MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumtp Structured version   Visualization version   GIF version

Theorem sumtp 15728
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
Hypotheses
Ref Expression
sumtp.e (𝑘 = 𝐴𝐷 = 𝐸)
sumtp.f (𝑘 = 𝐵𝐷 = 𝐹)
sumtp.g (𝑘 = 𝐶𝐷 = 𝐺)
sumtp.c (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))
sumtp.v (𝜑 → (𝐴𝑉𝐵𝑊𝐶𝑋))
sumtp.1 (𝜑𝐴𝐵)
sumtp.2 (𝜑𝐴𝐶)
sumtp.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
sumtp (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐸   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑋
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem sumtp
StepHypRef Expression
1 sumtp.2 . . . . . 6 (𝜑𝐴𝐶)
21necomd 2993 . . . . 5 (𝜑𝐶𝐴)
3 sumtp.3 . . . . . 6 (𝜑𝐵𝐶)
43necomd 2993 . . . . 5 (𝜑𝐶𝐵)
52, 4nelprd 4660 . . . 4 (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵})
6 disjsn 4716 . . . 4 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵})
75, 6sylibr 233 . . 3 (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
8 df-tp 4634 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
98a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
10 tpfi 9348 . . . 4 {𝐴, 𝐵, 𝐶} ∈ Fin
1110a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
12 sumtp.c . . . . 5 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))
13 sumtp.v . . . . . 6 (𝜑 → (𝐴𝑉𝐵𝑊𝐶𝑋))
14 sumtp.e . . . . . . . 8 (𝑘 = 𝐴𝐷 = 𝐸)
1514eleq1d 2814 . . . . . . 7 (𝑘 = 𝐴 → (𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ))
16 sumtp.f . . . . . . . 8 (𝑘 = 𝐵𝐷 = 𝐹)
1716eleq1d 2814 . . . . . . 7 (𝑘 = 𝐵 → (𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ))
18 sumtp.g . . . . . . . 8 (𝑘 = 𝐶𝐷 = 𝐺)
1918eleq1d 2814 . . . . . . 7 (𝑘 = 𝐶 → (𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ))
2015, 17, 19raltpg 4703 . . . . . 6 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)))
2113, 20syl 17 . . . . 5 (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)))
2212, 21mpbird 257 . . . 4 (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ)
2322r19.21bi 3245 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ)
247, 9, 11, 23fsumsplit 15720 . 2 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷))
25 3simpa 1146 . . . . 5 ((𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ) → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
2612, 25syl 17 . . . 4 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
27 3simpa 1146 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑉𝐵𝑊))
2813, 27syl 17 . . . 4 (𝜑 → (𝐴𝑉𝐵𝑊))
29 sumtp.1 . . . 4 (𝜑𝐴𝐵)
3014, 16, 26, 28, 29sumpr 15727 . . 3 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 + 𝐹))
3113simp3d 1142 . . . 4 (𝜑𝐶𝑋)
3212simp3d 1142 . . . 4 (𝜑𝐺 ∈ ℂ)
3318sumsn 15725 . . . 4 ((𝐶𝑋𝐺 ∈ ℂ) → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺)
3431, 32, 33syl2anc 583 . . 3 (𝜑 → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺)
3530, 34oveq12d 7438 . 2 (𝜑 → (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷) = ((𝐸 + 𝐹) + 𝐺))
3624, 35eqtrd 2768 1 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wral 3058  cun 3945  cin 3946  c0 4323  {csn 4629  {cpr 4631  {ctp 4633  (class class class)co 7420  Fincfn 8964  cc 11137   + caddc 11142  Σcsu 15665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fz 13518  df-fzo 13661  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465  df-sum 15666
This theorem is referenced by:  hgt750lemb  34288  tgoldbachgt  34295  nnsum4primesodd  47136  nnsum4primesoddALTV  47137
  Copyright terms: Public domain W3C validator