Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcnveq3 Structured version   Visualization version   GIF version

Theorem relcnveq3 35580
Description: Two ways of saying a relation is symmetric. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
relcnveq3 (Rel 𝑅 → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem relcnveq3
StepHypRef Expression
1 eqss 3984 . 2 (𝑅 = 𝑅 ↔ (𝑅𝑅𝑅𝑅))
2 cnvsym 5976 . . . . . . 7 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
32biimpi 218 . . . . . 6 (𝑅𝑅 → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
43a1d 25 . . . . 5 (𝑅𝑅 → (Rel 𝑅 → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
54adantl 484 . . . 4 ((𝑅𝑅𝑅𝑅) → (Rel 𝑅 → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
65com12 32 . . 3 (Rel 𝑅 → ((𝑅𝑅𝑅𝑅) → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
7 dfrel2 6048 . . . . 5 (Rel 𝑅𝑅 = 𝑅)
8 cnvss 5745 . . . . . . . 8 (𝑅𝑅𝑅𝑅)
9 sseq1 3994 . . . . . . . 8 (𝑅 = 𝑅 → (𝑅𝑅𝑅𝑅))
108, 9syl5ibcom 247 . . . . . . 7 (𝑅𝑅 → (𝑅 = 𝑅𝑅𝑅))
112, 10sylbir 237 . . . . . 6 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → (𝑅 = 𝑅𝑅𝑅))
1211com12 32 . . . . 5 (𝑅 = 𝑅 → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑅𝑅))
137, 12sylbi 219 . . . 4 (Rel 𝑅 → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑅𝑅))
142biimpri 230 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑅𝑅)
1513, 14jca2 516 . . 3 (Rel 𝑅 → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → (𝑅𝑅𝑅𝑅)))
166, 15impbid 214 . 2 (Rel 𝑅 → ((𝑅𝑅𝑅𝑅) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
171, 16syl5bb 285 1 (Rel 𝑅 → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wss 3938   class class class wbr 5068  ccnv 5556  Rel wrel 5562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-cnv 5565
This theorem is referenced by:  relcnveq  35581
  Copyright terms: Public domain W3C validator