Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbconNOLD Structured version   Visualization version   GIF version

Theorem glbconNOLD 39378
Description: Obsolete version of glbconN 39377 as of 3-Jan-2025. (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
glbcon.b 𝐵 = (Base‘𝐾)
glbcon.u 𝑈 = (lub‘𝐾)
glbcon.g 𝐺 = (glb‘𝐾)
glbcon.o = (oc‘𝐾)
Assertion
Ref Expression
glbconNOLD ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑆
Allowed substitution hints:   𝑈(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem glbconNOLD
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqin2 4189 . . . . 5 (𝑆𝐵 ↔ (𝐵𝑆) = 𝑆)
21biimpi 216 . . . 4 (𝑆𝐵 → (𝐵𝑆) = 𝑆)
3 dfin5 3925 . . . 4 (𝐵𝑆) = {𝑥𝐵𝑥𝑆}
42, 3eqtr3di 2780 . . 3 (𝑆𝐵𝑆 = {𝑥𝐵𝑥𝑆})
54fveq2d 6865 . 2 (𝑆𝐵 → (𝐺𝑆) = (𝐺‘{𝑥𝐵𝑥𝑆}))
6 glbcon.b . . . 4 𝐵 = (Base‘𝐾)
7 eqid 2730 . . . 4 (le‘𝐾) = (le‘𝐾)
8 glbcon.g . . . 4 𝐺 = (glb‘𝐾)
9 biid 261 . . . 4 ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)))
10 id 22 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ HL)
11 ssrab2 4046 . . . . 5 {𝑥𝐵𝑥𝑆} ⊆ 𝐵
1211a1i 11 . . . 4 (𝐾 ∈ HL → {𝑥𝐵𝑥𝑆} ⊆ 𝐵)
136, 7, 8, 9, 10, 12glbval 18335 . . 3 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) = (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))))
14 hlop 39362 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
15 hlclat 39358 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
166, 8clatglbcl 18471 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑥𝐵𝑥𝑆} ⊆ 𝐵) → (𝐺‘{𝑥𝐵𝑥𝑆}) ∈ 𝐵)
1715, 11, 16sylancl 586 . . . . . 6 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) ∈ 𝐵)
1813, 17eqeltrrd 2830 . . . . 5 (𝐾 ∈ HL → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) ∈ 𝐵)
196fvexi 6875 . . . . . 6 𝐵 ∈ V
2019riotaclbBAD 38955 . . . . 5 (∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) ∈ 𝐵)
2118, 20sylibr 234 . . . 4 (𝐾 ∈ HL → ∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)))
22 glbcon.o . . . . 5 = (oc‘𝐾)
23 breq1 5113 . . . . . . 7 (𝑦 = ( 𝑣) → (𝑦(le‘𝐾)𝑧 ↔ ( 𝑣)(le‘𝐾)𝑧))
2423ralbidv 3157 . . . . . 6 (𝑦 = ( 𝑣) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧))
25 breq2 5114 . . . . . . . 8 (𝑦 = ( 𝑣) → (𝑤(le‘𝐾)𝑦𝑤(le‘𝐾)( 𝑣)))
2625imbi2d 340 . . . . . . 7 (𝑦 = ( 𝑣) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))
2726ralbidv 3157 . . . . . 6 (𝑦 = ( 𝑣) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦) ↔ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))
2824, 27anbi12d 632 . . . . 5 (𝑦 = ( 𝑣) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))))
296, 22, 28riotaocN 39209 . . . 4 ((𝐾 ∈ OP ∧ ∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) = ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))))
3014, 21, 29syl2anc 584 . . 3 (𝐾 ∈ HL → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) = ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))))
3114ad2antrr 726 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝐾 ∈ OP)
326, 22opoccl 39194 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
3331, 32sylancom 588 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
3414ad2antrr 726 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
356, 22opoccl 39194 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
3634, 35sylancom 588 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
376, 22opococ 39195 . . . . . . . . . . . . 13 ((𝐾 ∈ OP ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
3834, 37sylancom 588 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
3938eqcomd 2736 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → 𝑧 = ( ‘( 𝑧)))
40 fveq2 6861 . . . . . . . . . . . 12 (𝑢 = ( 𝑧) → ( 𝑢) = ( ‘( 𝑧)))
4140rspceeqv 3614 . . . . . . . . . . 11 ((( 𝑧) ∈ 𝐵𝑧 = ( ‘( 𝑧))) → ∃𝑢𝐵 𝑧 = ( 𝑢))
4236, 39, 41syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ∃𝑢𝐵 𝑧 = ( 𝑢))
43 eleq1 2817 . . . . . . . . . . . 12 (𝑧 = ( 𝑢) → (𝑧𝑆 ↔ ( 𝑢) ∈ 𝑆))
44 breq2 5114 . . . . . . . . . . . 12 (𝑧 = ( 𝑢) → (( 𝑣)(le‘𝐾)𝑧 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
4543, 44imbi12d 344 . . . . . . . . . . 11 (𝑧 = ( 𝑢) → ((𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
4645adantl 481 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧 = ( 𝑢)) → ((𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
4733, 42, 46ralxfrd 5366 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
48 simpr 484 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
49 simplr 768 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝑣𝐵)
506, 7, 22oplecon3b 39200 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑢𝐵𝑣𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
5131, 48, 49, 50syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
5251imbi2d 340 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → ((( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
5352ralbidva 3155 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
5447, 53bitr4d 282 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣)))
55 eleq1 2817 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝑆𝑧𝑆))
5655ralrab 3668 . . . . . . . 8 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧))
57 fveq2 6861 . . . . . . . . . 10 (𝑥 = 𝑢 → ( 𝑥) = ( 𝑢))
5857eleq1d 2814 . . . . . . . . 9 (𝑥 = 𝑢 → (( 𝑥) ∈ 𝑆 ↔ ( 𝑢) ∈ 𝑆))
5958ralrab 3668 . . . . . . . 8 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣))
6054, 56, 593bitr4g 314 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ↔ ∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣))
6114ad2antrr 726 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝐾 ∈ OP)
626, 22opoccl 39194 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑡𝐵) → ( 𝑡) ∈ 𝐵)
6361, 62sylancom 588 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → ( 𝑡) ∈ 𝐵)
