MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem6 Structured version   Visualization version   GIF version

Theorem lgamgulmlem6 26383
Description: The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
lgamgulm.t 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
Assertion
Ref Expression
lgamgulmlem6 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)))
Distinct variable groups:   𝐺,𝑟   𝑘,𝑚,𝑟,𝑥,𝑧,𝑅   𝑈,𝑚,𝑟,𝑧   𝑂,𝑟   𝜑,𝑚,𝑟,𝑥,𝑧   𝑇,𝑟
Allowed substitution hints:   𝜑(𝑘)   𝑇(𝑥,𝑧,𝑘,𝑚)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)   𝑂(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulmlem6
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12806 . . 3 ℕ = (ℤ‘1)
2 1zzd 12534 . . 3 (𝜑 → 1 ∈ ℤ)
3 lgamgulm.u . . . . 5 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
4 cnex 11132 . . . . 5 ℂ ∈ V
53, 4rabex2 5291 . . . 4 𝑈 ∈ V
65a1i 11 . . 3 (𝜑𝑈 ∈ V)
7 lgamgulm.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℕ)
87, 3lgamgulmlem1 26378 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
98ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
10 simpr 485 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧𝑈)
119, 10sseldd 3945 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
1211eldifad 3922 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑧 ∈ ℂ)
13 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℕ)
1413peano2nnd 12170 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑚 + 1) ∈ ℕ)
1514nnrpd 12955 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑚 + 1) ∈ ℝ+)
1613nnrpd 12955 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℝ+)
1715, 16rpdivcld 12974 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
1817relogcld 25978 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
1918recnd 11183 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℂ)
2012, 19mulcld 11175 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑧 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℂ)
2113nncnd 12169 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ∈ ℂ)
2213nnne0d 12203 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 𝑚 ≠ 0)
2312, 21, 22divcld 11931 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (𝑧 / 𝑚) ∈ ℂ)
24 1cnd 11150 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → 1 ∈ ℂ)
2523, 24addcld 11174 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 / 𝑚) + 1) ∈ ℂ)
2611, 13dmgmdivn0 26377 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 / 𝑚) + 1) ≠ 0)
2725, 26logcld 25926 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → (log‘((𝑧 / 𝑚) + 1)) ∈ ℂ)
2820, 27subcld 11512 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑧𝑈) → ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) ∈ ℂ)
2928fmpttd 7063 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ)
304, 5elmap 8809 . . . . 5 ((𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑m 𝑈) ↔ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))):𝑈⟶ℂ)
3129, 30sylibr 233 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))) ∈ (ℂ ↑m 𝑈))
32 lgamgulm.g . . . 4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
3331, 32fmptd 7062 . . 3 (𝜑𝐺:ℕ⟶(ℂ ↑m 𝑈))
34 lgamgulm.t . . . . 5 𝑇 = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
35 nnex 12159 . . . . . 6 ℕ ∈ V
3635mptex 7173 . . . . 5 (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) ∈ V
3734, 36eqeltri 2834 . . . 4 𝑇 ∈ V
3837a1i 11 . . 3 (𝜑𝑇 ∈ V)
397adantr 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑅 ∈ ℕ)
4039nnred 12168 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 𝑅 ∈ ℝ)
41 2re 12227 . . . . . . . . . 10 2 ∈ ℝ
4241a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 2 ∈ ℝ)
43 1red 11156 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℝ)
4440, 43readdcld 11184 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ)
4542, 44remulcld 11185 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (2 · (𝑅 + 1)) ∈ ℝ)
46 simpr 485 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
4746nnsqcld 14147 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑚↑2) ∈ ℕ)
4845, 47nndivred 12207 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((2 · (𝑅 + 1)) / (𝑚↑2)) ∈ ℝ)
4940, 48remulcld 11185 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))) ∈ ℝ)
5046peano2nnd 12170 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
5150nnrpd 12955 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℝ+)
5246nnrpd 12955 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
5351, 52rpdivcld 12974 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) / 𝑚) ∈ ℝ+)
5453relogcld 25978 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑚 + 1) / 𝑚)) ∈ ℝ)
5540, 54remulcld 11185 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑅 · (log‘((𝑚 + 1) / 𝑚))) ∈ ℝ)
5639peano2nnd 12170 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℕ)
