Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbconNOLD Structured version   Visualization version   GIF version

Theorem glbconNOLD 39371
Description: Obsolete version of glbconN 39370 as of 3-Jan-2025. (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
glbcon.b 𝐵 = (Base‘𝐾)
glbcon.u 𝑈 = (lub‘𝐾)
glbcon.g 𝐺 = (glb‘𝐾)
glbcon.o = (oc‘𝐾)
Assertion
Ref Expression
glbconNOLD ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑆
Allowed substitution hints:   𝑈(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem glbconNOLD
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqin2 4186 . . . . 5 (𝑆𝐵 ↔ (𝐵𝑆) = 𝑆)
21biimpi 216 . . . 4 (𝑆𝐵 → (𝐵𝑆) = 𝑆)
3 dfin5 3922 . . . 4 (𝐵𝑆) = {𝑥𝐵𝑥𝑆}
42, 3eqtr3di 2779 . . 3 (𝑆𝐵𝑆 = {𝑥𝐵𝑥𝑆})
54fveq2d 6862 . 2 (𝑆𝐵 → (𝐺𝑆) = (𝐺‘{𝑥𝐵𝑥𝑆}))
6 glbcon.b . . . 4 𝐵 = (Base‘𝐾)
7 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
8 glbcon.g . . . 4 𝐺 = (glb‘𝐾)
9 biid 261 . . . 4 ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)))
10 id 22 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ HL)
11 ssrab2 4043 . . . . 5 {𝑥𝐵𝑥𝑆} ⊆ 𝐵
1211a1i 11 . . . 4 (𝐾 ∈ HL → {𝑥𝐵𝑥𝑆} ⊆ 𝐵)
136, 7, 8, 9, 10, 12glbval 18328 . . 3 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) = (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))))
14 hlop 39355 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
15 hlclat 39351 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
166, 8clatglbcl 18464 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑥𝐵𝑥𝑆} ⊆ 𝐵) → (𝐺‘{𝑥𝐵𝑥𝑆}) ∈ 𝐵)
1715, 11, 16sylancl 586 . . . . . 6 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) ∈ 𝐵)
1813, 17eqeltrrd 2829 . . . . 5 (𝐾 ∈ HL → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) ∈ 𝐵)
196fvexi 6872 . . . . . 6 𝐵 ∈ V
2019riotaclbBAD 38948 . . . . 5 (∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) ∈ 𝐵)
2118, 20sylibr 234 . . . 4 (𝐾 ∈ HL → ∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)))
22 glbcon.o . . . . 5 = (oc‘𝐾)
23 breq1 5110 . . . . . . 7 (𝑦 = ( 𝑣) → (𝑦(le‘𝐾)𝑧 ↔ ( 𝑣)(le‘𝐾)𝑧))
2423ralbidv 3156 . . . . . 6 (𝑦 = ( 𝑣) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧))
25 breq2 5111 . . . . . . . 8 (𝑦 = ( 𝑣) → (𝑤(le‘𝐾)𝑦𝑤(le‘𝐾)( 𝑣)))
2625imbi2d 340 . . . . . . 7 (𝑦 = ( 𝑣) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))
2726ralbidv 3156 . . . . . 6 (𝑦 = ( 𝑣) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦) ↔ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))
2824, 27anbi12d 632 . . . . 5 (𝑦 = ( 𝑣) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))))
296, 22, 28riotaocN 39202 . . . 4 ((𝐾 ∈ OP ∧ ∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) = ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))))
3014, 21, 29syl2anc 584 . . 3 (𝐾 ∈ HL → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) = ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))))
3114ad2antrr 726 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝐾 ∈ OP)
326, 22opoccl 39187 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
3331, 32sylancom 588 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
3414ad2antrr 726 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
356, 22opoccl 39187 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
3634, 35sylancom 588 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
376, 22opococ 39188 . . . . . . . . . . . . 13 ((𝐾 ∈ OP ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
3834, 37sylancom 588 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
3938eqcomd 2735 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → 𝑧 = ( ‘( 𝑧)))
40 fveq2 6858 . . . . . . . . . . . 12 (𝑢 = ( 𝑧) → ( 𝑢) = ( ‘( 𝑧)))
4140rspceeqv 3611 . . . . . . . . . . 11 ((( 𝑧) ∈ 𝐵𝑧 = ( ‘( 𝑧))) → ∃𝑢𝐵 𝑧 = ( 𝑢))
4236, 39, 41syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ∃𝑢𝐵 𝑧 = ( 𝑢))
43 eleq1 2816 . . . . . . . . . . . 12 (𝑧 = ( 𝑢) → (𝑧𝑆 ↔ ( 𝑢) ∈ 𝑆))
44 breq2 5111 . . . . . . . . . . . 12 (𝑧 = ( 𝑢) → (( 𝑣)(le‘𝐾)𝑧 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
4543, 44imbi12d 344 . . . . . . . . . . 11 (𝑧 = ( 𝑢) → ((𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
4645adantl 481 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧 = ( 𝑢)) → ((𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
4733, 42, 46ralxfrd 5363 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
48 simpr 484 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
49 simplr 768 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝑣𝐵)
506, 7, 22oplecon3b 39193 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑢𝐵𝑣𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
5131, 48, 49, 50syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
5251imbi2d 340 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → ((( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
5352ralbidva 3154 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
5447, 53bitr4d 282 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣)))
55 eleq1 2816 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝑆𝑧𝑆))
5655ralrab 3665 . . . . . . . 8 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧))
57 fveq2 6858 . . . . . . . . . 10 (𝑥 = 𝑢 → ( 𝑥) = ( 𝑢))
5857eleq1d 2813 . . . . . . . . 9 (𝑥 = 𝑢 → (( 𝑥) ∈ 𝑆 ↔ ( 𝑢) ∈ 𝑆))
5958ralrab 3665 . . . . . . . 8 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣))
6054, 56, 593bitr4g 314 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ↔ ∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣))
6114ad2antrr 726 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝐾 ∈ OP)
626, 22opoccl 39187 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑡𝐵) → ( 𝑡) ∈ 𝐵)
6361, 62sylancom 588 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → ( 𝑡) ∈ 𝐵)
