Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwrelmapffslem Structured version   Visualization version   GIF version

Theorem fpwrelmapffslem 32705
Description: Lemma for fpwrelmapffs 32707. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fpwrelmapffslem.1 𝐴 ∈ V
fpwrelmapffslem.2 𝐵 ∈ V
fpwrelmapffslem.3 (𝜑𝐹:𝐴⟶𝒫 𝐵)
fpwrelmapffslem.4 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
Assertion
Ref Expression
fpwrelmapffslem (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem fpwrelmapffslem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwrelmapffslem.4 . . 3 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
2 relopabv 5759 . . . 4 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
3 releq 5715 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → (Rel 𝑅 ↔ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}))
42, 3mpbiri 258 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → Rel 𝑅)
5 relfi 32572 . . 3 (Rel 𝑅 → (𝑅 ∈ Fin ↔ (dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin)))
61, 4, 53syl 18 . 2 (𝜑 → (𝑅 ∈ Fin ↔ (dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin)))
7 rexcom4 3257 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)))
8 ancom 460 . . . . . . . . . . . . . . . 16 ((𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ (𝑤𝑧𝑧 = (𝐹𝑥)))
98exbii 1849 . . . . . . . . . . . . . . 15 (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ ∃𝑧(𝑤𝑧𝑧 = (𝐹𝑥)))
10 fvex 6830 . . . . . . . . . . . . . . . 16 (𝐹𝑥) ∈ V
11 eleq2 2818 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑥) → (𝑤𝑧𝑤 ∈ (𝐹𝑥)))
1210, 11ceqsexv 3485 . . . . . . . . . . . . . . 15 (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ 𝑤 ∈ (𝐹𝑥))
139, 12bitr3i 277 . . . . . . . . . . . . . 14 (∃𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ 𝑤 ∈ (𝐹𝑥))
1413rexbii 3077 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑥𝐴 𝑤 ∈ (𝐹𝑥))
15 r19.42v 3162 . . . . . . . . . . . . . 14 (∃𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
1615exbii 1849 . . . . . . . . . . . . 13 (∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
177, 14, 163bitr3ri 302 . . . . . . . . . . . 12 (∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)) ↔ ∃𝑥𝐴 𝑤 ∈ (𝐹𝑥))
18 df-rex 3055 . . . . . . . . . . . 12 (∃𝑥𝐴 𝑤 ∈ (𝐹𝑥) ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)))
1917, 18bitr2i 276 . . . . . . . . . . 11 (∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
2019a1i 11 . . . . . . . . . 10 (𝜑 → (∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥))))
21 vex 3438 . . . . . . . . . . 11 𝑤 ∈ V
22 eleq1w 2812 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦 ∈ (𝐹𝑥) ↔ 𝑤 ∈ (𝐹𝑥)))
2322anbi2d 630 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴𝑤 ∈ (𝐹𝑥))))
2423exbidv 1922 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥))))
2521, 24elab 3633 . . . . . . . . . 10 (𝑤 ∈ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)))
26 eluniab 4871 . . . . . . . . . 10 (𝑤 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
2720, 25, 263bitr4g 314 . . . . . . . . 9 (𝜑 → (𝑤 ∈ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ 𝑤 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)}))
2827eqrdv 2728 . . . . . . . 8 (𝜑 → {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
2928eleq1d 2814 . . . . . . 7 (𝜑 → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
3029adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
31 fpwrelmapffslem.3 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶𝒫 𝐵)
32 ffn 6647 . . . . . . . . . . 11 (𝐹:𝐴⟶𝒫 𝐵𝐹 Fn 𝐴)
33 fnrnfv 6876 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
3431, 32, 333syl 18 . . . . . . . . . 10 (𝜑 → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
3534adantr 480 . . . . . . . . 9 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
36 0ex 5243 . . . . . . . . . . 11 ∅ ∈ V
3736a1i 11 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ∅ ∈ V)
38 fpwrelmapffslem.1 . . . . . . . . . . . 12 𝐴 ∈ V
39 fex 7155 . . . . . . . . . . . 12 ((𝐹:𝐴⟶𝒫 𝐵𝐴 ∈ V) → 𝐹 ∈ V)
4031, 38, 39sylancl 586 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → 𝐹 ∈ V)
4231ffund 6651 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
4342adantr 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → Fun 𝐹)
44 opabdm 32584 . . . . . . . . . . . . . 14 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → dom 𝑅 = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
451, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝑅 = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
4638, 39mpan2 691 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴⟶𝒫 𝐵𝐹 ∈ V)
47 suppimacnv 8099 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ V ∧ ∅ ∈ V) → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
4836, 47mpan2 691 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ V → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
