Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsbas3 | Structured version Visualization version GIF version |
Description: The base set of an indexed structure product. (Contributed by Mario Carneiro, 13-Sep-2015.) |
Ref | Expression |
---|---|
prdsbasmpt2.y | ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
prdsbasmpt2.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsbasmpt2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbasmpt2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsbasmpt2.r | ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) |
prdsbasmpt2.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
prdsbas3 | ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt2.y | . . . 4 ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) | |
2 | prdsbasmpt2.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsbasmpt2.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdsbasmpt2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdsbasmpt2.r | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) | |
6 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 ↦ 𝑅) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
7 | 6 | fnmpt 6518 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝑅) Fn 𝐼) |
9 | 1, 2, 3, 4, 8 | prdsbas2 16974 | . . 3 ⊢ (𝜑 → 𝐵 = X𝑦 ∈ 𝐼 (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦))) |
10 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥Base | |
11 | nffvmpt1 6728 | . . . . 5 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦) | |
12 | 10, 11 | nffv 6727 | . . . 4 ⊢ Ⅎ𝑥(Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) |
13 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑦(Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) | |
14 | 2fveq3 6722 | . . . 4 ⊢ (𝑦 = 𝑥 → (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) = (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))) | |
15 | 12, 13, 14 | cbvixp 8595 | . . 3 ⊢ X𝑦 ∈ 𝐼 (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑦)) = X𝑥 ∈ 𝐼 (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) |
16 | 9, 15 | eqtrdi 2794 | . 2 ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥))) |
17 | 6 | fvmpt2 6829 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥) = 𝑅) |
18 | 17 | fveq2d 6721 | . . . . 5 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = (Base‘𝑅)) |
19 | prdsbasmpt2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
20 | 18, 19 | eqtr4di 2796 | . . . 4 ⊢ ((𝑥 ∈ 𝐼 ∧ 𝑅 ∈ 𝑋) → (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = 𝐾) |
21 | 20 | ralimiaa 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ∀𝑥 ∈ 𝐼 (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = 𝐾) |
22 | ixpeq2 8592 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = 𝐾 → X𝑥 ∈ 𝐼 (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = X𝑥 ∈ 𝐼 𝐾) | |
23 | 5, 21, 22 | 3syl 18 | . 2 ⊢ (𝜑 → X𝑥 ∈ 𝐼 (Base‘((𝑥 ∈ 𝐼 ↦ 𝑅)‘𝑥)) = X𝑥 ∈ 𝐼 𝐾) |
24 | 16, 23 | eqtrd 2777 | 1 ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ↦ cmpt 5135 Fn wfn 6375 ‘cfv 6380 (class class class)co 7213 Xcixp 8578 Basecbs 16760 Xscprds 16950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-hom 16826 df-cco 16827 df-prds 16952 |
This theorem is referenced by: prdsbasmpt2 16987 ressprdsds 23269 prdsbl 23389 prdsbnd2 35690 |
Copyright terms: Public domain | W3C validator |