| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > symreleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| symreleq | ⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5820 | . . . 4 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
| 2 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
| 3 | 1, 2 | sseq12d 3971 | . . 3 ⊢ (𝑅 = 𝑆 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑆 ⊆ 𝑆)) |
| 4 | releq 5724 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
| 5 | 3, 4 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅) ↔ (◡𝑆 ⊆ 𝑆 ∧ Rel 𝑆))) |
| 6 | dfsymrel2 38545 | . 2 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 7 | dfsymrel2 38545 | . 2 ⊢ ( SymRel 𝑆 ↔ (◡𝑆 ⊆ 𝑆 ∧ Rel 𝑆)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3905 ◡ccnv 5622 Rel wrel 5628 SymRel wsymrel 38186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-symrel 38540 |
| This theorem is referenced by: eqvreleq 38598 |
| Copyright terms: Public domain | W3C validator |