Step | Hyp | Ref
| Expression |
1 | | sseqin2 4146 |
. . . . 5
⊢ (𝑆 ⊆ 𝐵 ↔ (𝐵 ∩ 𝑆) = 𝑆) |
2 | 1 | biimpi 215 |
. . . 4
⊢ (𝑆 ⊆ 𝐵 → (𝐵 ∩ 𝑆) = 𝑆) |
3 | | dfin5 3891 |
. . . 4
⊢ (𝐵 ∩ 𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} |
4 | 2, 3 | eqtr3di 2794 |
. . 3
⊢ (𝑆 ⊆ 𝐵 → 𝑆 = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) |
5 | 4 | fveq2d 6760 |
. 2
⊢ (𝑆 ⊆ 𝐵 → (𝐺‘𝑆) = (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆})) |
6 | | glbcon.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
7 | | eqid 2738 |
. . . 4
⊢
(le‘𝐾) =
(le‘𝐾) |
8 | | glbcon.g |
. . . 4
⊢ 𝐺 = (glb‘𝐾) |
9 | | biid 260 |
. . . 4
⊢
((∀𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) |
10 | | id 22 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ HL) |
11 | | ssrab2 4009 |
. . . . 5
⊢ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ⊆ 𝐵 |
12 | 11 | a1i 11 |
. . . 4
⊢ (𝐾 ∈ HL → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ⊆ 𝐵) |
13 | 6, 7, 8, 9, 10, 12 | glbval 18002 |
. . 3
⊢ (𝐾 ∈ HL → (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) = (℩𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)))) |
14 | | hlop 37303 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
15 | | hlclat 37299 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
16 | 6, 8 | clatglbcl 18138 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ⊆ 𝐵) → (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) ∈ 𝐵) |
17 | 15, 11, 16 | sylancl 585 |
. . . . . 6
⊢ (𝐾 ∈ HL → (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) ∈ 𝐵) |
18 | 13, 17 | eqeltrrd 2840 |
. . . . 5
⊢ (𝐾 ∈ HL →
(℩𝑦 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) ∈ 𝐵) |
19 | 6 | fvexi 6770 |
. . . . . 6
⊢ 𝐵 ∈ V |
20 | 19 | riotaclbBAD 36896 |
. . . . 5
⊢
(∃!𝑦 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)) ↔ (℩𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) ∈ 𝐵) |
21 | 18, 20 | sylibr 233 |
. . . 4
⊢ (𝐾 ∈ HL → ∃!𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) |
22 | | glbcon.o |
. . . . 5
⊢ ⊥ =
(oc‘𝐾) |
23 | | breq1 5073 |
. . . . . . 7
⊢ (𝑦 = ( ⊥ ‘𝑣) → (𝑦(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑣)(le‘𝐾)𝑧)) |
24 | 23 | ralbidv 3120 |
. . . . . 6
⊢ (𝑦 = ( ⊥ ‘𝑣) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧)) |
25 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑦 = ( ⊥ ‘𝑣) → (𝑤(le‘𝐾)𝑦 ↔ 𝑤(le‘𝐾)( ⊥ ‘𝑣))) |
26 | 25 | imbi2d 340 |
. . . . . . 7
⊢ (𝑦 = ( ⊥ ‘𝑣) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) |
27 | 26 | ralbidv 3120 |
. . . . . 6
⊢ (𝑦 = ( ⊥ ‘𝑣) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦) ↔ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) |
28 | 24, 27 | anbi12d 630 |
. . . . 5
⊢ (𝑦 = ( ⊥ ‘𝑣) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣))))) |
29 | 6, 22, 28 | riotaocN 37150 |
. . . 4
⊢ ((𝐾 ∈ OP ∧ ∃!𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) → (℩𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) = ( ⊥
‘(℩𝑣
∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))))) |
30 | 14, 21, 29 | syl2anc 583 |
. . 3
⊢ (𝐾 ∈ HL →
(℩𝑦 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) = ( ⊥
‘(℩𝑣
∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))))) |
31 | 14 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝐾 ∈ OP) |
32 | 6, 22 | opoccl 37135 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑢 ∈ 𝐵) → ( ⊥ ‘𝑢) ∈ 𝐵) |
33 | 31, 32 | sylancom 587 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ( ⊥ ‘𝑢) ∈ 𝐵) |
34 | 14 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝐾 ∈ OP) |
35 | 6, 22 | opoccl 37135 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ OP ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘𝑧) ∈ 𝐵) |
36 | 34, 35 | sylancom 587 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘𝑧) ∈ 𝐵) |
37 | 6, 22 | opococ 37136 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ OP ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑧)) = 𝑧) |
38 | 34, 37 | sylancom 587 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑧)) = 𝑧) |
39 | 38 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝑧 = ( ⊥ ‘( ⊥
‘𝑧))) |
40 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑢 = ( ⊥ ‘𝑧) → ( ⊥ ‘𝑢) = ( ⊥ ‘( ⊥
‘𝑧))) |
