Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sumtp | Structured version Visualization version GIF version |
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.) |
Ref | Expression |
---|---|
sumtp.e | ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) |
sumtp.f | ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) |
sumtp.g | ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) |
sumtp.c | ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) |
sumtp.v | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) |
sumtp.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
sumtp.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
sumtp.3 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
sumtp | ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumtp.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
2 | 1 | necomd 2998 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
3 | sumtp.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
4 | 3 | necomd 2998 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
5 | 2, 4 | nelprd 4589 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵}) |
6 | disjsn 4644 | . . . 4 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵}) | |
7 | 5, 6 | sylibr 233 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
8 | df-tp 4563 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})) |
10 | tpfi 9020 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
12 | sumtp.c | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) | |
13 | sumtp.v | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) | |
14 | sumtp.e | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) | |
15 | 14 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → (𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
16 | sumtp.f | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) | |
17 | 16 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑘 = 𝐵 → (𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ)) |
18 | sumtp.g | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) | |
19 | 18 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ)) |
20 | 15, 17, 19 | raltpg 4631 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))) |
21 | 13, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))) |
22 | 12, 21 | mpbird 256 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ) |
23 | 22 | r19.21bi 3132 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ) |
24 | 7, 9, 11, 23 | fsumsplit 15381 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷)) |
25 | 3simpa 1146 | . . . . 5 ⊢ ((𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ) → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) | |
26 | 12, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) |
27 | 3simpa 1146 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) | |
28 | 13, 27 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
29 | sumtp.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
30 | 14, 16, 26, 28, 29 | sumpr 15388 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 + 𝐹)) |
31 | 13 | simp3d 1142 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
32 | 12 | simp3d 1142 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ℂ) |
33 | 18 | sumsn 15386 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐺 ∈ ℂ) → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺) |
34 | 31, 32, 33 | syl2anc 583 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺) |
35 | 30, 34 | oveq12d 7273 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷) = ((𝐸 + 𝐹) + 𝐺)) |
36 | 24, 35 | eqtrd 2778 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 {cpr 4560 {ctp 4562 (class class class)co 7255 Fincfn 8691 ℂcc 10800 + caddc 10805 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: hgt750lemb 32536 tgoldbachgt 32543 nnsum4primesodd 45136 nnsum4primesoddALTV 45137 |
Copyright terms: Public domain | W3C validator |