| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sseqin2 4222 | . . . . 5
⊢ (𝑆 ⊆ 𝐵 ↔ (𝐵 ∩ 𝑆) = 𝑆) | 
| 2 | 1 | biimpi 216 | . . . 4
⊢ (𝑆 ⊆ 𝐵 → (𝐵 ∩ 𝑆) = 𝑆) | 
| 3 |  | dfin5 3958 | . . . 4
⊢ (𝐵 ∩ 𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} | 
| 4 | 2, 3 | eqtr3di 2791 | . . 3
⊢ (𝑆 ⊆ 𝐵 → 𝑆 = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) | 
| 5 | 4 | fveq2d 6909 | . 2
⊢ (𝑆 ⊆ 𝐵 → (𝐺‘𝑆) = (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆})) | 
| 6 |  | glbcon.b | . . . 4
⊢ 𝐵 = (Base‘𝐾) | 
| 7 |  | eqid 2736 | . . . 4
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 8 |  | glbcon.g | . . . 4
⊢ 𝐺 = (glb‘𝐾) | 
| 9 |  | biid 261 | . . . 4
⊢
((∀𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) | 
| 10 |  | id 22 | . . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ HL) | 
| 11 |  | ssrab2 4079 | . . . . 5
⊢ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ⊆ 𝐵 | 
| 12 | 11 | a1i 11 | . . . 4
⊢ (𝐾 ∈ HL → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ⊆ 𝐵) | 
| 13 | 6, 7, 8, 9, 10, 12 | glbval 18415 | . . 3
⊢ (𝐾 ∈ HL → (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) = (℩𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)))) | 
| 14 |  | hlop 39364 | . . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 15 |  | hlclat 39360 | . . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | 
| 16 | 6, 8 | clatglbcl 18551 | . . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ⊆ 𝐵) → (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) ∈ 𝐵) | 
| 17 | 15, 11, 16 | sylancl 586 | . . . . . 6
⊢ (𝐾 ∈ HL → (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) ∈ 𝐵) | 
| 18 | 13, 17 | eqeltrrd 2841 | . . . . 5
⊢ (𝐾 ∈ HL →
(℩𝑦 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) ∈ 𝐵) | 
| 19 | 6 | fvexi 6919 | . . . . . 6
⊢ 𝐵 ∈ V | 
| 20 | 19 | riotaclbBAD 38957 | . . . . 5
⊢
(∃!𝑦 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)) ↔ (℩𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) ∈ 𝐵) | 
| 21 | 18, 20 | sylibr 234 | . . . 4
⊢ (𝐾 ∈ HL → ∃!𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) | 
| 22 |  | glbcon.o | . . . . 5
⊢  ⊥ =
(oc‘𝐾) | 
| 23 |  | breq1 5145 | . . . . . . 7
⊢ (𝑦 = ( ⊥ ‘𝑣) → (𝑦(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑣)(le‘𝐾)𝑧)) | 
| 24 | 23 | ralbidv 3177 | . . . . . 6
⊢ (𝑦 = ( ⊥ ‘𝑣) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧)) | 
| 25 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑦 = ( ⊥ ‘𝑣) → (𝑤(le‘𝐾)𝑦 ↔ 𝑤(le‘𝐾)( ⊥ ‘𝑣))) | 
| 26 | 25 | imbi2d 340 | . . . . . . 7
⊢ (𝑦 = ( ⊥ ‘𝑣) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) | 
| 27 | 26 | ralbidv 3177 | . . . . . 6
⊢ (𝑦 = ( ⊥ ‘𝑣) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦) ↔ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) | 
| 28 | 24, 27 | anbi12d 632 | . . . . 5
⊢ (𝑦 = ( ⊥ ‘𝑣) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣))))) | 
| 29 | 6, 22, 28 | riotaocN 39211 | . . . 4
⊢ ((𝐾 ∈ OP ∧ ∃!𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) → (℩𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) = ( ⊥
‘(℩𝑣
∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))))) | 
| 30 | 14, 21, 29 | syl2anc 584 | . . 3
⊢ (𝐾 ∈ HL →
(℩𝑦 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) = ( ⊥
‘(℩𝑣
∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))))) | 
| 31 | 14 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝐾 ∈ OP) | 
| 32 | 6, 22 | opoccl 39196 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑢 ∈ 𝐵) → ( ⊥ ‘𝑢) ∈ 𝐵) | 
| 33 | 31, 32 | sylancom 588 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ( ⊥ ‘𝑢) ∈ 𝐵) | 
| 34 | 14 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝐾 ∈ OP) | 
| 35 | 6, 22 | opoccl 39196 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ OP ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘𝑧) ∈ 𝐵) | 
| 36 | 34, 35 | sylancom 588 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘𝑧) ∈ 𝐵) | 
| 37 | 6, 22 | opococ 39197 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ OP ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑧)) = 𝑧) | 
| 38 | 34, 37 | sylancom 588 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑧)) = 𝑧) | 
| 39 | 38 | eqcomd 2742 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝑧 = ( ⊥ ‘( ⊥
‘𝑧))) | 
| 40 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑢 = ( ⊥ ‘𝑧) → ( ⊥ ‘𝑢) = ( ⊥ ‘( ⊥
‘𝑧))) | 
| 41 | 40 | rspceeqv 3644 | . . . . . . . . . . 11
