Step | Hyp | Ref
| Expression |
1 | | sseqin2 4175 |
. . . . 5
⊢ (𝑆 ⊆ 𝐵 ↔ (𝐵 ∩ 𝑆) = 𝑆) |
2 | 1 | biimpi 215 |
. . . 4
⊢ (𝑆 ⊆ 𝐵 → (𝐵 ∩ 𝑆) = 𝑆) |
3 | | dfin5 3918 |
. . . 4
⊢ (𝐵 ∩ 𝑆) = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} |
4 | 2, 3 | eqtr3di 2791 |
. . 3
⊢ (𝑆 ⊆ 𝐵 → 𝑆 = {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) |
5 | 4 | fveq2d 6846 |
. 2
⊢ (𝑆 ⊆ 𝐵 → (𝐺‘𝑆) = (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆})) |
6 | | glbcon.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
7 | | eqid 2736 |
. . . 4
⊢
(le‘𝐾) =
(le‘𝐾) |
8 | | glbcon.g |
. . . 4
⊢ 𝐺 = (glb‘𝐾) |
9 | | biid 260 |
. . . 4
⊢
((∀𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) |
10 | | id 22 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ HL) |
11 | | ssrab2 4037 |
. . . . 5
⊢ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ⊆ 𝐵 |
12 | 11 | a1i 11 |
. . . 4
⊢ (𝐾 ∈ HL → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ⊆ 𝐵) |
13 | 6, 7, 8, 9, 10, 12 | glbval 18258 |
. . 3
⊢ (𝐾 ∈ HL → (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) = (℩𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)))) |
14 | | hlop 37824 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
15 | | hlclat 37820 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
16 | 6, 8 | clatglbcl2 18395 |
. . . . . 6
⊢ ((𝐾 ∈ CLat ∧ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ⊆ 𝐵) → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ∈ dom 𝐺) |
17 | 15, 12, 16 | syl2anc 584 |
. . . . 5
⊢ (𝐾 ∈ HL → {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ∈ dom 𝐺) |
18 | 6, 7, 8, 9, 10, 17 | glbeu 18257 |
. . . 4
⊢ (𝐾 ∈ HL → ∃!𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) |
19 | | glbcon.o |
. . . . 5
⊢ ⊥ =
(oc‘𝐾) |
20 | | breq1 5108 |
. . . . . . 7
⊢ (𝑦 = ( ⊥ ‘𝑣) → (𝑦(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑣)(le‘𝐾)𝑧)) |
21 | 20 | ralbidv 3174 |
. . . . . 6
⊢ (𝑦 = ( ⊥ ‘𝑣) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧)) |
22 | | breq2 5109 |
. . . . . . . 8
⊢ (𝑦 = ( ⊥ ‘𝑣) → (𝑤(le‘𝐾)𝑦 ↔ 𝑤(le‘𝐾)( ⊥ ‘𝑣))) |
23 | 22 | imbi2d 340 |
. . . . . . 7
⊢ (𝑦 = ( ⊥ ‘𝑣) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) |
24 | 23 | ralbidv 3174 |
. . . . . 6
⊢ (𝑦 = ( ⊥ ‘𝑣) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦) ↔ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) |
25 | 21, 24 | anbi12d 631 |
. . . . 5
⊢ (𝑦 = ( ⊥ ‘𝑣) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣))))) |
26 | 6, 19, 25 | riotaocN 37671 |
. . . 4
⊢ ((𝐾 ∈ OP ∧ ∃!𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) → (℩𝑦 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) = ( ⊥
‘(℩𝑣
∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))))) |
27 | 14, 18, 26 | syl2anc 584 |
. . 3
⊢ (𝐾 ∈ HL →
(℩𝑦 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)𝑦))) = ( ⊥
‘(℩𝑣
∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))))) |
28 | 14 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝐾 ∈ OP) |
29 | 6, 19 | opoccl 37656 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑢 ∈ 𝐵) → ( ⊥ ‘𝑢) ∈ 𝐵) |
30 | 28, 29 | sylancom 588 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ( ⊥ ‘𝑢) ∈ 𝐵) |
31 | 14 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝐾 ∈ OP) |
32 | 6, 19 | opoccl 37656 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ OP ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘𝑧) ∈ 𝐵) |
33 | 31, 32 | sylancom 588 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘𝑧) ∈ 𝐵) |
34 | 6, 19 | opococ 37657 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ OP ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑧)) = 𝑧) |
35 | 31, 34 | sylancom 588 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑧)) = 𝑧) |
36 | 35 | eqcomd 2742 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝑧 = ( ⊥ ‘( ⊥
‘𝑧))) |
37 | | fveq2 6842 |
. . . . . . . . . . . 12
⊢ (𝑢 = ( ⊥ ‘𝑧) → ( ⊥ ‘𝑢) = ( ⊥ ‘( ⊥
‘𝑧))) |
38 | 37 | rspceeqv 3595 |
. . . . . . . . . . 11
⊢ ((( ⊥
‘𝑧) ∈ 𝐵 ∧ 𝑧 = ( ⊥ ‘( ⊥
‘𝑧))) →
∃𝑢 ∈ 𝐵 𝑧 = ( ⊥ ‘𝑢)) |
39 | 33, 36, 38 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 𝑧 = ( ⊥ ‘𝑢)) |
40 | | eleq1 2825 |
. . . . . . . . . . . 12
⊢ (𝑧 = ( ⊥ ‘𝑢) → (𝑧 ∈ 𝑆 ↔ ( ⊥ ‘𝑢) ∈ 𝑆)) |
41 | | breq2 5109 |
. . . . . . . . . . . 12
⊢ (𝑧 = ( ⊥ ‘𝑢) → (( ⊥ ‘𝑣)(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢))) |
42 | 40, 41 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑧 = ( ⊥ ‘𝑢) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) |
