abs
80 nffvmpt1 6556 . . . . . . . . 9 𝑧((𝑧𝑈𝑂)‘𝑦)
8179, 80nffv 6555 . . . . . . . 8 𝑧(abs‘((𝑧𝑈𝑂)‘𝑦))
82 nfcv 2951 . . . . . . . 8 𝑧
83 nfcv 2951 . . . . . . . 8 𝑧𝑟
8481, 82, 83nfbr 5015 . . . . . . 7 𝑧(abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟
85 nfv 1896 . . . . . . 7 𝑦(abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟
86 2fveq3 6550 . . . . . . . 8 (𝑦 = 𝑧 → (abs‘((𝑧𝑈𝑂)‘𝑦)) = (abs‘((𝑧𝑈𝑂)‘𝑧)))
8786breq1d 4978 . . . . . . 7 (𝑦 = 𝑧 → ((abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟))
8884, 85, 87cbvral 3401 . . . . . 6 (∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟)
89 ulmcl 24656 . . . . . . . . 9 (seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → (𝑧𝑈𝑂):𝑈⟶ℂ)
9089adantl 482 . . . . . . . 8 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (𝑧𝑈𝑂):𝑈⟶ℂ)
91 eqid 2797 . . . . . . . . 9 (𝑧𝑈𝑂) = (𝑧𝑈𝑂)
9291fmpt 6744 . . . . . . . 8 (∀𝑧𝑈 𝑂 ∈ ℂ ↔ (𝑧𝑈𝑂):𝑈⟶ℂ)
9390, 92sylibr 235 . . . . . . 7 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∀𝑧𝑈 𝑂 ∈ ℂ)
9491fvmpt2 6652 . . . . . . . . . 10 ((𝑧𝑈𝑂 ∈ ℂ) → ((𝑧𝑈𝑂)‘𝑧) = 𝑂)
9594fveq2d 6549 . . . . . . . . 9 ((𝑧𝑈𝑂 ∈ ℂ) → (abs‘((𝑧𝑈𝑂)‘𝑧)) = (abs‘𝑂))
9695breq1d 4978 . . . . . . . 8 ((𝑧𝑈𝑂 ∈ ℂ) → ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟))
9796ralimiaa 3128 . . . . . . 7 (∀𝑧𝑈 𝑂 ∈ ℂ → ∀𝑧𝑈 ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟))
98 ralbi 3136 . . . . . . 7 (∀𝑧𝑈 ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟) → (∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
9993, 97, 983syl 18 . . . . . 6 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10088, 99syl5bb 284 . . . . 5 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
101100rexbidv 3262 . . . 4 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∃𝑟 ∈ ℝ ∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10278, 101mpbid 233 . . 3 ((𝜑 ∧ seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)
103102ex 413 . 2 (𝜑 → (seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10469, 103jca 512 1 (𝜑 → (seq1( ∘𝑓 + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘𝑓 + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  wral 3107  wrex 3108  {crab 3111  Vcvv 3440  cdif 3862  wss 3865  ifcif 4387   class class class wbr 4968  cmpt 5047  dom cdm 5450  wf 6228  cfv 6232  (class class class)co 7023  𝑓 cof 7272  𝑚 cmap 8263  cc 10388  cr 10389  1c1 10391   + caddc 10393   · cmul 10395  cle 10529  cmin 10723   / cdiv 11151  cn 11492  2c2 11546  0cn0 11751  cz 11835  seqcseq 13223  cexp 13283  abscabs 14431  cli 14679  πcpi 15257  𝑢culm 24651  logclog 24823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-ixp 8318  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-fi 8728  df-sup 8759  df-inf 8760  df-oi 8827  df-dju 9183  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-ioc 12597  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-fl 13016  df-mod 13092  df-seq 13224  df-exp 13284  df-fac 13488  df-bc 13517  df-hash 13545  df-shft 14264  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-limsup 14666  df-clim 14683  df-rlim 14684  df-sum 14881  df-ef 15258  df-sin 15260  df-cos 15261  df-tan 15262  df-pi 15263  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-sca 16414  df-vsca 16415  df-ip 16416  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-hom 16422  df-cco 16423  df-rest 16529  df-topn 16530  df-0g 16548  df-gsum 16549  df-topgen 16550  df-pt 16551  df-prds 16554  df-xrs 16608  df-qtop 16613  df-imas 16614  df-xps 16616  df-mre 16690  df-mrc 16691  df-acs 16693  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-mulg 17986  df-cntz 18192  df-cmn 18639  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-fbas 20228  df-fg 20229  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-cld 21315  df-ntr 21316  df-cls 21317  df-nei 21394  df-lp 21432  df-perf 21433  df-cn 21523  df-cnp 21524  df-haus 21611  df-cmp 21683  df-tx 21858  df-hmeo 22051  df-fil 22142  df-fm 22234  df-flim 22235  df-flf 22236  df-xms 22617  df-ms 22618  df-tms 22619  df-cncf 23173  df-limc 24151  df-dv 24152  df-ulm 24652  df-log 24825  df-cxp 24826
This theorem is referenced by:  lgamgulm  25298  lgambdd  25300
  Copyright terms: Public domain W3C validator