Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwrelmapffslem Structured version   Visualization version   GIF version

Theorem fpwrelmapffslem 32746
Description: Lemma for fpwrelmapffs 32748. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fpwrelmapffslem.1 𝐴 ∈ V
fpwrelmapffslem.2 𝐵 ∈ V
fpwrelmapffslem.3 (𝜑𝐹:𝐴⟶𝒫 𝐵)
fpwrelmapffslem.4 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
Assertion
Ref Expression
fpwrelmapffslem (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem fpwrelmapffslem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwrelmapffslem.4 . . 3 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
2 relopabv 5845 . . . 4 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
3 releq 5800 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → (Rel 𝑅 ↔ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}))
42, 3mpbiri 258 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → Rel 𝑅)
5 relfi 32624 . . 3 (Rel 𝑅 → (𝑅 ∈ Fin ↔ (dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin)))
61, 4, 53syl 18 . 2 (𝜑 → (𝑅 ∈ Fin ↔ (dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin)))
7 rexcom4 3294 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)))
8 ancom 460 . . . . . . . . . . . . . . . 16 ((𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ (𝑤𝑧𝑧 = (𝐹𝑥)))
98exbii 1846 . . . . . . . . . . . . . . 15 (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ ∃𝑧(𝑤𝑧𝑧 = (𝐹𝑥)))
10 fvex 6933 . . . . . . . . . . . . . . . 16 (𝐹𝑥) ∈ V
11 eleq2 2833 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑥) → (𝑤𝑧𝑤 ∈ (𝐹𝑥)))
1210, 11ceqsexv 3542 . . . . . . . . . . . . . . 15 (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ 𝑤 ∈ (𝐹𝑥))
139, 12bitr3i 277 . . . . . . . . . . . . . 14 (∃𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ 𝑤 ∈ (𝐹𝑥))
1413rexbii 3100 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑥𝐴 𝑤 ∈ (𝐹𝑥))
15 r19.42v 3197 . . . . . . . . . . . . . 14 (∃𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
1615exbii 1846 . . . . . . . . . . . . 13 (∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
177, 14, 163bitr3ri 302 . . . . . . . . . . . 12 (∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)) ↔ ∃𝑥𝐴 𝑤 ∈ (𝐹𝑥))
18 df-rex 3077 . . . . . . . . . . . 12 (∃𝑥𝐴 𝑤 ∈ (𝐹𝑥) ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)))
1917, 18bitr2i 276 . . . . . . . . . . 11 (∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
2019a1i 11 . . . . . . . . . 10 (𝜑 → (∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥))))
21 vex 3492 . . . . . . . . . . 11 𝑤 ∈ V
22 eleq1w 2827 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦 ∈ (𝐹𝑥) ↔ 𝑤 ∈ (𝐹𝑥)))
2322anbi2d 629 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴𝑤 ∈ (𝐹𝑥))))
2423exbidv 1920 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥))))
2521, 24elab 3694 . . . . . . . . . 10 (𝑤 ∈ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)))
26 eluniab 4945 . . . . . . . . . 10 (𝑤 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
2720, 25, 263bitr4g 314 . . . . . . . . 9 (𝜑 → (𝑤 ∈ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ 𝑤 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)}))
2827eqrdv 2738 . . . . . . . 8 (𝜑 → {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
2928eleq1d 2829 . . . . . . 7 (𝜑 → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
3029adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
31 fpwrelmapffslem.3 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶𝒫 𝐵)
32 ffn 6747 . . . . . . . . . . 11 (𝐹:𝐴⟶𝒫 𝐵𝐹 Fn 𝐴)
33 fnrnfv 6981 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
3431, 32, 333syl 18 . . . . . . . . . 10 (𝜑 → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
3534adantr 480 . . . . . . . . 9 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
36 0ex 5325 . . . . . . . . . . 11 ∅ ∈ V
3736a1i 11 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ∅ ∈ V)
38 fpwrelmapffslem.1 . . . . . . . . . . . 12 𝐴 ∈ V
39 fex 7263 . . . . . . . . . . . 12 ((𝐹:𝐴⟶𝒫 𝐵𝐴 ∈ V) → 𝐹 ∈ V)
4031, 38, 39sylancl 585 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → 𝐹 ∈ V)
4231ffund 6751 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
4342adantr 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → Fun 𝐹)
44 opabdm 32633 . . . . . . . . . . . . . 14 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → dom 𝑅 = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
451, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝑅 = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
4638, 39mpan2 690 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴⟶𝒫 𝐵𝐹 ∈ V)