6414ad2antrr 726 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → 𝐾 ∈ OP)
656, 22opoccl 39187 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑤𝐵) → ( 𝑤) ∈ 𝐵)
6664, 65sylancom 588 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ( 𝑤) ∈ 𝐵)
676, 22opococ 39188 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑤𝐵) → ( ‘( 𝑤)) = 𝑤)
6864, 67sylancom 588 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ( ‘( 𝑤)) = 𝑤)
6968eqcomd 2735 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → 𝑤 = ( ‘( 𝑤)))
70 fveq2 6858 . . . . . . . . . . 11 (𝑡 = ( 𝑤) → ( 𝑡) = ( ‘( 𝑤)))
7170rspceeqv 3611 . . . . . . . . . 10 ((( 𝑤) ∈ 𝐵𝑤 = ( ‘( 𝑤))) → ∃𝑡𝐵 𝑤 = ( 𝑡))
7266, 69, 71syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ∃𝑡𝐵 𝑤 = ( 𝑡))
73 breq1 5110 . . . . . . . . . . . 12 (𝑤 = ( 𝑡) → (𝑤(le‘𝐾)𝑧 ↔ ( 𝑡)(le‘𝐾)𝑧))
7473ralbidv 3156 . . . . . . . . . . 11 (𝑤 = ( 𝑡) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧))
75 breq1 5110 . . . . . . . . . . 11 (𝑤 = ( 𝑡) → (𝑤(le‘𝐾)( 𝑣) ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
7674, 75imbi12d 344 . . . . . . . . . 10 (𝑤 = ( 𝑡) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7776adantl 481 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤 = ( 𝑡)) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7863, 72, 77ralxfrd 5363 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ ∀𝑡𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7914ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝐾 ∈ OP)
80 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
81 simplr 768 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝑡𝐵)
826, 7, 22oplecon3b 39193 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑢𝐵𝑡𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
8379, 80, 81, 82syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
8483imbi2d 340 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → ((( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
8584ralbidva 3154 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
8679, 32sylancom 588 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
8714ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
8887, 35sylancom 588 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
8987, 37sylancom 588 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
9089eqcomd 2735 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → 𝑧 = ( ‘( 𝑧)))
9188, 90, 41syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ∃𝑢𝐵 𝑧 = ( 𝑢))
92 breq2 5111 . . . . . . . . . . . . . . 15 (𝑧 = ( 𝑢) → (( 𝑡)(le‘𝐾)𝑧 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
9343, 92imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = ( 𝑢) → ((𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9493adantl 481 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧 = ( 𝑢)) → ((𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9586, 91, 94ralxfrd 5363 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9685, 95bitr4d 282 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧)))
9758ralrab 3665 . . . . . . . . . . 11 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡))
9855ralrab 3665 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧))
9996, 97, 983bitr4g 314 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧))
100 simplr 768 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝑣𝐵)
101 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝑡𝐵)
1026, 7, 22oplecon3b 39193 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑣𝐵𝑡𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
10361, 100, 101, 102syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
10499, 103imbi12d 344 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → ((∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
105104ralbidva 3154 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡) ↔ ∀𝑡𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
10678, 105bitr4d 282 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)))
10760, 106anbi12d 632 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑣𝐵) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))) ↔ (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
108107riotabidva 7363 . . . . 5 (𝐾 ∈ HL → (𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
109 ssrab2 4043 . . . . . 6 {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵
110 glbcon.u . . . . . . 7 𝑈 = (lub‘𝐾)
111 biid 261 . . . . . . 7 ((∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)) ↔ (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)))
112 simpl 482 . . . . . . 7 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → 𝐾 ∈ HL)
113 simpr 484 . . . . . . 7 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵)
1146, 7, 110, 111, 112, 113lubval 18315 . . . . . 6 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
115109, 114mpan2 691 . . . . 5 (𝐾 ∈ HL → (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
116108, 115eqtr4d 2767 . . . 4 (𝐾 ∈ HL → (𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))) = (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}))
117116fveq2d 6862 . . 3 (𝐾 ∈ HL → ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
11813, 30, 1173eqtrd 2768 . 2 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
1195, 118sylan9eqr 2786 1 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3352  {crab 3405  cin 3913  wss 3914   class class class wbr 5107  cfv 6511  crio 7343  Basecbs 17179  lecple 17227  occoc 17228  lubclub 18270  glbcglb 18271  CLatccla 18457  OPcops 39165  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-undef 8252  df-lub 18305  df-glb 18306  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-hlat 39344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator