![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumtp | Structured version Visualization version GIF version |
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.) |
Ref | Expression |
---|---|
sumtp.e | ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) |
sumtp.f | ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) |
sumtp.g | ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) |
sumtp.c | ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) |
sumtp.v | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) |
sumtp.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
sumtp.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
sumtp.3 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
sumtp | ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumtp.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
2 | 1 | necomd 2996 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
3 | sumtp.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
4 | 3 | necomd 2996 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
5 | 2, 4 | nelprd 4618 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵}) |
6 | disjsn 4673 | . . . 4 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵}) | |
7 | 5, 6 | sylibr 233 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
8 | df-tp 4592 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})) |
10 | tpfi 9270 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
12 | sumtp.c | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) | |
13 | sumtp.v | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) | |
14 | sumtp.e | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) | |
15 | 14 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → (𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
16 | sumtp.f | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) | |
17 | 16 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑘 = 𝐵 → (𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ)) |
18 | sumtp.g | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) | |
19 | 18 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ)) |
20 | 15, 17, 19 | raltpg 4660 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))) |
21 | 13, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))) |
22 | 12, 21 | mpbird 257 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ) |
23 | 22 | r19.21bi 3233 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ) |
24 | 7, 9, 11, 23 | fsumsplit 15631 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷)) |
25 | 3simpa 1149 | . . . . 5 ⊢ ((𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ) → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) | |
26 | 12, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) |
27 | 3simpa 1149 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) | |
28 | 13, 27 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
29 | sumtp.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
30 | 14, 16, 26, 28, 29 | sumpr 15638 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 + 𝐹)) |
31 | 13 | simp3d 1145 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
32 | 12 | simp3d 1145 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ℂ) |
33 | 18 | sumsn 15636 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐺 ∈ ℂ) → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺) |
34 | 31, 32, 33 | syl2anc 585 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺) |
35 | 30, 34 | oveq12d 7376 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷) = ((𝐸 + 𝐹) + 𝐺)) |
36 | 24, 35 | eqtrd 2773 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∪ cun 3909 ∩ cin 3910 ∅c0 4283 {csn 4587 {cpr 4589 {ctp 4591 (class class class)co 7358 Fincfn 8886 ℂcc 11054 + caddc 11059 Σcsu 15576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-inf2 9582 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-fz 13431 df-fzo 13574 df-seq 13913 df-exp 13974 df-hash 14237 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-clim 15376 df-sum 15577 |
This theorem is referenced by: hgt750lemb 33326 tgoldbachgt 33333 nnsum4primesodd 46074 nnsum4primesoddALTV 46075 |
Copyright terms: Public domain | W3C validator |