Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumtp Structured version   Visualization version   GIF version

Theorem sumtp 15100
 Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
Hypotheses
Ref Expression
sumtp.e (𝑘 = 𝐴𝐷 = 𝐸)
sumtp.f (𝑘 = 𝐵𝐷 = 𝐹)
sumtp.g (𝑘 = 𝐶𝐷 = 𝐺)
sumtp.c (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))
sumtp.v (𝜑 → (𝐴𝑉𝐵𝑊𝐶𝑋))
sumtp.1 (𝜑𝐴𝐵)
sumtp.2 (𝜑𝐴𝐶)
sumtp.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
sumtp (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐸   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑋
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem sumtp
StepHypRef Expression
1 sumtp.2 . . . . . 6 (𝜑𝐴𝐶)
21necomd 3045 . . . . 5 (𝜑𝐶𝐴)
3 sumtp.3 . . . . . 6 (𝜑𝐵𝐶)
43necomd 3045 . . . . 5 (𝜑𝐶𝐵)
52, 4nelprd 4559 . . . 4 (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵})
6 disjsn 4610 . . . 4 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵})
75, 6sylibr 237 . . 3 (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
8 df-tp 4533 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
98a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
10 tpfi 8782 . . . 4 {𝐴, 𝐵, 𝐶} ∈ Fin
1110a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
12 sumtp.c . . . . 5 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))
13 sumtp.v . . . . . 6 (𝜑 → (𝐴𝑉𝐵𝑊𝐶𝑋))
14 sumtp.e . . . . . . . 8 (𝑘 = 𝐴𝐷 = 𝐸)
1514eleq1d 2877 . . . . . . 7 (𝑘 = 𝐴 → (𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ))
16 sumtp.f . . . . . . . 8 (𝑘 = 𝐵𝐷 = 𝐹)
1716eleq1d 2877 . . . . . . 7 (𝑘 = 𝐵 → (𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ))
18 sumtp.g . . . . . . . 8 (𝑘 = 𝐶𝐷 = 𝐺)
1918eleq1d 2877 . . . . . . 7 (𝑘 = 𝐶 → (𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ))
2015, 17, 19raltpg 4597 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)))
2113, 20syl 17 . . . . 5 (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)))
2212, 21mpbird 260 . . . 4 (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ)
2322r19.21bi 3176 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ)
247, 9, 11, 23fsumsplit 15093 . 2 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷))
25 3simpa 1145 . . . . 5 ((𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ) → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
2612, 25syl 17 . . . 4 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
27 3simpa 1145 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑉𝐵𝑊))
2813, 27syl 17 . . . 4 (𝜑 → (𝐴𝑉𝐵𝑊))
29 sumtp.1 . . . 4 (𝜑𝐴𝐵)
3014, 16, 26, 28, 29sumpr 15099 . . 3 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 + 𝐹))
3113simp3d 1141 . . . 4 (𝜑𝐶𝑋)
3212simp3d 1141 . . . 4 (𝜑𝐺 ∈ ℂ)
3318sumsn 15097 . . . 4 ((𝐶𝑋𝐺 ∈ ℂ) → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺)
3431, 32, 33syl2anc 587 . . 3 (𝜑 → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺)
3530, 34oveq12d 7157 . 2 (𝜑 → (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷) = ((𝐸 + 𝐹) + 𝐺))
3624, 35eqtrd 2836 1 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109   ∪ cun 3882   ∩ cin 3883  ∅c0 4246  {csn 4528  {cpr 4530  {ctp 4532  (class class class)co 7139  Fincfn 8496  ℂcc 10528   + caddc 10533  Σcsu 15038 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039 This theorem is referenced by:  hgt750lemb  32041  tgoldbachgt  32048  nnsum4primesodd  44311  nnsum4primesoddALTV  44312
 Copyright terms: Public domain W3C validator