6414ad2antrr 726 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → 𝐾 ∈ OP)
656, 22opoccl 39194 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑤𝐵) → ( 𝑤) ∈ 𝐵)
6664, 65sylancom 588 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ( 𝑤) ∈ 𝐵)
676, 22opococ 39195 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑤𝐵) → ( ‘( 𝑤)) = 𝑤)
6864, 67sylancom 588 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ( ‘( 𝑤)) = 𝑤)
6968eqcomd 2736 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → 𝑤 = ( ‘( 𝑤)))
70 fveq2 6861 . . . . . . . . . . 11 (𝑡 = ( 𝑤) → ( 𝑡) = ( ‘( 𝑤)))
7170rspceeqv 3614 . . . . . . . . . 10 ((( 𝑤) ∈ 𝐵𝑤 = ( ‘( 𝑤))) → ∃𝑡𝐵 𝑤 = ( 𝑡))
7266, 69, 71syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ∃𝑡𝐵 𝑤 = ( 𝑡))
73 breq1 5113 . . . . . . . . . . . 12 (𝑤 = ( 𝑡) → (𝑤(le‘𝐾)𝑧 ↔ ( 𝑡)(le‘𝐾)𝑧))
7473ralbidv 3157 . . . . . . . . . . 11 (𝑤 = ( 𝑡) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧))
75 breq1 5113 . . . . . . . . . . 11 (𝑤 = ( 𝑡) → (𝑤(le‘𝐾)( 𝑣) ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
7674, 75imbi12d 344 . . . . . . . . . 10 (𝑤 = ( 𝑡) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7776adantl 481 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤 = ( 𝑡)) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7863, 72, 77ralxfrd 5366 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ ∀𝑡𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7914ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝐾 ∈ OP)
80 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
81 simplr 768 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝑡𝐵)
826, 7, 22oplecon3b 39200 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑢𝐵𝑡𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
8379, 80, 81, 82syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
8483imbi2d 340 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → ((( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
8584ralbidva 3155 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
8679, 32sylancom 588 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
8714ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
8887, 35sylancom 588 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
8987, 37sylancom 588 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
9089eqcomd 2736 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → 𝑧 = ( ‘( 𝑧)))
9188, 90, 41syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ∃𝑢𝐵 𝑧 = ( 𝑢))
92 breq2 5114 . . . . . . . . . . . . . . 15 (𝑧 = ( 𝑢) → (( 𝑡)(le‘𝐾)𝑧 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
9343, 92imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = ( 𝑢) → ((𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9493adantl 481 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧 = ( 𝑢)) → ((𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9586, 91, 94ralxfrd 5366 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9685, 95bitr4d 282 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧)))
9758ralrab 3668 . . . . . . . . . . 11 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡))
9855ralrab 3668 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧))
9996, 97, 983bitr4g 314 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧))
100 simplr 768 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝑣𝐵)
101 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝑡𝐵)
1026, 7, 22oplecon3b 39200 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑣𝐵𝑡𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
10361, 100, 101, 102syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
10499, 103imbi12d 344 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → ((∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
105104ralbidva 3155 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡) ↔ ∀𝑡𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
10678, 105bitr4d 282 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)))
10760, 106anbi12d 632 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑣𝐵) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))) ↔ (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
108107riotabidva 7366 . . . . 5 (𝐾 ∈ HL → (𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
109 ssrab2 4046 . . . . . 6 {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵
110 glbcon.u . . . . . . 7 𝑈 = (lub‘𝐾)
111 biid 261 . . . . . . 7 ((∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)) ↔ (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)))
112 simpl 482 . . . . . . 7 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → 𝐾 ∈ HL)
113 simpr 484 . . . . . . 7 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵)
1146, 7, 110, 111, 112, 113lubval 18322 . . . . . 6 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
115109, 114mpan2 691 . . . . 5 (𝐾 ∈ HL → (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
116108, 115eqtr4d 2768 . . . 4 (𝐾 ∈ HL → (𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))) = (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}))
117116fveq2d 6865 . . 3 (𝐾 ∈ HL → ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
11813, 30, 1173eqtrd 2769 . 2 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
1195, 118sylan9eqr 2787 1 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  {crab 3408  cin 3916  wss 3917   class class class wbr 5110  cfv 6514  crio 7346  Basecbs 17186  lecple 17234  occoc 17235  lubclub 18277  glbcglb 18278  CLatccla 18464  OPcops 39172  HLchlt 39350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-undef 8255  df-lub 18312  df-glb 18313  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-hlat 39351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator