| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposfn2 | Structured version Visualization version GIF version | ||
| Description: The domain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposfn2 | ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposfun 8198 | . . . 4 ⊢ (Fun 𝐹 → Fun tpos 𝐹) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (Rel 𝐴 → (Fun 𝐹 → Fun tpos 𝐹)) |
| 3 | dmtpos 8194 | . . . . . 6 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹)) |
| 5 | releq 5731 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴)) | |
| 6 | cnveq 5827 | . . . . . 6 ⊢ (dom 𝐹 = 𝐴 → ◡dom 𝐹 = ◡𝐴) | |
| 7 | 6 | eqeq2d 2740 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (dom tpos 𝐹 = ◡dom 𝐹 ↔ dom tpos 𝐹 = ◡𝐴)) |
| 8 | 4, 5, 7 | 3imtr3d 293 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (Rel 𝐴 → dom tpos 𝐹 = ◡𝐴)) |
| 9 | 8 | com12 32 | . . 3 ⊢ (Rel 𝐴 → (dom 𝐹 = 𝐴 → dom tpos 𝐹 = ◡𝐴)) |
| 10 | 2, 9 | anim12d 609 | . 2 ⊢ (Rel 𝐴 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (Fun tpos 𝐹 ∧ dom tpos 𝐹 = ◡𝐴))) |
| 11 | df-fn 6502 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 12 | df-fn 6502 | . 2 ⊢ (tpos 𝐹 Fn ◡𝐴 ↔ (Fun tpos 𝐹 ∧ dom tpos 𝐹 = ◡𝐴)) | |
| 13 | 10, 11, 12 | 3imtr4g 296 | 1 ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5630 dom cdm 5631 Rel wrel 5636 Fun wfun 6493 Fn wfn 6494 tpos ctpos 8181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-tpos 8182 |
| This theorem is referenced by: tposfo2 8205 tpos0 8212 tposideq 48849 |
| Copyright terms: Public domain | W3C validator |