Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbconN Structured version   Visualization version   GIF version

Theorem glbconN 39486
Description: De Morgan's law for GLB and LUB. This holds in any complete ortholattice, although we assume HL for convenience. (Contributed by NM, 17-Jan-2012.) New df-riota 7303. (Revised by SN, 3-Jan-2025.) (New usage is discouraged.)
Hypotheses
Ref Expression
glbcon.b 𝐵 = (Base‘𝐾)
glbcon.u 𝑈 = (lub‘𝐾)
glbcon.g 𝐺 = (glb‘𝐾)
glbcon.o = (oc‘𝐾)
Assertion
Ref Expression
glbconN ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑆
Allowed substitution hints:   𝑈(𝑥)   𝐺(𝑥)   𝐾(𝑥)

Proof of Theorem glbconN
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqin2 4170 . . . . 5 (𝑆𝐵 ↔ (𝐵𝑆) = 𝑆)
21biimpi 216 . . . 4 (𝑆𝐵 → (𝐵𝑆) = 𝑆)
3 dfin5 3905 . . . 4 (𝐵𝑆) = {𝑥𝐵𝑥𝑆}
42, 3eqtr3di 2781 . . 3 (𝑆𝐵𝑆 = {𝑥𝐵𝑥𝑆})
54fveq2d 6826 . 2 (𝑆𝐵 → (𝐺𝑆) = (𝐺‘{𝑥𝐵𝑥𝑆}))
6 glbcon.b . . . 4 𝐵 = (Base‘𝐾)
7 eqid 2731 . . . 4 (le‘𝐾) = (le‘𝐾)
8 glbcon.g . . . 4 𝐺 = (glb‘𝐾)
9 biid 261 . . . 4 ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)))
10 id 22 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ HL)
11 ssrab2 4027 . . . . 5 {𝑥𝐵𝑥𝑆} ⊆ 𝐵
1211a1i 11 . . . 4 (𝐾 ∈ HL → {𝑥𝐵𝑥𝑆} ⊆ 𝐵)
136, 7, 8, 9, 10, 12glbval 18273 . . 3 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) = (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))))
14 hlop 39471 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
15 hlclat 39467 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
166, 8clatglbcl2 18412 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑥𝐵𝑥𝑆} ⊆ 𝐵) → {𝑥𝐵𝑥𝑆} ∈ dom 𝐺)
1715, 12, 16syl2anc 584 . . . . 5 (𝐾 ∈ HL → {𝑥𝐵𝑥𝑆} ∈ dom 𝐺)
186, 7, 8, 9, 10, 17glbeu 18272 . . . 4 (𝐾 ∈ HL → ∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)))
19 glbcon.o . . . . 5 = (oc‘𝐾)
20 breq1 5092 . . . . . . 7 (𝑦 = ( 𝑣) → (𝑦(le‘𝐾)𝑧 ↔ ( 𝑣)(le‘𝐾)𝑧))
2120ralbidv 3155 . . . . . 6 (𝑦 = ( 𝑣) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧))
22 breq2 5093 . . . . . . . 8 (𝑦 = ( 𝑣) → (𝑤(le‘𝐾)𝑦𝑤(le‘𝐾)( 𝑣)))
2322imbi2d 340 . . . . . . 7 (𝑦 = ( 𝑣) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))
2423ralbidv 3155 . . . . . 6 (𝑦 = ( 𝑣) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦) ↔ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))
2521, 24anbi12d 632 . . . . 5 (𝑦 = ( 𝑣) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))))
266, 19, 25riotaocN 39318 . . . 4 ((𝐾 ∈ OP ∧ ∃!𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) = ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))))
2714, 18, 26syl2anc 584 . . 3 (𝐾 ∈ HL → (𝑦𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑦(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)𝑦))) = ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))))
2814ad2antrr 726 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝐾 ∈ OP)
296, 19opoccl 39303 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
3028, 29sylancom 588 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
3114ad2antrr 726 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
326, 19opoccl 39303 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
3331, 32sylancom 588 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
346, 19opococ 39304 . . . . . . . . . . . . 13 ((𝐾 ∈ OP ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
3531, 34sylancom 588 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
3635eqcomd 2737 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → 𝑧 = ( ‘( 𝑧)))
37 fveq2 6822 . . . . . . . . . . . 12 (𝑢 = ( 𝑧) → ( 𝑢) = ( ‘( 𝑧)))
3837rspceeqv 3595 . . . . . . . . . . 11 ((( 𝑧) ∈ 𝐵𝑧 = ( ‘( 𝑧))) → ∃𝑢𝐵 𝑧 = ( 𝑢))
3933, 36, 38syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧𝐵) → ∃𝑢𝐵 𝑧 = ( 𝑢))
40 eleq1 2819 . . . . . . . . . . . 12 (𝑧 = ( 𝑢) → (𝑧𝑆 ↔ ( 𝑢) ∈ 𝑆))
41 breq2 5093 . . . . . . . . . . . 12 (𝑧 = ( 𝑢) → (( 𝑣)(le‘𝐾)𝑧 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
4240, 41imbi12d 344 . . . . . . . . . . 11 (𝑧 = ( 𝑢) → ((𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
4342adantl 481 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑧 = ( 𝑢)) → ((𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
