MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem6 Structured version   Visualization version   GIF version

Theorem lgamgulmlem6 25610
Description: The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem6 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)))
Distinct variable groups:   𝐺,𝑟   𝑘,𝑚,𝑟,𝑥,𝑧,𝑅   𝑈,𝑚,𝑟,𝑧   𝑂,𝑟   𝜑,𝑚,𝑟,𝑥,𝑧   𝑇,𝑟
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)   𝑂(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem6
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12280 . . 3 ℕ = (ℤ‘1)
2 1zzd 12012 . . 3 (𝜑 → 1 ∈ ℤ)
3 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
4 cnex 10617 . . . . 5 ℂ ∈ V
53, 4rabex2 5236 . . . 4 𝑈 ∈ V
65a1i 11 . . 3 (𝜑𝑈 ∈ V)
7 lgamgulm.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
87, 3lgamgulmlem1 25605 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
98ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
10 simpr 487 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧𝑈)
119, 10sseldd 3967 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1211eldifad 3947 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧 ∈ ℂ)
13 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℕ)
1413peano2nnd 11654 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑚 + 1) ∈ ℕ)
1514nnrpd 12428 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑚 + 1) ∈ ℝ+)
1613nnrpd 12428 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℝ+)
1715, 16rpdivcld 12447 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
1817relogcld 25205 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
1918recnd 10668 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
2012, 19mulcld 10660 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ)
2113nncnd 11653 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℂ)
2213nnne0d 11686 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ≠ 0)
2312, 21, 22divcld 11415 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑧 / 𝑚) ∈ ℂ)
24 1cnd 10635 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 1 ∈ ℂ)
2523, 24addcld 10659 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 / 𝑚) + 1) ∈ ℂ)
2611, 13dmgmdivn0 25604 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 / 𝑚) + 1) ≠ 0)
2725, 26logcld 25153 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑧 / 𝑚) + 1)) ∈ ℂ)
2820, 27subcld 10996 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ ℂ)
2928fmpttd 6878 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ)
304, 5elmap 8434 . . . . 5 ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑m 𝑈) ↔ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ)
3129, 30sylibr 236 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑m 𝑈))
32 lgamgulm.g . . . 4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
3331, 32fmptd 6877 . . 3 (𝜑𝐺:ℕ⟶(ℂ ↑m 𝑈))
34 lgamgulm.t . . . . 5 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
35 nnex 11643 . . . . . 6 ℕ ∈ V
3635mptex 6985 . . . . 5 (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ∈ V
3734, 36eqeltri 2909 . . . 4 𝑇 ∈ V
3837a1i 11 . . 3 (𝜑𝑇 ∈ V)
397adantr 483 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑅 ∈ ℕ)
4039nnred 11652 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑅 ∈ ℝ)
41 2re 11710 . . . . . . . . . 10 2 ∈ ℝ
4241a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 2 ∈ ℝ)
43 1red 10641 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℝ)
4440, 43readdcld 10669 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ)
4542, 44remulcld 10670 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℝ)
46 simpr 487 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4746nnsqcld 13604 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑚↑2) ∈ ℕ)
4845, 47nndivred 11690 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑚↑2)) ∈ ℝ)
4940, 48remulcld 10670 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) ∈ ℝ)
5046peano2nnd 11654 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
5150nnrpd 12428 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+)
5246nnrpd 12428 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
5351, 52rpdivcld 12447 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
5453relogcld 25205 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
5540, 54remulcld 10670 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℝ)
5639peano2nnd 11654 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℕ)
5756nnrpd 12428 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ+)
5857, 52rpmulcld 12446 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑅 + 1) · 𝑚) ∈ ℝ+)
