![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumtp | Structured version Visualization version GIF version |
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.) |
Ref | Expression |
---|---|
sumtp.e | ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) |
sumtp.f | ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) |
sumtp.g | ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) |
sumtp.c | ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) |
sumtp.v | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) |
sumtp.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
sumtp.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
sumtp.3 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
sumtp | ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumtp.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
2 | 1 | necomd 3041 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
3 | sumtp.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
4 | 3 | necomd 3041 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
5 | 2, 4 | nelprd 4507 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵}) |
6 | disjsn 4560 | . . . 4 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵}) | |
7 | 5, 6 | sylibr 235 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
8 | df-tp 4483 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})) |
10 | tpfi 8647 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
12 | sumtp.c | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) | |
13 | sumtp.v | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) | |
14 | sumtp.e | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) | |
15 | 14 | eleq1d 2869 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → (𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
16 | sumtp.f | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) | |
17 | 16 | eleq1d 2869 | . . . . . . 7 ⊢ (𝑘 = 𝐵 → (𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ)) |
18 | sumtp.g | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) | |
19 | 18 | eleq1d 2869 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ)) |
20 | 15, 17, 19 | raltpg 4547 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))) |
21 | 13, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))) |
22 | 12, 21 | mpbird 258 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ) |
23 | 22 | r19.21bi 3177 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ) |
24 | 7, 9, 11, 23 | fsumsplit 14934 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷)) |
25 | 3simpa 1141 | . . . . 5 ⊢ ((𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ) → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) | |
26 | 12, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) |
27 | 3simpa 1141 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) | |
28 | 13, 27 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
29 | sumtp.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
30 | 14, 16, 26, 28, 29 | sumpr 14940 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 + 𝐹)) |
31 | 13 | simp3d 1137 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
32 | 12 | simp3d 1137 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ℂ) |
33 | 18 | sumsn 14938 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐺 ∈ ℂ) → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺) |
34 | 31, 32, 33 | syl2anc 584 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺) |
35 | 30, 34 | oveq12d 7041 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷) = ((𝐸 + 𝐹) + 𝐺)) |
36 | 24, 35 | eqtrd 2833 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ≠ wne 2986 ∀wral 3107 ∪ cun 3863 ∩ cin 3864 ∅c0 4217 {csn 4478 {cpr 4480 {ctp 4482 (class class class)co 7023 Fincfn 8364 ℂcc 10388 + caddc 10393 Σcsu 14880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-sup 8759 df-oi 8827 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-n0 11752 df-z 11836 df-uz 12098 df-rp 12244 df-fz 12747 df-fzo 12888 df-seq 13224 df-exp 13284 df-hash 13545 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-clim 14683 df-sum 14881 |
This theorem is referenced by: hgt750lemb 31540 tgoldbachgt 31547 nnsum4primesodd 43465 nnsum4primesoddALTV 43466 |
Copyright terms: Public domain | W3C validator |