MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem6 Structured version   Visualization version   GIF version

Theorem lgamgulmlem6 26088
Description: The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem6 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)))
Distinct variable groups:   𝐺,𝑟   𝑘,𝑚,𝑟,𝑥,𝑧,𝑅   𝑈,𝑚,𝑟,𝑧   𝑂,𝑟   𝜑,𝑚,𝑟,𝑥,𝑧   𝑇,𝑟
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)   𝑂(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem6
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12550 . . 3 ℕ = (ℤ‘1)
2 1zzd 12281 . . 3 (𝜑 → 1 ∈ ℤ)
3 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
4 cnex 10883 . . . . 5 ℂ ∈ V
53, 4rabex2 5253 . . . 4 𝑈 ∈ V
65a1i 11 . . 3 (𝜑𝑈 ∈ V)
7 lgamgulm.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
87, 3lgamgulmlem1 26083 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
98ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
10 simpr 484 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧𝑈)
119, 10sseldd 3918 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1211eldifad 3895 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧 ∈ ℂ)
13 simplr 765 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℕ)
1413peano2nnd 11920 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑚 + 1) ∈ ℕ)
1514nnrpd 12699 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑚 + 1) ∈ ℝ+)
1613nnrpd 12699 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℝ+)
1715, 16rpdivcld 12718 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
1817relogcld 25683 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
1918recnd 10934 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
2012, 19mulcld 10926 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ)
2113nncnd 11919 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℂ)
2213nnne0d 11953 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ≠ 0)
2312, 21, 22divcld 11681 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑧 / 𝑚) ∈ ℂ)
24 1cnd 10901 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 1 ∈ ℂ)
2523, 24addcld 10925 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 / 𝑚) + 1) ∈ ℂ)
2611, 13dmgmdivn0 26082 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 / 𝑚) + 1) ≠ 0)
2725, 26logcld 25631 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑧 / 𝑚) + 1)) ∈ ℂ)
2820, 27subcld 11262 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ ℂ)
2928fmpttd 6971 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ)
304, 5elmap 8617 . . . . 5 ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑m 𝑈) ↔ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ)
3129, 30sylibr 233 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑m 𝑈))
32 lgamgulm.g . . . 4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
3331, 32fmptd 6970 . . 3 (𝜑𝐺:ℕ⟶(ℂ ↑m 𝑈))
34 lgamgulm.t . . . . 5 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
35 nnex 11909 . . . . . 6 ℕ ∈ V
3635mptex 7081 . . . . 5 (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ∈ V
3734, 36eqeltri 2835 . . . 4 𝑇 ∈ V
3837a1i 11 . . 3 (𝜑𝑇 ∈ V)
397adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑅 ∈ ℕ)
4039nnred 11918 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑅 ∈ ℝ)
41 2re 11977 . . . . . . . . . 10 2 ∈ ℝ
4241a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 2 ∈ ℝ)
43 1red 10907 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℝ)
4440, 43readdcld 10935 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ)
4542, 44remulcld 10936 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℝ)
46 simpr 484 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4746nnsqcld 13887 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑚↑2) ∈ ℕ)
4845, 47nndivred 11957 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑚↑2)) ∈ ℝ)
4940, 48remulcld 10936 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) ∈ ℝ)
5046peano2nnd 11920 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
5150nnrpd 12699 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+)
5246nnrpd 12699 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
5351, 52rpdivcld 12718 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
5453relogcld 25683 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
5540, 54remulcld 10936 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℝ)