5958relogcld 25205 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑚)) ∈ ℝ)
60 pire 25043 . . . . . . . . 9 π ∈ ℝ
6160a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → π ∈ ℝ)
6259, 61readdcld 10669 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑚)) + π) ∈ ℝ)
6355, 62readdcld 10669 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) ∈ ℝ)
6449, 63ifcld 4511 . . . . 5 ((𝜑𝑚 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) ∈ ℝ)
6564, 34fmptd 6877 . . . 4 (𝜑𝑇:ℕ⟶ℝ)
6665ffvelrnda 6850 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
677, 3, 32, 34lgamgulmlem5 25609 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
687, 3, 32, 34lgamgulmlem4 25608 . . 3 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
691, 2, 6, 33, 38, 66, 67, 68mtest 24991 . 2 (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈))
70 1zzd 12012 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 1 ∈ ℤ)
715a1i 11 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝑈 ∈ V)
7233adantr 483 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝐺:ℕ⟶(ℂ ↑m 𝑈))
7337a1i 11 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝑇 ∈ V)
7466adantlr 713 . . . . 5 (((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) ∧ 𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
7567adantlr 713 . . . . 5 (((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
7668adantr 483 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → seq1( + , 𝑇) ∈ dom ⇝ )
77 simpr 487 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂))
781, 70, 71, 72, 73, 74, 75, 76, 77mtestbdd 24992 . . . 4 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∃𝑟 ∈ ℝ ∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟)
79 nfcv 2977 . . . . . . . . 9 𝑧abs
80 nffvmpt1 6680 . . . . . . . . 9 𝑧((𝑧𝑈𝑂)‘𝑦)
8179, 80nffv 6679 . . . . . . . 8 𝑧(abs‘((𝑧𝑈𝑂)‘𝑦))
82 nfcv 2977 . . . . . . . 8 𝑧
83 nfcv 2977 . . . . . . . 8 𝑧𝑟
8481, 82, 83nfbr 5112 . . . . . . 7 𝑧(abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟
85 nfv 1911 . . . . . . 7 𝑦(abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟
86 2fveq3 6674 . . . . . . . 8 (𝑦 = 𝑧 → (abs‘((𝑧𝑈𝑂)‘𝑦)) = (abs‘((𝑧𝑈𝑂)‘𝑧)))
8786breq1d 5075 . . . . . . 7 (𝑦 = 𝑧 → ((abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟))
8884, 85, 87cbvralw 3441 . . . . . 6 (∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟)
89 ulmcl 24968 . . . . . . . . 9 (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → (𝑧𝑈𝑂):𝑈⟶ℂ)
9089adantl 484 . . . . . . . 8 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (𝑧𝑈𝑂):𝑈⟶ℂ)
91 eqid 2821 . . . . . . . . 9 (𝑧𝑈𝑂) = (𝑧𝑈𝑂)
9291fmpt 6873 . . . . . . . 8 (∀𝑧𝑈 𝑂 ∈ ℂ ↔ (𝑧𝑈𝑂):𝑈⟶ℂ)
9390, 92sylibr 236 . . . . . . 7 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∀𝑧𝑈 𝑂 ∈ ℂ)
9491fvmpt2 6778 . . . . . . . . . 10 ((𝑧𝑈𝑂 ∈ ℂ) → ((𝑧𝑈𝑂)‘𝑧) = 𝑂)
9594fveq2d 6673 . . . . . . . . 9 ((𝑧𝑈𝑂 ∈ ℂ) → (abs‘((𝑧𝑈𝑂)‘𝑧)) = (abs‘𝑂))
9695breq1d 5075 . . . . . . . 8 ((𝑧𝑈𝑂 ∈ ℂ) → ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟))
9796ralimiaa 3159 . . . . . . 7 (∀𝑧𝑈 𝑂 ∈ ℂ → ∀𝑧𝑈 ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟))
98 ralbi 3167 . . . . . . 7 (∀𝑧𝑈 ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟) → (∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
9993, 97, 983syl 18 . . . . . 6 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10088, 99syl5bb 285 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
101100rexbidv 3297 . . . 4 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∃𝑟 ∈ ℝ ∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10278, 101mpbid 234 . . 3 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)
103102ex 415 . 2 (𝜑 → (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10469, 103jca 514 1 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cdif 3932  wss 3935  ifcif 4466   class class class wbr 5065  cmpt 5145  dom cdm 5554  wf 6350  cfv 6354  (class class class)co 7155  f cof 7406  m cmap 8405  cc 10534  cr 10535  1c1 10537   + caddc 10539   · cmul 10541  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  seqcseq 13368  cexp 13428  abscabs 14592  cli 14840  πcpi 15419  𝑢culm 24963  logclog 25137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-tan 15424  df-pi 15425  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-cmp 21994  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-ulm 24964  df-log 25139  df-cxp 25140
This theorem is referenced by:  lgamgulm  25611  lgambdd  25613
  Copyright terms: Public domain W3C validator