Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwrelmapffslem Structured version   Visualization version   GIF version

Theorem fpwrelmapffslem 32662
Description: Lemma for fpwrelmapffs 32664. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fpwrelmapffslem.1 𝐴 ∈ V
fpwrelmapffslem.2 𝐵 ∈ V
fpwrelmapffslem.3 (𝜑𝐹:𝐴⟶𝒫 𝐵)
fpwrelmapffslem.4 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
Assertion
Ref Expression
fpwrelmapffslem (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem fpwrelmapffslem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwrelmapffslem.4 . . 3 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
2 relopabv 5787 . . . 4 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
3 releq 5742 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → (Rel 𝑅 ↔ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}))
42, 3mpbiri 258 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → Rel 𝑅)
5 relfi 32538 . . 3 (Rel 𝑅 → (𝑅 ∈ Fin ↔ (dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin)))
61, 4, 53syl 18 . 2 (𝜑 → (𝑅 ∈ Fin ↔ (dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin)))
7 rexcom4 3265 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)))
8 ancom 460 . . . . . . . . . . . . . . . 16 ((𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ (𝑤𝑧𝑧 = (𝐹𝑥)))
98exbii 1848 . . . . . . . . . . . . . . 15 (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ ∃𝑧(𝑤𝑧𝑧 = (𝐹𝑥)))
10 fvex 6874 . . . . . . . . . . . . . . . 16 (𝐹𝑥) ∈ V
11 eleq2 2818 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑥) → (𝑤𝑧𝑤 ∈ (𝐹𝑥)))
1210, 11ceqsexv 3501 . . . . . . . . . . . . . . 15 (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ 𝑤 ∈ (𝐹𝑥))
139, 12bitr3i 277 . . . . . . . . . . . . . 14 (∃𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ 𝑤 ∈ (𝐹𝑥))
1413rexbii 3077 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑥𝐴 𝑤 ∈ (𝐹𝑥))
15 r19.42v 3170 . . . . . . . . . . . . . 14 (∃𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
1615exbii 1848 . . . . . . . . . . . . 13 (∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
177, 14, 163bitr3ri 302 . . . . . . . . . . . 12 (∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)) ↔ ∃𝑥𝐴 𝑤 ∈ (𝐹𝑥))
18 df-rex 3055 . . . . . . . . . . . 12 (∃𝑥𝐴 𝑤 ∈ (𝐹𝑥) ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)))
1917, 18bitr2i 276 . . . . . . . . . . 11 (∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
2019a1i 11 . . . . . . . . . 10 (𝜑 → (∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥))))
21 vex 3454 . . . . . . . . . . 11 𝑤 ∈ V
22 eleq1w 2812 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦 ∈ (𝐹𝑥) ↔ 𝑤 ∈ (𝐹𝑥)))
2322anbi2d 630 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴𝑤 ∈ (𝐹𝑥))))
2423exbidv 1921 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥))))
2521, 24elab 3649 . . . . . . . . . 10 (𝑤 ∈ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)))
26 eluniab 4888 . . . . . . . . . 10 (𝑤 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
2720, 25, 263bitr4g 314 . . . . . . . . 9 (𝜑 → (𝑤 ∈ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ 𝑤 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)}))
2827eqrdv 2728 . . . . . . . 8 (𝜑 → {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
2928eleq1d 2814 . . . . . . 7 (𝜑 → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
3029adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
31 fpwrelmapffslem.3 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶𝒫 𝐵)
32 ffn 6691 . . . . . . . . . . 11 (𝐹:𝐴⟶𝒫 𝐵𝐹 Fn 𝐴)
33 fnrnfv 6923 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
3431, 32, 333syl 18 . . . . . . . . . 10 (𝜑 → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
3534adantr 480 . . . . . . . . 9 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
36 0ex 5265 . . . . . . . . . . 11 ∅ ∈ V
3736a1i 11 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ∅ ∈ V)
38 fpwrelmapffslem.1 . . . . . . . . . . . 12 𝐴 ∈ V
39 fex 7203 . . . . . . . . . . . 12 ((𝐹:𝐴⟶𝒫 𝐵𝐴 ∈ V) → 𝐹 ∈ V)
4031, 38, 39sylancl 586 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → 𝐹 ∈ V)
4231ffund 6695 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
4342adantr 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → Fun 𝐹)
44 opabdm 32546 . . . . . . . . . . . . . 14 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → dom 𝑅 = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
451, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝑅 = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
4638, 39mpan2 691 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴⟶𝒫 𝐵𝐹 ∈ V)
47 suppimacnv 8156 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ V ∧ ∅ ∈ V) → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
