MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumtp Structured version   Visualization version   GIF version

Theorem sumtp 15722
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
Hypotheses
Ref Expression
sumtp.e (𝑘 = 𝐴𝐷 = 𝐸)
sumtp.f (𝑘 = 𝐵𝐷 = 𝐹)
sumtp.g (𝑘 = 𝐶𝐷 = 𝐺)
sumtp.c (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))
sumtp.v (𝜑 → (𝐴𝑉𝐵𝑊𝐶𝑋))
sumtp.1 (𝜑𝐴𝐵)
sumtp.2 (𝜑𝐴𝐶)
sumtp.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
sumtp (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐸   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑋
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem sumtp
StepHypRef Expression
1 sumtp.2 . . . . . 6 (𝜑𝐴𝐶)
21necomd 2981 . . . . 5 (𝜑𝐶𝐴)
3 sumtp.3 . . . . . 6 (𝜑𝐵𝐶)
43necomd 2981 . . . . 5 (𝜑𝐶𝐵)
52, 4nelprd 4624 . . . 4 (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵})
6 disjsn 4678 . . . 4 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵})
75, 6sylibr 234 . . 3 (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
8 df-tp 4597 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
98a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
10 tpfi 9283 . . . 4 {𝐴, 𝐵, 𝐶} ∈ Fin
1110a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
12 sumtp.c . . . . 5 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))
13 sumtp.v . . . . . 6 (𝜑 → (𝐴𝑉𝐵𝑊𝐶𝑋))
14 sumtp.e . . . . . . . 8 (𝑘 = 𝐴𝐷 = 𝐸)
1514eleq1d 2814 . . . . . . 7 (𝑘 = 𝐴 → (𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ))
16 sumtp.f . . . . . . . 8 (𝑘 = 𝐵𝐷 = 𝐹)
1716eleq1d 2814 . . . . . . 7 (𝑘 = 𝐵 → (𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ))
18 sumtp.g . . . . . . . 8 (𝑘 = 𝐶𝐷 = 𝐺)
1918eleq1d 2814 . . . . . . 7 (𝑘 = 𝐶 → (𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ))
2015, 17, 19raltpg 4665 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)))
2113, 20syl 17 . . . . 5 (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)))
2212, 21mpbird 257 . . . 4 (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ)
2322r19.21bi 3230 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ)
247, 9, 11, 23fsumsplit 15714 . 2 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷))
25 3simpa 1148 . . . . 5 ((𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ) → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
2612, 25syl 17 . . . 4 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
27 3simpa 1148 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑉𝐵𝑊))
2813, 27syl 17 . . . 4 (𝜑 → (𝐴𝑉𝐵𝑊))
29 sumtp.1 . . . 4 (𝜑𝐴𝐵)
3014, 16, 26, 28, 29sumpr 15721 . . 3 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 + 𝐹))
3113simp3d 1144 . . . 4 (𝜑𝐶𝑋)
3212simp3d 1144 . . . 4 (𝜑𝐺 ∈ ℂ)
3318sumsn 15719 . . . 4 ((𝐶𝑋𝐺 ∈ ℂ) → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺)
3431, 32, 33syl2anc 584 . . 3 (𝜑 → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺)
3530, 34oveq12d 7408 . 2 (𝜑 → (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷) = ((𝐸 + 𝐹) + 𝐺))
3624, 35eqtrd 2765 1 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  cun 3915  cin 3916  c0 4299  {csn 4592  {cpr 4594  {ctp 4596  (class class class)co 7390  Fincfn 8921  cc 11073   + caddc 11078  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660
This theorem is referenced by:  cos9thpiminplylem3  33781  hgt750lemb  34654  tgoldbachgt  34661  nnsum4primesodd  47801  nnsum4primesoddALTV  47802
  Copyright terms: Public domain W3C validator