4430, 39, 43ralxfrd 5344 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
45 simpr 484 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
46 simplr 768 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → 𝑣𝐵)
476, 7, 19oplecon3b 39309 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑢𝐵𝑣𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
4828, 45, 46, 47syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → (𝑢(le‘𝐾)𝑣 ↔ ( 𝑣)(le‘𝐾)( 𝑢)))
4948imbi2d 340 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑢𝐵) → ((( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
5049ralbidva 3153 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑣)(le‘𝐾)( 𝑢))))
5144, 50bitr4d 282 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣)))
52 eleq1 2819 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝑆𝑧𝑆))
5352ralrab 3648 . . . . . . . 8 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑣)(le‘𝐾)𝑧))
54 fveq2 6822 . . . . . . . . . 10 (𝑥 = 𝑢 → ( 𝑥) = ( 𝑢))
5554eleq1d 2816 . . . . . . . . 9 (𝑥 = 𝑢 → (( 𝑥) ∈ 𝑆 ↔ ( 𝑢) ∈ 𝑆))
5655ralrab 3648 . . . . . . . 8 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑣))
5751, 53, 563bitr4g 314 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ↔ ∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣))
5814ad2antrr 726 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝐾 ∈ OP)
596, 19opoccl 39303 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑡𝐵) → ( 𝑡) ∈ 𝐵)
6058, 59sylancom 588 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → ( 𝑡) ∈ 𝐵)
6114ad2antrr 726 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → 𝐾 ∈ OP)
626, 19opoccl 39303 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑤𝐵) → ( 𝑤) ∈ 𝐵)
6361, 62sylancom 588 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ( 𝑤) ∈ 𝐵)
646, 19opococ 39304 . . . . . . . . . . . 12 ((𝐾 ∈ OP ∧ 𝑤𝐵) → ( ‘( 𝑤)) = 𝑤)
6561, 64sylancom 588 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ( ‘( 𝑤)) = 𝑤)
6665eqcomd 2737 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → 𝑤 = ( ‘( 𝑤)))
67 fveq2 6822 . . . . . . . . . . 11 (𝑡 = ( 𝑤) → ( 𝑡) = ( ‘( 𝑤)))
6867rspceeqv 3595 . . . . . . . . . 10 ((( 𝑤) ∈ 𝐵𝑤 = ( ‘( 𝑤))) → ∃𝑡𝐵 𝑤 = ( 𝑡))
6963, 66, 68syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤𝐵) → ∃𝑡𝐵 𝑤 = ( 𝑡))
70 breq1 5092 . . . . . . . . . . . 12 (𝑤 = ( 𝑡) → (𝑤(le‘𝐾)𝑧 ↔ ( 𝑡)(le‘𝐾)𝑧))
7170ralbidv 3155 . . . . . . . . . . 11 (𝑤 = ( 𝑡) → (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧))
72 breq1 5092 . . . . . . . . . . 11 (𝑤 = ( 𝑡) → (𝑤(le‘𝐾)( 𝑣) ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
7371, 72imbi12d 344 . . . . . . . . . 10 (𝑤 = ( 𝑡) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7473adantl 481 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑤 = ( 𝑡)) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7560, 69, 74ralxfrd 5344 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ ∀𝑡𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
7614ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝐾 ∈ OP)
77 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
78 simplr 768 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → 𝑡𝐵)
796, 7, 19oplecon3b 39309 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑢𝐵𝑡𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
8076, 77, 78, 79syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → (𝑢(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
8180imbi2d 340 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → ((( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
8281ralbidva 3153 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
8376, 29sylancom 588 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑢𝐵) → ( 𝑢) ∈ 𝐵)
8414ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ OP)
8584, 32sylancom 588 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ( 𝑧) ∈ 𝐵)
8684, 34sylancom 588 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ( ‘( 𝑧)) = 𝑧)
8786eqcomd 2737 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → 𝑧 = ( ‘( 𝑧)))
8885, 87, 38syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧𝐵) → ∃𝑢𝐵 𝑧 = ( 𝑢))
89 breq2 5093 . . . . . . . . . . . . . . 15 (𝑧 = ( 𝑢) → (( 𝑡)(le‘𝐾)𝑧 ↔ ( 𝑡)(le‘𝐾)( 𝑢)))
