MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rextpg Structured version   Visualization version   GIF version

Theorem rextpg 4724
Description: Convert a restricted existential quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
raltpg.3 (𝑥 = 𝐶 → (𝜑𝜃))
Assertion
Ref Expression
rextpg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem rextpg
StepHypRef Expression
1 ralprg.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
2 ralprg.2 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2rexprg 4721 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
43orbi1d 915 . . . 4 ((𝐴𝑉𝐵𝑊) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∨ ∃𝑥 ∈ {𝐶}𝜑)))
5 raltpg.3 . . . . . 6 (𝑥 = 𝐶 → (𝜑𝜃))
65rexsng 4698 . . . . 5 (𝐶𝑋 → (∃𝑥 ∈ {𝐶}𝜑𝜃))
76orbi2d 914 . . . 4 (𝐶𝑋 → (((𝜓𝜒) ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∨ 𝜃)))
84, 7sylan9bb 509 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∨ 𝜃)))
983impa 1110 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑) ↔ ((𝜓𝜒) ∨ 𝜃)))
10 df-tp 4653 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
1110rexeqi 3333 . . 3 (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ ∃𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑)
12 rexun 4219 . . 3 (∃𝑥 ∈ ({𝐴, 𝐵} ∪ {𝐶})𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑))
1311, 12bitri 275 . 2 (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∨ ∃𝑥 ∈ {𝐶}𝜑))
14 df-3or 1088 . 2 ((𝜓𝜒𝜃) ↔ ((𝜓𝜒) ∨ 𝜃))
159, 13, 143bitr4g 314 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cun 3974  {csn 4648  {cpr 4650  {ctp 4652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651  df-tp 4653
This theorem is referenced by:  rextp  4731  fr3nr  7807  nb3grprlem2  29416  frgr3vlem2  30306  3vfriswmgr  30310
  Copyright terms: Public domain W3C validator