Step | Hyp | Ref
| Expression |
1 | | nnuz 12550 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12281 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
3 | | lgamgulm.u |
. . . . 5
⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} |
4 | | cnex 10883 |
. . . . 5
⊢ ℂ
∈ V |
5 | 3, 4 | rabex2 5253 |
. . . 4
⊢ 𝑈 ∈ V |
6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑈 ∈ V) |
7 | | lgamgulm.r |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ ℕ) |
8 | 7, 3 | lgamgulmlem1 26083 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖
ℕ))) |
9 | 8 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖
ℕ))) |
10 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → 𝑧 ∈ 𝑈) |
11 | 9, 10 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖
ℕ))) |
12 | 11 | eldifad 3895 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → 𝑧 ∈ ℂ) |
13 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → 𝑚 ∈ ℕ) |
14 | 13 | peano2nnd 11920 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → (𝑚 + 1) ∈ ℕ) |
15 | 14 | nnrpd 12699 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → (𝑚 + 1) ∈
ℝ+) |
16 | 13 | nnrpd 12699 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → 𝑚 ∈ ℝ+) |
17 | 15, 16 | rpdivcld 12718 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → ((𝑚 + 1) / 𝑚) ∈
ℝ+) |
18 | 17 | relogcld 25683 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ) |
19 | 18 | recnd 10934 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ) |
20 | 12, 19 | mulcld 10926 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ) |
21 | 13 | nncnd 11919 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → 𝑚 ∈ ℂ) |
22 | 13 | nnne0d 11953 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → 𝑚 ≠ 0) |
23 | 12, 21, 22 | divcld 11681 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → (𝑧 / 𝑚) ∈ ℂ) |
24 | | 1cnd 10901 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → 1 ∈ ℂ) |
25 | 23, 24 | addcld 10925 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → ((𝑧 / 𝑚) + 1) ∈ ℂ) |
26 | 11, 13 | dmgmdivn0 26082 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → ((𝑧 / 𝑚) + 1) ≠ 0) |
27 | 25, 26 | logcld 25631 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → (log‘((𝑧 / 𝑚) + 1)) ∈ ℂ) |
28 | 20, 27 | subcld 11262 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑧 ∈ 𝑈) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ ℂ) |
29 | 28 | fmpttd 6971 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ) |
30 | 4, 5 | elmap 8617 |
. . . . 5
⊢ ((𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑m
𝑈) ↔ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ) |
31 | 29, 30 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑m
𝑈)) |
32 | | lgamgulm.g |
. . . 4
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧 ∈ 𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))))) |
33 | 31, 32 | fmptd 6970 |
. . 3
⊢ (𝜑 → 𝐺:ℕ⟶(ℂ ↑m
𝑈)) |
34 | | lgamgulm.t |
. . . . 5
⊢ 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) |
35 | | nnex 11909 |
. . . . . 6
⊢ ℕ
∈ V |
36 | 35 | mptex 7081 |
. . . . 5
⊢ (𝑚 ∈ ℕ ↦ if((2
· 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ∈ V |
37 | 34, 36 | eqeltri 2835 |
. . . 4
⊢ 𝑇 ∈ V |
38 | 37 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑇 ∈ V) |
39 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑅 ∈ ℕ) |
40 | 39 | nnred 11918 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑅 ∈ ℝ) |
41 | | 2re 11977 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
42 | 41 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 2 ∈
ℝ) |
43 | | 1red 10907 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 1 ∈
ℝ) |
44 | 40, 43 | readdcld 10935 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ) |
45 | 42, 44 | remulcld 10936 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2 · (𝑅 + 1)) ∈
ℝ) |
46 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) |
47 | 46 | nnsqcld 13887 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚↑2) ∈ ℕ) |
48 | 45, 47 | nndivred 11957 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑚↑2)) ∈ ℝ) |
49 | 40, 48 | remulcld 10936 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) ∈ ℝ) |
50 | 46 | peano2nnd 11920 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ) |
51 | 50 | nnrpd 12699 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈
ℝ+) |
52 | 46 | nnrpd 12699 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) |
53 | 51, 52 | rpdivcld 12718 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈
ℝ+) |
54 | 53 | relogcld 25683 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ) |
55 | 40, 54 | remulcld 10936 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℝ) |
56 | 39 | peano2nnd 11920 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℕ) |
57 | 56 | nnrpd 12699 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑅 + 1) ∈
ℝ+) |
58 | 57, 52 | rpmulcld 12717 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑅 + 1) · 𝑚) ∈
ℝ+) |
59 | 58 | relogcld 25683 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑚)) ∈
ℝ) |
60 | | pire 25520 |
. . . . . . . . 9
⊢ π
∈ ℝ |
61 | 60 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → π ∈
ℝ) |