4836, 47mpan2 691 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ V → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
4931, 46, 483syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
5031feqmptd 6932 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5150cnveqd 5842 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5251imaeq1d 6033 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ (V ∖ {∅})) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})))
5349, 52eqtrd 2765 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})))
54 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
5554mptpreima 6214 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})}
5653, 55eqtrdi 2781 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})})
57 suppvalfn 8150 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ ∅ ∈ V) → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
5838, 36, 57mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐴 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
5931, 32, 583syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
60 n0 4319 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹𝑥))
6160rabbii 3414 . . . . . . . . . . . . . . . 16 {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)}
6261a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
6359, 56, 623eqtr3d 2773 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
64 df-rab 3409 . . . . . . . . . . . . . . . 16 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
65 19.42v 1953 . . . . . . . . . . . . . . . . 17 (∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥)))
6665abbii 2797 . . . . . . . . . . . . . . . 16 {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
6764, 66eqtr4i 2756 . . . . . . . . . . . . . . 15 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))}
6867a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
6956, 63, 683eqtrd 2769 . . . . . . . . . . . . 13 (𝜑 → (𝐹 supp ∅) = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
7045, 69eqtr4d 2768 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = (𝐹 supp ∅))
7170eleq1d 2814 . . . . . . . . . . 11 (𝜑 → (dom 𝑅 ∈ Fin ↔ (𝐹 supp ∅) ∈ Fin))
7271biimpa 476 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (𝐹 supp ∅) ∈ Fin)
7337, 41, 43, 72ffsrn 32659 . . . . . . . . 9 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ran 𝐹 ∈ Fin)
7435, 73eqeltrrd 2830 . . . . . . . 8 ((𝜑 ∧ dom 𝑅 ∈ Fin) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin)
75 unifi 9302 . . . . . . . . 9 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin)
7675ex 412 . . . . . . . 8 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
7774, 76syl 17 . . . . . . 7 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
78 unifi3 32643 . . . . . . 7 ( {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin)
7977, 78impbid1 225 . . . . . 6 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
8030, 79bitr4d 282 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin))
81 opabrn 32547 . . . . . . . 8 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
821, 81syl 17 . . . . . . 7 (𝜑 → ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
8382eleq1d 2814 . . . . . 6 (𝜑 → (ran 𝑅 ∈ Fin ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin))
8483adantr 480 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝑅 ∈ Fin ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin))
8535sseq1d 3981 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝐹 ⊆ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin))
8680, 84, 853bitr4d 311 . . . 4 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝑅 ∈ Fin ↔ ran 𝐹 ⊆ Fin))
8786pm5.32da 579 . . 3 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin) ↔ (dom 𝑅 ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
8871anbi1d 631 . . 3 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ ((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
8987, 88bitrd 279 . 2 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin) ↔ ((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
90 ancom 460 . . 3 (((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin))
9190a1i 11 . 2 (𝜑 → (((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
926, 89, 913bitrd 305 1 (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874  {copab 5172  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Rel wrel 5646  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390   supp csupp 8142  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-fin 8925  df-card 9899  df-acn 9902  df-ac 10076
This theorem is referenced by:  fpwrelmapffs  32664
  Copyright terms: Public domain W3C validator