Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbconN Structured version   Visualization version   GIF version

Theorem glbconN 36673
Description: De Morgan's law for GLB and LUB. This holds in any complete ortholattice, although we assume HL for convenience. (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
glbcon.b 𝐵 = (Base‘𝐾)
glbcon.u 𝑈 = (lub‘𝐾)
glbcon.g 𝐺 = (glb‘𝐾)
glbcon.o = (oc‘𝐾)
Assertion
Ref Expression
glbconN ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑆
Allowed substitution hints:   𝑈(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem glbconN
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfin5 3889 . . . 4 (𝐵𝑆) = {𝑥𝐵𝑥𝑆}
2 sseqin2 4142 . . . . 5 (𝑆𝐵 ↔ (𝐵𝑆) = 𝑆)
32biimpi 219 . . . 4 (𝑆𝐵 → (𝐵𝑆) = 𝑆)
41, 3syl5reqr 2848 . . 3 (𝑆𝐵𝑆 = {𝑥𝐵𝑥𝑆})
54fveq2d 6649 . 2 (𝑆𝐵 → (𝐺𝑆) = (𝐺‘{𝑥𝐵𝑥𝑆}))
6 glbcon.b . . . 4 𝐵 = (Base‘𝐾)
7 eqid 2798 . . . 4 (le‘𝐾) = (le‘𝐾)
8 glbcon.g . . . 4 𝐺 = (glb‘𝐾)
9 biid 264 . . . 4 ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)))
10 id 22 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ HL)
11 ssrab2 4007 . . . . 5 {𝑥𝐵𝑥𝑆} ⊆ 𝐵
1211a1i 11 . . . 4 (𝐾 ∈ HL → {𝑥𝐵𝑥𝑆} ⊆ 𝐵)
136, 7, 8, 9, 10, 12glbval 17599 . . 3 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) = (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))))
14 hlop 36658 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
15 hlclat 36654 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
166, 8clatglbcl 17716 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑥𝐵𝑥𝑆} ⊆ 𝐵) → (𝐺‘{𝑥𝐵𝑥𝑆}) ∈ 𝐵)
1715, 11, 16sylancl 589 . . . . . 6 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) ∈ 𝐵)
1813, 17eqeltrrd 2891 . . . . 5 (𝐾 ∈ HL → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) ∈ 𝐵)
196fvexi 6659 . . . . . 6 𝐵 ∈ V
2019riotaclbBAD 36251 . . . . 5 (∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) ∈ 𝐵)
2118, 20sylibr 237 . . . 4 (𝐾 ∈ HL → ∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)))
22 glbcon.o . . . . 5 = (oc‘𝐾)
23 breq1 5033 . . . . . . 7 (𝑦 = ( 𝑣) → (𝑦(le‘𝐾)𝑧 ↔ ( 𝑣)(le‘𝐾)𝑧))
2423ralbidv 3162 . . . . . 6 (𝑦 = ( 𝑣) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧))
25 breq2 5034 . . . . . . . 8 (𝑦 = ( 𝑣) → (𝑤(le‘𝐾)𝑦𝑤(le‘𝐾)( 𝑣)))
2625imbi2d 344 . . . . . . 7 (𝑦 = ( 𝑣) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))
2726ralbidv 3162 . . . . . 6 (𝑦 = ( 𝑣) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦) ↔ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))
2824, 27anbi12d 633 . . . . 5 (𝑦 = ( 𝑣) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))))
296, 22, 28riotaocN 36505 . . . 4 ((𝐾 ∈ OP ∧ ∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) = ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))))
3014, 21, 29syl2anc 587 . . 3 (𝐾 ∈ HL → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) = ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))))
3114ad2antrr 725 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝐾 ∈ OP)
326, 22opoccl 36490 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
3331, 32sylancom 591 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
3414ad2antrr 725 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
356, 22opoccl 36490 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
3634, 35sylancom 591 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
376, 22opococ 36491 . . . . . . . . . . . . 13 ((𝐾 ∈ OP ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
3834, 37sylancom 591 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
3938eqcomd 2804 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → 𝑧 = ( ‘( 𝑧)))
40 fveq2 6645 . . . . . . . . . . . 12 (𝑢 = ( 𝑧) → ( 𝑢) = ( ‘( 𝑧)))
4140rspceeqv 3586 . . . . . . . . . . 11 ((( 𝑧) ∈ 𝐵𝑧 = ( ‘( 𝑧))) → ∃𝑢𝐵 𝑧 = ( 𝑢))
4236, 39, 41syl2anc 587 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ∃𝑢𝐵 𝑧 = ( 𝑢))
43 eleq1 2877 . . . . . . . . . . . 12 (𝑧 = ( 𝑢) → (𝑧𝑆 ↔ ( 𝑢) ∈ 𝑆))
44 breq2 5034 . . . . . . . . . . . 12 (𝑧 = ( 𝑢) → (( 𝑣)(le‘𝐾)𝑧 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
4543, 44imbi12d 348 . . . . . . . . . . 11 (𝑧 = ( 𝑢) → ((𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
4645adantl 485 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧 = ( 𝑢)) → ((𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
4733, 42, 46ralxfrd 5274 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
48 simpr 488 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
49 simplr 768 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝑣𝐵)
506, 7, 22oplecon3b 36496 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑢𝐵𝑣𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
5131, 48, 49, 50syl3anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
5251imbi2d 344 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → ((( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
5352ralbidva 3161 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
5447, 53bitr4d 285 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣)))
55 eleq1 2877 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝑆𝑧𝑆))
5655ralrab 3633 . . . . . . . 8 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧))
57 fveq2 6645 . . . . . . . . . 10 (𝑥 = 𝑢 → ( 𝑥) = ( 𝑢))
5857eleq1d 2874 . . . . . . . . 9 (𝑥 = 𝑢 → (( 𝑥) ∈ 𝑆 ↔ ( 𝑢) ∈ 𝑆))
5958ralrab 3633 . . . . . . . 8 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣))
6054, 56, 593bitr4g 317 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ↔ ∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣))
6114ad2antrr 725 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝐾 ∈ OP)
626, 22opoccl 36490 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑡𝐵) → ( 𝑡) ∈ 𝐵)
6361, 62sylancom 591 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → ( 𝑡) ∈ 𝐵)