43 | 42 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑧 = ( ⊥ ‘𝑢)) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) |
44 | 30, 39, 43 | ralxfrd 5363 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) |
45 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
46 | | simplr 767 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
47 | 6, 7, 19 | oplecon3b 37662 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ OP ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢))) |
48 | 28, 45, 46, 47 | syl3anc 1371 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢))) |
49 | 48 | imbi2d 340 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) |
50 | 49 | ralbidva 3172 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)( ⊥ ‘𝑢)))) |
51 | 44, 50 | bitr4d 281 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣))) |
52 | | eleq1 2825 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑆 ↔ 𝑧 ∈ 𝑆)) |
53 | 52 | ralrab 3651 |
. . . . . . . 8
⊢
(∀𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑣)(le‘𝐾)𝑧)) |
54 | | fveq2 6842 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑢)) |
55 | 54 | eleq1d 2822 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (( ⊥ ‘𝑥) ∈ 𝑆 ↔ ( ⊥ ‘𝑢) ∈ 𝑆)) |
56 | 55 | ralrab 3651 |
. . . . . . . 8
⊢
(∀𝑢 ∈
{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑣)) |
57 | 51, 53, 56 | 3bitr4g 313 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ↔ ∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣)) |
58 | 14 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → 𝐾 ∈ OP) |
59 | 6, 19 | opoccl 37656 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OP ∧ 𝑡 ∈ 𝐵) → ( ⊥ ‘𝑡) ∈ 𝐵) |
60 | 58, 59 | sylancom 588 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → ( ⊥ ‘𝑡) ∈ 𝐵) |
61 | 14 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → 𝐾 ∈ OP) |
62 | 6, 19 | opoccl 37656 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘𝑤) ∈ 𝐵) |
63 | 61, 62 | sylancom 588 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘𝑤) ∈ 𝐵) |
64 | 6, 19 | opococ 37657 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ OP ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑤)) = 𝑤) |
65 | 61, 64 | sylancom 588 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑤)) = 𝑤) |
66 | 65 | eqcomd 2742 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → 𝑤 = ( ⊥ ‘( ⊥
‘𝑤))) |
67 | | fveq2 6842 |
. . . . . . . . . . 11
⊢ (𝑡 = ( ⊥ ‘𝑤) → ( ⊥ ‘𝑡) = ( ⊥ ‘( ⊥
‘𝑤))) |
68 | 67 | rspceeqv 3595 |
. . . . . . . . . 10
⊢ ((( ⊥
‘𝑤) ∈ 𝐵 ∧ 𝑤 = ( ⊥ ‘( ⊥
‘𝑤))) →
∃𝑡 ∈ 𝐵 𝑤 = ( ⊥ ‘𝑡)) |
69 | 63, 66, 68 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵) → ∃𝑡 ∈ 𝐵 𝑤 = ( ⊥ ‘𝑡)) |
70 | | breq1 5108 |
. . . . . . . . . . . 12
⊢ (𝑤 = ( ⊥ ‘𝑡) → (𝑤(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) |
71 | 70 | ralbidv 3174 |
. . . . . . . . . . 11
⊢ (𝑤 = ( ⊥ ‘𝑡) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) |
72 | | breq1 5108 |
. . . . . . . . . . 11
⊢ (𝑤 = ( ⊥ ‘𝑡) → (𝑤(le‘𝐾)( ⊥ ‘𝑣) ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣))) |
73 | 71, 72 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑤 = ( ⊥ ‘𝑡) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) |
74 | 73 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 = ( ⊥ ‘𝑡)) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) |
75 | 60, 69, 74 | ralxfrd 5363 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ ∀𝑡 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) |
76 | 14 | ad3antrrr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝐾 ∈ OP) |
77 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑢 ∈ 𝐵) |
78 | | simplr 767 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝑡 ∈ 𝐵) |
79 | 6, 7, 19 | oplecon3b 37662 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ OP ∧ 𝑢 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢))) |
80 | 76, 77, 78, 79 | syl3anc 1371 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢))) |
81 | 80 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) |
82 | 81 | ralbidva 3172 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) |
83 | 76, 29 | sylancom 588 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ( ⊥ ‘𝑢) ∈ 𝐵) |
84 | 14 | ad3antrrr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝐾 ∈ OP) |
85 | 84, 32 | sylancom 588 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘𝑧) ∈ 𝐵) |