62 | 59, 61 | readdcld 10935 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑚)) + π) ∈
ℝ) |
63 | 55, 62 | readdcld 10935 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) ∈ ℝ) |
64 | 49, 63 | ifcld 4502 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) ∈ ℝ) |
65 | 64, 34 | fmptd 6970 |
. . . 4
⊢ (𝜑 → 𝑇:ℕ⟶ℝ) |
66 | 65 | ffvelrnda 6943 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑇‘𝑛) ∈ ℝ) |
67 | 7, 3, 32, 34 | lgamgulmlem5 26087 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈)) → (abs‘((𝐺‘𝑛)‘𝑦)) ≤ (𝑇‘𝑛)) |
68 | 7, 3, 32, 34 | lgamgulmlem4 26086 |
. . 3
⊢ (𝜑 → seq1( + , 𝑇) ∈ dom ⇝
) |
69 | 1, 2, 6, 33, 38, 66, 67, 68 | mtest 25468 |
. 2
⊢ (𝜑 → seq1( ∘f
+ , 𝐺) ∈ dom
(⇝𝑢‘𝑈)) |
70 | | 1zzd 12281 |
. . . . 5
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → 1 ∈ ℤ) |
71 | 5 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → 𝑈 ∈ V) |
72 | 33 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → 𝐺:ℕ⟶(ℂ ↑m
𝑈)) |
73 | 37 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → 𝑇 ∈ V) |
74 | 66 | adantlr 711 |
. . . . 5
⊢ (((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) ∧ 𝑛 ∈ ℕ) → (𝑇‘𝑛) ∈ ℝ) |
75 | 67 | adantlr 711 |
. . . . 5
⊢ (((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) ∧ (𝑛 ∈ ℕ ∧ 𝑦 ∈ 𝑈)) → (abs‘((𝐺‘𝑛)‘𝑦)) ≤ (𝑇‘𝑛)) |
76 | 68 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → seq1( + , 𝑇) ∈ dom ⇝ ) |
77 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → seq1( ∘f + ,
𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) |
78 | 1, 70, 71, 72, 73, 74, 75, 76, 77 | mtestbdd 25469 |
. . . 4
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑈 (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑦)) ≤ 𝑟) |
79 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑧abs |
80 | | nffvmpt1 6767 |
. . . . . . . . 9
⊢
Ⅎ𝑧((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑦) |
81 | 79, 80 | nffv 6766 |
. . . . . . . 8
⊢
Ⅎ𝑧(abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑦)) |
82 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑧
≤ |
83 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑧𝑟 |
84 | 81, 82, 83 | nfbr 5117 |
. . . . . . 7
⊢
Ⅎ𝑧(abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑦)) ≤ 𝑟 |
85 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑦(abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧)) ≤ 𝑟 |
86 | | 2fveq3 6761 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑦)) = (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧))) |
87 | 86 | breq1d 5080 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑦)) ≤ 𝑟 ↔ (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧)) ≤ 𝑟)) |
88 | 84, 85, 87 | cbvralw 3363 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑈 (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧 ∈ 𝑈 (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧)) ≤ 𝑟) |
89 | | ulmcl 25445 |
. . . . . . . . 9
⊢ (seq1(
∘f + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂) → (𝑧 ∈ 𝑈 ↦ 𝑂):𝑈⟶ℂ) |
90 | 89 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → (𝑧 ∈ 𝑈 ↦ 𝑂):𝑈⟶ℂ) |
91 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑈 ↦ 𝑂) = (𝑧 ∈ 𝑈 ↦ 𝑂) |
92 | 91 | fmpt 6966 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑈 𝑂 ∈ ℂ ↔ (𝑧 ∈ 𝑈 ↦ 𝑂):𝑈⟶ℂ) |
93 | 90, 92 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → ∀𝑧 ∈ 𝑈 𝑂 ∈ ℂ) |
94 | 91 | fvmpt2 6868 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑈 ∧ 𝑂 ∈ ℂ) → ((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧) = 𝑂) |
95 | 94 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑈 ∧ 𝑂 ∈ ℂ) → (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧)) = (abs‘𝑂)) |
96 | 95 | breq1d 5080 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑈 ∧ 𝑂 ∈ ℂ) → ((abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟)) |
97 | 96 | ralimiaa 3085 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑈 𝑂 ∈ ℂ → ∀𝑧 ∈ 𝑈 ((abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟)) |
98 | | ralbi 3092 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑈 ((abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟) → (∀𝑧 ∈ 𝑈 (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟)) |
99 | 93, 97, 98 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → (∀𝑧 ∈ 𝑈 (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟)) |
100 | 88, 99 | syl5bb 282 |
. . . . 5
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → (∀𝑦 ∈ 𝑈 (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟)) |
101 | 100 | rexbidv 3225 |
. . . 4
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → (∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑈 (abs‘((𝑧 ∈ 𝑈 ↦ 𝑂)‘𝑦)) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟)) |
102 | 78, 101 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ seq1( ∘f +
, 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂)) → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟) |
103 | 102 | ex 412 |
. 2
⊢ (𝜑 → (seq1( ∘f
+ , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂) → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟)) |
104 | 69, 103 | jca 511 |
1
⊢ (𝜑 → (seq1( ∘f
+ , 𝐺) ∈ dom
(⇝𝑢‘𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢‘𝑈)(𝑧 ∈ 𝑈 ↦ 𝑂) → ∃𝑟 ∈ ℝ ∀𝑧 ∈ 𝑈 (abs‘𝑂) ≤ 𝑟))) |