| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcnveq3 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a relation is symmetric. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| relcnveq3 | ⊢ (Rel 𝑅 → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3965 | . 2 ⊢ (𝑅 = ◡𝑅 ↔ (𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅)) | |
| 2 | cnvsym 6088 | . . . . . . 7 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
| 3 | 2 | biimpi 216 | . . . . . 6 ⊢ (◡𝑅 ⊆ 𝑅 → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
| 4 | 3 | a1d 25 | . . . . 5 ⊢ (◡𝑅 ⊆ 𝑅 → (Rel 𝑅 → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅) → (Rel 𝑅 → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
| 6 | 5 | com12 32 | . . 3 ⊢ (Rel 𝑅 → ((𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅) → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
| 7 | dfrel2 6165 | . . . . 5 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
| 8 | cnvss 5839 | . . . . . . . 8 ⊢ (◡𝑅 ⊆ 𝑅 → ◡◡𝑅 ⊆ ◡𝑅) | |
| 9 | sseq1 3975 | . . . . . . . 8 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ⊆ ◡𝑅 ↔ 𝑅 ⊆ ◡𝑅)) | |
| 10 | 8, 9 | syl5ibcom 245 | . . . . . . 7 ⊢ (◡𝑅 ⊆ 𝑅 → (◡◡𝑅 = 𝑅 → 𝑅 ⊆ ◡𝑅)) |
| 11 | 2, 10 | sylbir 235 | . . . . . 6 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (◡◡𝑅 = 𝑅 → 𝑅 ⊆ ◡𝑅)) |
| 12 | 11 | com12 32 | . . . . 5 ⊢ (◡◡𝑅 = 𝑅 → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → 𝑅 ⊆ ◡𝑅)) |
| 13 | 7, 12 | sylbi 217 | . . . 4 ⊢ (Rel 𝑅 → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → 𝑅 ⊆ ◡𝑅)) |
| 14 | 2 | biimpri 228 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → ◡𝑅 ⊆ 𝑅) |
| 15 | 13, 14 | jca2 513 | . . 3 ⊢ (Rel 𝑅 → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅))) |
| 16 | 6, 15 | impbid 212 | . 2 ⊢ (Rel 𝑅 → ((𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
| 17 | 1, 16 | bitrid 283 | 1 ⊢ (Rel 𝑅 → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ⊆ wss 3917 class class class wbr 5110 ◡ccnv 5640 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 |
| This theorem is referenced by: relcnveq 38317 |
| Copyright terms: Public domain | W3C validator |