⊢ ((( ⊥
‘𝑧) ∈ 𝐵 ∧ 𝑧 = ( ⊥ ‘( ⊥
‘𝑧))) →
∃𝑢 ∈ 𝐵 𝑧 = ( ⊥ ‘𝑢)) | 
| 42 | 36, 39, 41 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 𝑧 = ( ⊥ ‘𝑢)) | 
| 43 |  | eleq1 2828 | . . . . . . . . . . . 12
⊢ (𝑧 = ( ⊥ ‘𝑢) → (𝑧 ∈ 𝑆 ↔ ( ⊥ ‘𝑢) ∈ 𝑆)) | 
| 44 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑧 = ( ⊥ ‘𝑢) → (( ⊥ ‘𝑣)(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢))) | 
| 45 | 43, 44 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑧 = ( ⊥ ‘𝑢) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) | 
| 46 | 45 | adantl 481 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 = ( ⊥ ‘𝑢)) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) | 
| 47 | 33, 42, 46 | ralxfrd 5407 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) | 
| 48 |  | simpr 484 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) | 
| 49 |  | simplr 768 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑣 ∈ 𝐵) | 
| 50 | 6, 7, 22 | oplecon3b 39202 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ OP ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢))) | 
| 51 | 31, 48, 49, 50 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢))) | 
| 52 | 51 | imbi2d 340 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) | 
| 53 | 52 | ralbidva 3175 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) | 
| 54 | 47, 53 | bitr4d 282 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣))) | 
| 55 |  | eleq1 2828 | . . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑆 ↔ 𝑧 ∈ 𝑆)) | 
| 56 | 55 | ralrab 3698 | . . . . . . . 8
⊢
(∀𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧)) | 
| 57 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑥 = 𝑢 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑢)) | 
| 58 | 57 | eleq1d 2825 | . . . . . . . . 9
⊢ (𝑥 = 𝑢 → (( ⊥ ‘𝑥) ∈ 𝑆 ↔ ( ⊥ ‘𝑢) ∈ 𝑆)) | 
| 59 | 58 | ralrab 3698 | . . . . . . . 8
⊢
(∀𝑢 ∈
{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣)) | 
| 60 | 54, 56, 59 | 3bitr4g 314 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ↔ ∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣)) | 
| 61 | 14 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → 𝐾 ∈ OP) | 
| 62 | 6, 22 | opoccl 39196 | . . . . . . . . . 10
⊢ ((𝐾 ∈ OP ∧ 𝑡 ∈ 𝐵) → ( ⊥ ‘𝑡) ∈ 𝐵) | 
| 63 | 61, 62 | sylancom 588 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → ( ⊥ ‘𝑡) ∈ 𝐵) | 
| 64 | 14 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → 𝐾 ∈ OP) | 
| 65 | 6, 22 | opoccl 39196 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘𝑤) ∈ 𝐵) | 
| 66 | 64, 65 | sylancom 588 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘𝑤) ∈ 𝐵) | 
| 67 | 6, 22 | opococ 39197 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ OP ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑤)) = 𝑤) | 
| 68 | 64, 67 | sylancom 588 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑤)) = 𝑤) | 
| 69 | 68 | eqcomd 2742 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → 𝑤 = ( ⊥ ‘( ⊥
‘𝑤))) | 
| 70 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑡 = ( ⊥ ‘𝑤) → ( ⊥ ‘𝑡) = ( ⊥ ‘( ⊥
‘𝑤))) | 
| 71 | 70 | rspceeqv 3644 | . . . . . . . . . 10
⊢ ((( ⊥
‘𝑤) ∈ 𝐵 ∧ 𝑤 = ( ⊥ ‘( ⊥
‘𝑤))) →
∃𝑡 ∈ 𝐵 𝑤 = ( ⊥ ‘𝑡)) | 
| 72 | 66, 69, 71 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → ∃𝑡 ∈ 𝐵 𝑤 = ( ⊥ ‘𝑡)) | 
| 73 |  | breq1 5145 | . . . . . . . . . . . 12
⊢ (𝑤 = ( ⊥ ‘𝑡) → (𝑤(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) | 
| 74 | 73 | ralbidv 3177 | . . . . . . . . . . 11
⊢ (𝑤 = ( ⊥ ‘𝑡) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) | 
| 75 |  | breq1 5145 | . . . . . . . . . . 11
⊢ (𝑤 = ( ⊥ ‘𝑡) → (𝑤(le‘𝐾)( ⊥ ‘𝑣) ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣))) | 
| 76 | 74, 75 | imbi12d 344 | . . . . . . . . . 10
⊢ (𝑤 = ( ⊥ ‘𝑡) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) | 
| 77 | 76 | adantl 481 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 = ( ⊥ ‘𝑡)) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) | 
| 78 | 63, 72, 77 | ralxfrd 5407 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ ∀𝑡 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) | 
| 79 | 14 | ad3antrrr 730 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝐾 ∈ OP) | 
| 80 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) | 
| 81 |  | simplr 768 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑡 ∈ 𝐵) | 
| 82 | 6, 7, 22 | oplecon3b 39202 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ OP ∧ 𝑢 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢))) | 