41 | 40 | rspceeqv 3567 |
. . . . . . . . . . 11
⊢ ((( ⊥
‘𝑧) ∈ 𝐵 ∧ 𝑧 = ( ⊥ ‘( ⊥
‘𝑧))) →
∃𝑢 ∈ 𝐵 𝑧 = ( ⊥ ‘𝑢)) |
42 | 36, 39, 41 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 𝑧 = ( ⊥ ‘𝑢)) |
43 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑧 = ( ⊥ ‘𝑢) → (𝑧 ∈ 𝑆 ↔ ( ⊥ ‘𝑢) ∈ 𝑆)) |
44 | | breq2 5074 |
. . . . . . . . . . . 12
⊢ (𝑧 = ( ⊥ ‘𝑢) → (( ⊥ ‘𝑣)(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢))) |
45 | 43, 44 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑧 = ( ⊥ ‘𝑢) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) |
46 | 45 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 = ( ⊥ ‘𝑢)) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) |
47 | 33, 42, 46 | ralxfrd 5326 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) |
48 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
49 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
50 | 6, 7, 22 | oplecon3b 37141 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ OP ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢))) |
51 | 31, 48, 49, 50 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢))) |
52 | 51 | imbi2d 340 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) |
53 | 52 | ralbidva 3119 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) |
54 | 47, 53 | bitr4d 281 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣))) |
55 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑆 ↔ 𝑧 ∈ 𝑆)) |
56 | 55 | ralrab 3623 |
. . . . . . . 8
⊢
(∀𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧)) |
57 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑢)) |
58 | 57 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (( ⊥ ‘𝑥) ∈ 𝑆 ↔ ( ⊥ ‘𝑢) ∈ 𝑆)) |
59 | 58 | ralrab 3623 |
. . . . . . . 8
⊢
(∀𝑢 ∈
{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣)) |
60 | 54, 56, 59 | 3bitr4g 313 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ↔ ∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣)) |
61 | 14 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → 𝐾 ∈ OP) |
62 | 6, 22 | opoccl 37135 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OP ∧ 𝑡 ∈ 𝐵) → ( ⊥ ‘𝑡) ∈ 𝐵) |
63 | 61, 62 | sylancom 587 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → ( ⊥ ‘𝑡) ∈ 𝐵) |
64 | 14 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → 𝐾 ∈ OP) |
65 | 6, 22 | opoccl 37135 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘𝑤) ∈ 𝐵) |
66 | 64, 65 | sylancom 587 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘𝑤) ∈ 𝐵) |
67 | 6, 22 | opococ 37136 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ OP ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑤)) = 𝑤) |
68 | 64, 67 | sylancom 587 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑤)) = 𝑤) |
69 | 68 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → 𝑤 = ( ⊥ ‘( ⊥
‘𝑤))) |
70 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑡 = ( ⊥ ‘𝑤) → ( ⊥ ‘𝑡) = ( ⊥ ‘( ⊥
‘𝑤))) |
71 | 70 | rspceeqv 3567 |
. . . . . . . . . 10
⊢ ((( ⊥
‘𝑤) ∈ 𝐵 ∧ 𝑤 = ( ⊥ ‘( ⊥
‘𝑤))) →
∃𝑡 ∈ 𝐵 𝑤 = ( ⊥ ‘𝑡)) |
72 | 66, 69, 71 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → ∃𝑡 ∈ 𝐵 𝑤 = ( ⊥ ‘𝑡)) |
73 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑤 = ( ⊥ ‘𝑡) → (𝑤(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) |
74 | 73 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑤 = ( ⊥ ‘𝑡) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) |
75 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑤 = ( ⊥ ‘𝑡) → (𝑤(le‘𝐾)( ⊥ ‘𝑣) ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣))) |
76 | 74, 75 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑤 = ( ⊥ ‘𝑡) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) |
77 | 76 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 = ( ⊥ ‘𝑡)) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) |
78 | 63, 72, 77 | ralxfrd 5326 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ ∀𝑡 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) |
79 | 14 | ad3antrrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝐾 ∈ OP) |
80 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
81 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑡 ∈ 𝐵) |