6414ad2antrr 725 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → 𝐾 ∈ OP)
656, 22opoccl 36490 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑤𝐵) → ( 𝑤) ∈ 𝐵)
6664, 65sylancom 591 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ( 𝑤) ∈ 𝐵)
676, 22opococ 36491 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑤𝐵) → ( ‘( 𝑤)) = 𝑤)
6864, 67sylancom 591 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ( ‘( 𝑤)) = 𝑤)
6968eqcomd 2804 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → 𝑤 = ( ‘( 𝑤)))
70 fveq2 6645 . . . . . . . . . . 11 (𝑡 = ( 𝑤) → ( 𝑡) = ( ‘( 𝑤)))
7170rspceeqv 3586 . . . . . . . . . 10 ((( 𝑤) ∈ 𝐵𝑤 = ( ‘( 𝑤))) → ∃𝑡𝐵 𝑤 = ( 𝑡))
7266, 69, 71syl2anc 587 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ∃𝑡𝐵 𝑤 = ( 𝑡))
73 breq1 5033 . . . . . . . . . . . 12 (𝑤 = ( 𝑡) → (𝑤(le‘𝐾)𝑧 ↔ ( 𝑡)(le‘𝐾)𝑧))
7473ralbidv 3162 . . . . . . . . . . 11 (𝑤 = ( 𝑡) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧))
75 breq1 5033 . . . . . . . . . . 11 (𝑤 = ( 𝑡) → (𝑤(le‘𝐾)( 𝑣) ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
7674, 75imbi12d 348 . . . . . . . . . 10 (𝑤 = ( 𝑡) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7776adantl 485 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤 = ( 𝑡)) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7863, 72, 77ralxfrd 5274 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ ∀𝑡𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7914ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝐾 ∈ OP)
80 simpr 488 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
81 simplr 768 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝑡𝐵)
826, 7, 22oplecon3b 36496 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑢𝐵𝑡𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
8379, 80, 81, 82syl3anc 1368 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
8483imbi2d 344 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → ((( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
8584ralbidva 3161 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
8679, 32sylancom 591 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
8714ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
8887, 35sylancom 591 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
8987, 37sylancom 591 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
9089eqcomd 2804 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → 𝑧 = ( ‘( 𝑧)))
9188, 90, 41syl2anc 587 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ∃𝑢𝐵 𝑧 = ( 𝑢))
92 breq2 5034 . . . . . . . . . . . . . . 15 (𝑧 = ( 𝑢) → (( 𝑡)(le‘𝐾)𝑧 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
9343, 92imbi12d 348 . . . . . . . . . . . . . 14 (𝑧 = ( 𝑢) → ((𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9493adantl 485 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧 = ( 𝑢)) → ((𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9586, 91, 94ralxfrd 5274 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9685, 95bitr4d 285 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧)))
9758ralrab 3633 . . . . . . . . . . 11 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡))
9855ralrab 3633 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧))
9996, 97, 983bitr4g 317 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧))
100 simplr 768 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝑣𝐵)
101 simpr 488 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝑡𝐵)
1026, 7, 22oplecon3b 36496 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑣𝐵𝑡𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
10361, 100, 101, 102syl3anc 1368 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
10499, 103imbi12d 348 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → ((∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
105104ralbidva 3161 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡) ↔ ∀𝑡𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
10678, 105bitr4d 285 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)))
10760, 106anbi12d 633 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑣𝐵) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))) ↔ (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
108107riotabidva 7112 . . . . 5 (𝐾 ∈ HL → (𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
109 ssrab2 4007 . . . . . 6 {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵
110 glbcon.u . . . . . . 7 𝑈 = (lub‘𝐾)
111 biid 264 . . . . . . 7 ((∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)) ↔ (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)))
112 simpl 486 . . . . . . 7 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → 𝐾 ∈ HL)
113 simpr 488 . . . . . . 7 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵)
1146, 7, 110, 111, 112, 113lubval 17586 . . . . . 6 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
115109, 114mpan2 690 . . . . 5 (𝐾 ∈ HL → (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
116108, 115eqtr4d 2836 . . . 4 (𝐾 ∈ HL → (𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))) = (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}))
117116fveq2d 6649 . . 3 (𝐾 ∈ HL → ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
11813, 30, 1173eqtrd 2837 . 2 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
1195, 118sylan9eqr 2855 1 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  ∃!wreu 3108  {crab 3110  cin 3880  wss 3881   class class class wbr 5030  cfv 6324  crio 7092  Basecbs 16475  lecple 16564  occoc 16565  lubclub 17544  glbcglb 17545  CLatccla 17709  OPcops 36468  HLchlt 36646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-undef 7922  df-lub 17576  df-glb 17577  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-hlat 36647
This theorem is referenced by:  glbconxN  36674
  Copyright terms: Public domain W3C validator