| 83 | 79, 80, 81, 82 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢))) | 
| 84 | 83 | imbi2d 340 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) | 
| 85 | 84 | ralbidva 3175 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) | 
| 86 | 79, 32 | sylancom 588 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ( ⊥ ‘𝑢) ∈ 𝐵) | 
| 87 | 14 | ad3antrrr 730 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝐾 ∈ OP) | 
| 88 | 87, 35 | sylancom 588 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘𝑧) ∈ 𝐵) | 
| 89 | 87, 37 | sylancom 588 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑧)) = 𝑧) | 
| 90 | 89 | eqcomd 2742 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝑧 = ( ⊥ ‘( ⊥
‘𝑧))) | 
| 91 | 88, 90, 41 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 𝑧 = ( ⊥ ‘𝑢)) | 
| 92 |  | breq2 5146 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = ( ⊥ ‘𝑢) → (( ⊥ ‘𝑡)(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢))) | 
| 93 | 43, 92 | imbi12d 344 | . . . . . . . . . . . . . 14
⊢ (𝑧 = ( ⊥ ‘𝑢) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) | 
| 94 | 93 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 = ( ⊥ ‘𝑢)) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) | 
| 95 | 86, 91, 94 | ralxfrd 5407 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) | 
| 96 | 85, 95 | bitr4d 282 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡) ↔ ∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧))) | 
| 97 | 58 | ralrab 3698 | . . . . . . . . . . 11
⊢
(∀𝑢 ∈
{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡)) | 
| 98 | 55 | ralrab 3698 | . . . . . . . . . . 11
⊢
(∀𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) | 
| 99 | 96, 97, 98 | 3bitr4g 314 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) | 
| 100 |  | simplr 768 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → 𝑣 ∈ 𝐵) | 
| 101 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ 𝐵) | 
| 102 | 6, 7, 22 | oplecon3b 39202 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑣 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣))) | 
| 103 | 61, 100, 101, 102 | syl3anc 1372 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣))) | 
| 104 | 99, 103 | imbi12d 344 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → ((∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) | 
| 105 | 104 | ralbidva 3175 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡) ↔ ∀𝑡 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) | 
| 106 | 78, 105 | bitr4d 282 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡))) | 
| 107 | 60, 106 | anbi12d 632 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣))) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) | 
| 108 | 107 | riotabidva 7408 | . . . . 5
⊢ (𝐾 ∈ HL →
(℩𝑣 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) = (℩𝑣 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) | 
| 109 |  | ssrab2 4079 | . . . . . 6
⊢ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵 | 
| 110 |  | glbcon.u | . . . . . . 7
⊢ 𝑈 = (lub‘𝐾) | 
| 111 |  | biid 261 | . . . . . . 7
⊢
((∀𝑢 ∈
{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡))) | 
| 112 |  | simpl 482 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) → 𝐾 ∈ HL) | 
| 113 |  | simpr 484 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) → {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) | 
| 114 | 6, 7, 110, 111, 112, 113 | lubval 18402 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) → (𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}) = (℩𝑣 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) | 
| 115 | 109, 114 | mpan2 691 | . . . . 5
⊢ (𝐾 ∈ HL → (𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}) = (℩𝑣 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) | 
| 116 | 108, 115 | eqtr4d 2779 | . . . 4
⊢ (𝐾 ∈ HL →
(℩𝑣 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) = (𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆})) | 
| 117 | 116 | fveq2d 6909 | . . 3
⊢ (𝐾 ∈ HL → ( ⊥
‘(℩𝑣
∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣))))) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) | 
| 118 | 13, 30, 117 | 3eqtrd 2780 | . 2
⊢ (𝐾 ∈ HL → (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) | 
| 119 | 5, 118 | sylan9eqr 2798 | 1
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) |