MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfn2 Structured version   Visualization version   GIF version

Theorem tposfn2 8247
Description: The domain of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfn2 (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))

Proof of Theorem tposfn2
StepHypRef Expression
1 tposfun 8241 . . . 4 (Fun 𝐹 → Fun tpos 𝐹)
21a1i 11 . . 3 (Rel 𝐴 → (Fun 𝐹 → Fun tpos 𝐹))
3 dmtpos 8237 . . . . . 6 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
43a1i 11 . . . . 5 (dom 𝐹 = 𝐴 → (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹))
5 releq 5755 . . . . 5 (dom 𝐹 = 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴))
6 cnveq 5853 . . . . . 6 (dom 𝐹 = 𝐴dom 𝐹 = 𝐴)
76eqeq2d 2746 . . . . 5 (dom 𝐹 = 𝐴 → (dom tpos 𝐹 = dom 𝐹 ↔ dom tpos 𝐹 = 𝐴))
84, 5, 73imtr3d 293 . . . 4 (dom 𝐹 = 𝐴 → (Rel 𝐴 → dom tpos 𝐹 = 𝐴))
98com12 32 . . 3 (Rel 𝐴 → (dom 𝐹 = 𝐴 → dom tpos 𝐹 = 𝐴))
102, 9anim12d 609 . 2 (Rel 𝐴 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (Fun tpos 𝐹 ∧ dom tpos 𝐹 = 𝐴)))
11 df-fn 6534 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
12 df-fn 6534 . 2 (tpos 𝐹 Fn 𝐴 ↔ (Fun tpos 𝐹 ∧ dom tpos 𝐹 = 𝐴))
1310, 11, 123imtr4g 296 1 (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  ccnv 5653  dom cdm 5654  Rel wrel 5659  Fun wfun 6525   Fn wfn 6526  tpos ctpos 8224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-tpos 8225
This theorem is referenced by:  tposfo2  8248  tpos0  8255  tposideq  48863
  Copyright terms: Public domain W3C validator