9040, 89imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = ( 𝑢) → ((𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9190adantl 481 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) ∧ 𝑧 = ( 𝑢)) → ((𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9283, 88, 91ralxfrd 5344 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧) ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆 → ( 𝑡)(le‘𝐾)( 𝑢))))
9382, 92bitr4d 282 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡) ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧)))
9455ralrab 3648 . . . . . . . . . . 11 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑢𝐵 (( 𝑢) ∈ 𝑆𝑢(le‘𝐾)𝑡))
9552ralrab 3648 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 ↔ ∀𝑧𝐵 (𝑧𝑆 → ( 𝑡)(le‘𝐾)𝑧))
9693, 94, 953bitr4g 314 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡 ↔ ∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧))
97 simplr 768 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝑣𝐵)
98 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → 𝑡𝐵)
996, 7, 19oplecon3b 39309 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑣𝐵𝑡𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
10058, 97, 98, 99syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → (𝑣(le‘𝐾)𝑡 ↔ ( 𝑡)(le‘𝐾)( 𝑣)))
10196, 100imbi12d 344 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑣𝐵) ∧ 𝑡𝐵) → ((∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡) ↔ (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
102101ralbidva 3153 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡) ↔ ∀𝑡𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑡)(le‘𝐾)𝑧 → ( 𝑡)(le‘𝐾)( 𝑣))))
10375, 102bitr4d 282 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑣𝐵) → (∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)) ↔ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)))
10457, 103anbi12d 632 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑣𝐵) → ((∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))) ↔ (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
105104riotabidva 7322 . . . . 5 (𝐾 ∈ HL → (𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
106 ssrab2 4027 . . . . . 6 {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵
107 glbcon.u . . . . . . 7 𝑈 = (lub‘𝐾)
108 biid 261 . . . . . . 7 ((∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)) ↔ (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡)))
109 simpl 482 . . . . . . 7 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → 𝐾 ∈ HL)
110 simpr 484 . . . . . . 7 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵)
1116, 7, 107, 108, 109, 110lubval 18260 . . . . . 6 ((𝐾 ∈ HL ∧ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆} ⊆ 𝐵) → (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
112106, 111mpan2 691 . . . . 5 (𝐾 ∈ HL → (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}) = (𝑣𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑣 ∧ ∀𝑡𝐵 (∀𝑢 ∈ {𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}𝑢(le‘𝐾)𝑡𝑣(le‘𝐾)𝑡))))
113105, 112eqtr4d 2769 . . . 4 (𝐾 ∈ HL → (𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣)))) = (𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆}))
114113fveq2d 6826 . . 3 (𝐾 ∈ HL → ( ‘(𝑣𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆} ( 𝑣)(le‘𝐾)𝑧 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑥𝐵𝑥𝑆}𝑤(le‘𝐾)𝑧𝑤(le‘𝐾)( 𝑣))))) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
11513, 27, 1143eqtrd 2770 . 2 (𝐾 ∈ HL → (𝐺‘{𝑥𝐵𝑥𝑆}) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
1165, 115sylan9eqr 2788 1 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝐺𝑆) = ( ‘(𝑈‘{𝑥𝐵 ∣ ( 𝑥) ∈ 𝑆})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  {crab 3395  cin 3896  wss 3897   class class class wbr 5089  dom cdm 5614  cfv 6481  crio 7302  Basecbs 17120  lecple 17168  occoc 17169  lubclub 18215  glbcglb 18216  CLatccla 18404  OPcops 39281  HLchlt 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-lub 18250  df-glb 18251  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-hlat 39460
This theorem is referenced by:  glbconxN  39487
  Copyright terms: Public domain W3C validator