82 | 6, 7, 22 | oplecon3b 37141 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ OP ∧ 𝑢 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢))) |
83 | 79, 80, 81, 82 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢))) |
84 | 83 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) |
85 | 84 | ralbidva 3119 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) |
86 | 79, 32 | sylancom 587 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ( ⊥ ‘𝑢) ∈ 𝐵) |
87 | 14 | ad3antrrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝐾 ∈ OP) |
88 | 87, 35 | sylancom 587 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘𝑧) ∈ 𝐵) |
89 | 87, 37 | sylancom 587 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑧)) = 𝑧) |
90 | 89 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝑧 = ( ⊥ ‘( ⊥
‘𝑧))) |
91 | 88, 90, 41 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 𝑧 = ( ⊥ ‘𝑢)) |
92 | | breq2 5074 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ( ⊥ ‘𝑢) → (( ⊥ ‘𝑡)(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢))) |
93 | 43, 92 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ( ⊥ ‘𝑢) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) |
94 | 93 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 = ( ⊥ ‘𝑢)) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) |
95 | 86, 91, 94 | ralxfrd 5326 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) |
96 | 85, 95 | bitr4d 281 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡) ↔ ∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧))) |
97 | 58 | ralrab 3623 |
. . . . . . . . . . 11
⊢
(∀𝑢 ∈
{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡)) |
98 | 55 | ralrab 3623 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) |
99 | 96, 97, 98 | 3bitr4g 313 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) |
100 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
101 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ 𝐵) |
102 | 6, 7, 22 | oplecon3b 37141 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑣 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣))) |
103 | 61, 100, 101, 102 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣))) |
104 | 99, 103 | imbi12d 344 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → ((∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) |
105 | 104 | ralbidva 3119 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡) ↔ ∀𝑡 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) |
106 | 78, 105 | bitr4d 281 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡))) |
107 | 60, 106 | anbi12d 630 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣))) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) |
108 | 107 | riotabidva 7232 |
. . . . 5
⊢ (𝐾 ∈ HL →
(℩𝑣 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) = (℩𝑣 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) |
109 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵 |
110 | | glbcon.u |
. . . . . . 7
⊢ 𝑈 = (lub‘𝐾) |
111 | | biid 260 |
. . . . . . 7
⊢
((∀𝑢 ∈
{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡))) |
112 | | simpl 482 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) → 𝐾 ∈ HL) |
113 | | simpr 484 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) → {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) |
114 | 6, 7, 110, 111, 112, 113 | lubval 17989 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) → (𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}) = (℩𝑣 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) |
115 | 109, 114 | mpan2 687 |
. . . . 5
⊢ (𝐾 ∈ HL → (𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}) = (℩𝑣 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) |
116 | 108, 115 | eqtr4d 2781 |
. . . 4
⊢ (𝐾 ∈ HL →
(℩𝑣 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) = (𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆})) |
117 | 116 | fveq2d 6760 |
. . 3
⊢ (𝐾 ∈ HL → ( ⊥
‘(℩𝑣
∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣))))) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) |
118 | 13, 30, 117 | 3eqtrd 2782 |
. 2
⊢ (𝐾 ∈ HL → (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) |
119 | 5, 118 | sylan9eqr 2801 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) |