47 suppimacnv 8215 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ V ∧ ∅ ∈ V) → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
4836, 47mpan2 690 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ V → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
4931, 46, 483syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
5031feqmptd 6990 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5150cnveqd 5900 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5251imaeq1d 6088 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ (V ∖ {∅})) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})))
5349, 52eqtrd 2780 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})))
54 eqid 2740 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
5554mptpreima 6269 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})}
5653, 55eqtrdi 2796 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})})
57 suppvalfn 8209 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ ∅ ∈ V) → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
5838, 36, 57mp3an23 1453 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐴 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
5931, 32, 583syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
60 n0 4376 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹𝑥))
6160rabbii 3449 . . . . . . . . . . . . . . . 16 {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)}
6261a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
6359, 56, 623eqtr3d 2788 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
64 df-rab 3444 . . . . . . . . . . . . . . . 16 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
65 19.42v 1953 . . . . . . . . . . . . . . . . 17 (∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥)))
6665abbii 2812 . . . . . . . . . . . . . . . 16 {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
6764, 66eqtr4i 2771 . . . . . . . . . . . . . . 15 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))}
6867a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
6956, 63, 683eqtrd 2784 . . . . . . . . . . . . 13 (𝜑 → (𝐹 supp ∅) = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
7045, 69eqtr4d 2783 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = (𝐹 supp ∅))
7170eleq1d 2829 . . . . . . . . . . 11 (𝜑 → (dom 𝑅 ∈ Fin ↔ (𝐹 supp ∅) ∈ Fin))
7271biimpa 476 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (𝐹 supp ∅) ∈ Fin)
7337, 41, 43, 72ffsrn 32743 . . . . . . . . 9 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ran 𝐹 ∈ Fin)
7435, 73eqeltrrd 2845 . . . . . . . 8 ((𝜑 ∧ dom 𝑅 ∈ Fin) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin)
75 unifi 9412 . . . . . . . . 9 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin)
7675ex 412 . . . . . . . 8 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
7774, 76syl 17 . . . . . . 7 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
78 unifi3 32726 . . . . . . 7 ( {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin)
7977, 78impbid1 225 . . . . . 6 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
8030, 79bitr4d 282 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin))
81 opabrn 32634 . . . . . . . 8 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
821, 81syl 17 . . . . . . 7 (𝜑 → ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
8382eleq1d 2829 . . . . . 6 (𝜑 → (ran 𝑅 ∈ Fin ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin))
8483adantr 480 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝑅 ∈ Fin ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin))
8535sseq1d 4040 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝐹 ⊆ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin))
8680, 84, 853bitr4d 311 . . . 4 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝑅 ∈ Fin ↔ ran 𝐹 ⊆ Fin))
8786pm5.32da 578 . . 3 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin) ↔ (dom 𝑅 ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
8871anbi1d 630 . . 3 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ ((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
8987, 88bitrd 279 . 2 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin) ↔ ((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
90 ancom 460 . . 3 (((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin))
9190a1i 11 . 2 (𝜑 → (((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
926, 89, 913bitrd 305 1 (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931  {copab 5228  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Rel wrel 5705  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-fin 9007  df-card 10008  df-acn 10011  df-ac 10185
This theorem is referenced by:  fpwrelmapffs  32748
  Copyright terms: Public domain W3C validator