5756nnrpd 12955 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑅 + 1) ∈ ℝ+)
5857, 52rpmulcld 12973 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑅 + 1) · 𝑚) ∈ ℝ+)
5958relogcld 25978 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (log‘((𝑅 + 1) · 𝑚)) ∈ ℝ)
60 pire 25815 . . . . . . . . 9 π ∈ ℝ
6160a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → π ∈ ℝ)
6259, 61readdcld 11184 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((log‘((𝑅 + 1) · 𝑚)) + π) ∈ ℝ)
6355, 62readdcld 11184 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)) ∈ ℝ)
6449, 63ifcld 4532 . . . . 5 ((𝜑𝑚 ∈ ℕ) → if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))) ∈ ℝ)
6564, 34fmptd 7062 . . . 4 (𝜑𝑇:ℕ⟶ℝ)
6665ffvelcdmda 7035 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
677, 3, 32, 34lgamgulmlem5 26382 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
687, 3, 32, 34lgamgulmlem4 26381 . . 3 (𝜑 → seq1( + , 𝑇) ∈ dom ⇝ )
691, 2, 6, 33, 38, 66, 67, 68mtest 25763 . 2 (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈))
70 1zzd 12534 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 1 ∈ ℤ)
715a1i 11 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝑈 ∈ V)
7233adantr 481 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝐺:ℕ⟶(ℂ ↑m 𝑈))
7337a1i 11 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → 𝑇 ∈ V)
7466adantlr 713 . . . . 5 (((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) ∧ 𝑛 ∈ ℕ) → (𝑇𝑛) ∈ ℝ)
7567adantlr 713 . . . . 5 (((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) ∧ (𝑛 ∈ ℕ ∧ 𝑦𝑈)) → (abs‘((𝐺𝑛)‘𝑦)) ≤ (𝑇𝑛))
7668adantr 481 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → seq1( + , 𝑇) ∈ dom ⇝ )
77 simpr 485 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂))
781, 70, 71, 72, 73, 74, 75, 76, 77mtestbdd 25764 . . . 4 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∃𝑟 ∈ ℝ ∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟)
79 nfcv 2907 . . . . . . . . 9 𝑧abs
80 nffvmpt1 6853 . . . . . . . . 9 𝑧((𝑧𝑈𝑂)‘𝑦)
8179, 80nffv 6852 . . . . . . . 8 𝑧(abs‘((𝑧𝑈𝑂)‘𝑦))
82 nfcv 2907 . . . . . . . 8 𝑧
83 nfcv 2907 . . . . . . . 8 𝑧𝑟
8481, 82, 83nfbr 5152 . . . . . . 7 𝑧(abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟
85 nfv 1917 . . . . . . 7 𝑦(abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟
86 2fveq3 6847 . . . . . . . 8 (𝑦 = 𝑧 → (abs‘((𝑧𝑈𝑂)‘𝑦)) = (abs‘((𝑧𝑈𝑂)‘𝑧)))
8786breq1d 5115 . . . . . . 7 (𝑦 = 𝑧 → ((abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟))
8884, 85, 87cbvralw 3289 . . . . . 6 (∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟)
89 ulmcl 25740 . . . . . . . . 9 (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → (𝑧𝑈𝑂):𝑈⟶ℂ)
9089adantl 482 . . . . . . . 8 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (𝑧𝑈𝑂):𝑈⟶ℂ)
91 eqid 2736 . . . . . . . . 9 (𝑧𝑈𝑂) = (𝑧𝑈𝑂)
9291fmpt 7058 . . . . . . . 8 (∀𝑧𝑈 𝑂 ∈ ℂ ↔ (𝑧𝑈𝑂):𝑈⟶ℂ)
9390, 92sylibr 233 . . . . . . 7 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∀𝑧𝑈 𝑂 ∈ ℂ)
9491fvmpt2 6959 . . . . . . . . . 10 ((𝑧𝑈𝑂 ∈ ℂ) → ((𝑧𝑈𝑂)‘𝑧) = 𝑂)
9594fveq2d 6846 . . . . . . . . 9 ((𝑧𝑈𝑂 ∈ ℂ) → (abs‘((𝑧𝑈𝑂)‘𝑧)) = (abs‘𝑂))
9695breq1d 5115 . . . . . . . 8 ((𝑧𝑈𝑂 ∈ ℂ) → ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟))
9796ralimiaa 3085 . . . . . . 7 (∀𝑧𝑈 𝑂 ∈ ℂ → ∀𝑧𝑈 ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟))
98 ralbi 3106 . . . . . . 7 (∀𝑧𝑈 ((abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ (abs‘𝑂) ≤ 𝑟) → (∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
9993, 97, 983syl 18 . . . . . 6 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∀𝑧𝑈 (abs‘((𝑧𝑈𝑂)‘𝑧)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10088, 99bitrid 282 . . . . 5 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
101100rexbidv 3175 . . . 4 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → (∃𝑟 ∈ ℝ ∀𝑦𝑈 (abs‘((𝑧𝑈𝑂)‘𝑦)) ≤ 𝑟 ↔ ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10278, 101mpbid 231 . . 3 ((𝜑 ∧ seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂)) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)
103102ex 413 . 2 (𝜑 → (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟))
10469, 103jca 512 1 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈𝑂) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘𝑂) ≤ 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  ifcif 4486   class class class wbr 5105  cmpt 5188  dom cdm 5633  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765  cc 11049  cr 11050  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  seqcseq 13906  cexp 13967  abscabs 15119  cli 15366  πcpi 15949  𝑢culm 25735  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-cxp 25913
This theorem is referenced by:  lgamgulm  26384  lgambdd  26386
  Copyright terms: Public domain W3C validator