86 | 84, 34 | sylancom 588 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑧)) = 𝑧) |
87 | 86 | eqcomd 2742 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → 𝑧 = ( ⊥ ‘( ⊥
‘𝑧))) |
88 | 85, 87, 38 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 𝑧 = ( ⊥ ‘𝑢)) |
89 | | breq2 5109 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ( ⊥ ‘𝑢) → (( ⊥ ‘𝑡)(le‘𝐾)𝑧 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢))) |
90 | 40, 89 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ( ⊥ ‘𝑢) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) |
91 | 90 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) ∧ 𝑧 = ( ⊥ ‘𝑢)) → ((𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧) ↔ (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) |
92 | 83, 88, 91 | ralxfrd 5363 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧) ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑢)))) |
93 | 82, 92 | bitr4d 281 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡) ↔ ∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧))) |
94 | 55 | ralrab 3651 |
. . . . . . . . . . 11
⊢
(∀𝑢 ∈
{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑢 ∈ 𝐵 (( ⊥ ‘𝑢) ∈ 𝑆 → 𝑢(le‘𝐾)𝑡)) |
95 | 52 | ralrab 3651 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ 𝐵 (𝑧 ∈ 𝑆 → ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) |
96 | 93, 94, 95 | 3bitr4g 313 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧)) |
97 | | simplr 767 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → 𝑣 ∈ 𝐵) |
98 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ 𝐵) |
99 | 6, 7, 19 | oplecon3b 37662 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑣 ∈ 𝐵 ∧ 𝑡 ∈ 𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣))) |
100 | 58, 97, 98, 99 | syl3anc 1371 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣))) |
101 | 96, 100 | imbi12d 344 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) ∧ 𝑡 ∈ 𝐵) → ((∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡) ↔ (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) |
102 | 101 | ralbidva 3172 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡) ↔ ∀𝑡 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑡)(le‘𝐾)𝑧 → ( ⊥ ‘𝑡)(le‘𝐾)( ⊥ ‘𝑣)))) |
103 | 75, 102 | bitr4d 281 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → (∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)) ↔ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡))) |
104 | 57, 103 | anbi12d 631 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑣 ∈ 𝐵) → ((∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣))) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) |
105 | 104 | riotabidva 7333 |
. . . . 5
⊢ (𝐾 ∈ HL →
(℩𝑣 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) = (℩𝑣 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) |
106 | | ssrab2 4037 |
. . . . . 6
⊢ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵 |
107 | | glbcon.u |
. . . . . . 7
⊢ 𝑈 = (lub‘𝐾) |
108 | | biid 260 |
. . . . . . 7
⊢
((∀𝑢 ∈
{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡))) |
109 | | simpl 483 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) → 𝐾 ∈ HL) |
110 | | simpr 485 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) → {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) |
111 | 6, 7, 107, 108, 109, 110 | lubval 18245 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆} ⊆ 𝐵) → (𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}) = (℩𝑣 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) |
112 | 106, 111 | mpan2 689 |
. . . . 5
⊢ (𝐾 ∈ HL → (𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}) = (℩𝑣 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡 ∈ 𝐵 (∀𝑢 ∈ {𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 → 𝑣(le‘𝐾)𝑡)))) |
113 | 105, 112 | eqtr4d 2779 |
. . . 4
⊢ (𝐾 ∈ HL →
(℩𝑣 ∈
𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣)))) = (𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆})) |
114 | 113 | fveq2d 6846 |
. . 3
⊢ (𝐾 ∈ HL → ( ⊥
‘(℩𝑣
∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆} ( ⊥ ‘𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}𝑤(le‘𝐾)𝑧 → 𝑤(le‘𝐾)( ⊥ ‘𝑣))))) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) |
115 | 13, 27, 114 | 3eqtrd 2780 |
. 2
⊢ (𝐾 ∈ HL → (𝐺‘{𝑥 ∈ 𝐵 ∣ 𝑥 ∈ 𝑆}) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) |
116 | 5, 115 | sylan9eqr 2798 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) = ( ⊥ ‘(𝑈‘{𝑥 ∈ 𝐵 ∣ ( ⊥ ‘𝑥) ∈ 𝑆}))) |