![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumtp | Structured version Visualization version GIF version |
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.) |
Ref | Expression |
---|---|
sumtp.e | ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) |
sumtp.f | ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) |
sumtp.g | ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) |
sumtp.c | ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) |
sumtp.v | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) |
sumtp.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
sumtp.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
sumtp.3 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
sumtp | ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumtp.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
2 | 1 | necomd 2996 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
3 | sumtp.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
4 | 3 | necomd 2996 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
5 | 2, 4 | nelprd 4658 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵}) |
6 | disjsn 4714 | . . . 4 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵}) | |
7 | 5, 6 | sylibr 233 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
8 | df-tp 4632 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})) |
10 | tpfi 9319 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
12 | sumtp.c | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) | |
13 | sumtp.v | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) | |
14 | sumtp.e | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) | |
15 | 14 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → (𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
16 | sumtp.f | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) | |
17 | 16 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑘 = 𝐵 → (𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ)) |
18 | sumtp.g | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) | |
19 | 18 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ)) |
20 | 15, 17, 19 | raltpg 4701 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))) |
21 | 13, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))) |
22 | 12, 21 | mpbird 256 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ) |
23 | 22 | r19.21bi 3248 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ) |
24 | 7, 9, 11, 23 | fsumsplit 15683 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷)) |
25 | 3simpa 1148 | . . . . 5 ⊢ ((𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ) → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) | |
26 | 12, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) |
27 | 3simpa 1148 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) | |
28 | 13, 27 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
29 | sumtp.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
30 | 14, 16, 26, 28, 29 | sumpr 15690 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 + 𝐹)) |
31 | 13 | simp3d 1144 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
32 | 12 | simp3d 1144 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ℂ) |
33 | 18 | sumsn 15688 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐺 ∈ ℂ) → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺) |
34 | 31, 32, 33 | syl2anc 584 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺) |
35 | 30, 34 | oveq12d 7423 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷) = ((𝐸 + 𝐹) + 𝐺)) |
36 | 24, 35 | eqtrd 2772 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∪ cun 3945 ∩ cin 3946 ∅c0 4321 {csn 4627 {cpr 4629 {ctp 4631 (class class class)co 7405 Fincfn 8935 ℂcc 11104 + caddc 11109 Σcsu 15628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 |
This theorem is referenced by: hgt750lemb 33656 tgoldbachgt 33663 nnsum4primesodd 46450 nnsum4primesoddALTV 46451 |
Copyright terms: Public domain | W3C validator |