4931, 46, 483syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
5031feqmptd 6885 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5150cnveqd 5813 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5251imaeq1d 6005 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ (V ∖ {∅})) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})))
5349, 52eqtrd 2765 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})))
54 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
5554mptpreima 6182 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})}
5653, 55eqtrdi 2781 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})})
57 suppvalfn 8093 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ ∅ ∈ V) → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
5838, 36, 57mp3an23 1455 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐴 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
5931, 32, 583syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
60 n0 4301 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹𝑥))
6160rabbii 3398 . . . . . . . . . . . . . . . 16 {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)}
6261a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
6359, 56, 623eqtr3d 2773 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
64 df-rab 3394 . . . . . . . . . . . . . . . 16 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
65 19.42v 1954 . . . . . . . . . . . . . . . . 17 (∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥)))
6665abbii 2797 . . . . . . . . . . . . . . . 16 {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
6764, 66eqtr4i 2756 . . . . . . . . . . . . . . 15 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))}
6867a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
6956, 63, 683eqtrd 2769 . . . . . . . . . . . . 13 (𝜑 → (𝐹 supp ∅) = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
7045, 69eqtr4d 2768 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = (𝐹 supp ∅))
7170eleq1d 2814 . . . . . . . . . . 11 (𝜑 → (dom 𝑅 ∈ Fin ↔ (𝐹 supp ∅) ∈ Fin))
7271biimpa 476 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (𝐹 supp ∅) ∈ Fin)
7337, 41, 43, 72ffsrn 32701 . . . . . . . . 9 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ran 𝐹 ∈ Fin)
7435, 73eqeltrrd 2830 . . . . . . . 8 ((𝜑 ∧ dom 𝑅 ∈ Fin) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin)
75 unifi 9223 . . . . . . . . 9 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin)
7675ex 412 . . . . . . . 8 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
7774, 76syl 17 . . . . . . 7 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
78 unifi3 32684 . . . . . . 7 ( {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin)
7977, 78impbid1 225 . . . . . 6 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
8030, 79bitr4d 282 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin))
81 opabrn 32585 . . . . . . . 8 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
821, 81syl 17 . . . . . . 7 (𝜑 → ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
8382eleq1d 2814 . . . . . 6 (𝜑 → (ran 𝑅 ∈ Fin ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin))
8483adantr 480 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝑅 ∈ Fin ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin))
8535sseq1d 3964 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝐹 ⊆ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin))
8680, 84, 853bitr4d 311 . . . 4 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝑅 ∈ Fin ↔ ran 𝐹 ⊆ Fin))
8786pm5.32da 579 . . 3 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin) ↔ (dom 𝑅 ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
8871anbi1d 631 . . 3 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ ((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
8987, 88bitrd 279 . 2 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin) ↔ ((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
90 ancom 460 . . 3 (((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin))
9190a1i 11 . 2 (𝜑 → (((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
926, 89, 913bitrd 305 1 (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2110  {cab 2708  wne 2926  wrex 3054  {crab 3393  Vcvv 3434  cdif 3897  wss 3900  c0 4281  𝒫 cpw 4548  {csn 4574   cuni 4857  {copab 5151  cmpt 5170  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  Rel wrel 5619  Fun wfun 6471   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341   supp csupp 8085  Fincfn 8864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-ac2 10346
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-fin 8868  df-card 9824  df-acn 9827  df-ac 9999
This theorem is referenced by:  fpwrelmapffs  32707
  Copyright terms: Public domain W3C validator