5639peano2nnd 11920 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℕ)
5756nnrpd 12699 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ+)
5857, 52rpmulcld 12717 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑅 + 1) · 𝑚) ∈ ℝ+)
5958relogcld 25683 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑚)) ∈ ℝ)
60 pire 25520 . . . . . . . . 9 π ∈ ℝ
6160a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → π ∈ ℝ)
6259, 61readdcld 10935 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑚)) + π) ∈ ℝ)
6355, 62readdcld 10935 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) ∈ ℝ)
6449, 63ifcld 4502 . . . . 5 ((𝜑𝑚 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) ∈ ℝ)
6564, 34fmptd 6970 . . . 4 (𝜑𝑇:ℕ⟶ℝ)
6665ffvelrnda 6943 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
677, 3, 32, 34lgamgulmlem5 26087 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
687, 3, 32, 34lgamgulmlem4 26086 . . 3 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
691, 2, 6, 33, 38, 66, 67, 68mtest 25468 . 2 (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈))
70 1zzd 12281 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 1 ∈ ℤ)
715a1i 11 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝑈 ∈ V)
7233adantr 480 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝐺:ℕ⟶(ℂ ↑m 𝑈))
7337a1i 11 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝑇 ∈ V)
7466adantlr 711 . . . . 5 (((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) ∧ 𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
7567adantlr 711 . . . . 5 (((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
7668adantr 480 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → seq1( + , 𝑇) ∈ dom ⇝ )
77 simpr 484 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂))
781, 70, 71, 72, 73, 74, 75, 76, 77mtestbdd 25469 . . . 4 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∃𝑟 ∈ ℝ ∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟)
79 nfcv 2906 . . . . . . . . 9 𝑧abs
80 nffvmpt1 6767 . . . . . . . . 9 𝑧((𝑧𝑈𝑂)‘𝑦)
8179, 80nffv 6766 . . . . . . . 8 𝑧(abs‘((𝑧𝑈𝑂)‘𝑦))
82 nfcv 2906 . . . . . . . 8 𝑧
83 nfcv 2906 . . . . . . . 8 𝑧𝑟
8481, 82, 83nfbr 5117 . . . . . . 7 𝑧(abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟
85 nfv 1918 . . . . . . 7 𝑦(abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟
86 2fveq3 6761 . . . . . . . 8 (𝑦 = 𝑧 → (abs‘((𝑧𝑈𝑂)‘𝑦)) = (abs‘((𝑧𝑈𝑂)‘𝑧)))
8786breq1d 5080 . . . . . . 7 (𝑦 = 𝑧 → ((abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟))
8884, 85, 87cbvralw 3363 . . . . . 6 (∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟)
89 ulmcl 25445 . . . . . . . . 9 (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → (𝑧𝑈𝑂):𝑈⟶ℂ)
9089adantl 481 . . . . . . . 8 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (𝑧𝑈𝑂):𝑈⟶ℂ)
91 eqid 2738 . . . . . . . . 9 (𝑧𝑈𝑂) = (𝑧𝑈𝑂)
9291fmpt 6966 . . . . . . . 8 (∀𝑧𝑈 𝑂 ∈ ℂ ↔ (𝑧𝑈𝑂):𝑈⟶ℂ)
9390, 92sylibr 233 . . . . . . 7 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∀𝑧𝑈 𝑂 ∈ ℂ)
9491fvmpt2 6868 . . . . . . . . . 10 ((𝑧𝑈𝑂 ∈ ℂ) → ((𝑧𝑈𝑂)‘𝑧) = 𝑂)
9594fveq2d 6760 . . . . . . . . 9 ((𝑧𝑈𝑂 ∈ ℂ) → (abs‘((𝑧𝑈𝑂)‘𝑧)) = (abs‘𝑂))
9695breq1d 5080 . . . . . . . 8 ((𝑧𝑈𝑂 ∈ ℂ) → ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟))
9796ralimiaa 3085 . . . . . . 7 (∀𝑧𝑈 𝑂 ∈ ℂ → ∀𝑧𝑈 ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟))
98 ralbi 3092 . . . . . . 7 (∀𝑧𝑈 ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟) → (∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
9993, 97, 983syl 18 . . . . . 6 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10088, 99syl5bb 282 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
101100rexbidv 3225 . . . 4 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∃𝑟 ∈ ℝ ∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10278, 101mpbid 231 . . 3 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)
103102ex 412 . 2 (𝜑 → (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10469, 103jca 511 1 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  cc 10800  cr 10801  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  seqcseq 13649  cexp 13710  abscabs 14873  cli 15121  πcpi 15704  𝑢culm 25440  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617  df-cxp 25618
This theorem is referenced by:  lgamgulm  26089  lgambdd  26091
  Copyright terms: Public domain W3C validator