Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwrelmapffslem Structured version   Visualization version   GIF version

Theorem fpwrelmapffslem 30494
Description: Lemma for fpwrelmapffs 30496. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fpwrelmapffslem.1 𝐴 ∈ V
fpwrelmapffslem.2 𝐵 ∈ V
fpwrelmapffslem.3 (𝜑𝐹:𝐴⟶𝒫 𝐵)
fpwrelmapffslem.4 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
Assertion
Ref Expression
fpwrelmapffslem (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem fpwrelmapffslem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwrelmapffslem.4 . . 3 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
2 relopab 5660 . . . 4 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
3 releq 5615 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → (Rel 𝑅 ↔ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}))
42, 3mpbiri 261 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → Rel 𝑅)
5 relfi 30365 . . 3 (Rel 𝑅 → (𝑅 ∈ Fin ↔ (dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin)))
61, 4, 53syl 18 . 2 (𝜑 → (𝑅 ∈ Fin ↔ (dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin)))
7 rexcom4 3212 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)))
8 ancom 464 . . . . . . . . . . . . . . . 16 ((𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ (𝑤𝑧𝑧 = (𝐹𝑥)))
98exbii 1849 . . . . . . . . . . . . . . 15 (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ ∃𝑧(𝑤𝑧𝑧 = (𝐹𝑥)))
10 fvex 6658 . . . . . . . . . . . . . . . 16 (𝐹𝑥) ∈ V
11 eleq2 2878 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑥) → (𝑤𝑧𝑤 ∈ (𝐹𝑥)))
1210, 11ceqsexv 3489 . . . . . . . . . . . . . . 15 (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ 𝑤 ∈ (𝐹𝑥))
139, 12bitr3i 280 . . . . . . . . . . . . . 14 (∃𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ 𝑤 ∈ (𝐹𝑥))
1413rexbii 3210 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑥𝐴 𝑤 ∈ (𝐹𝑥))
15 r19.42v 3303 . . . . . . . . . . . . . 14 (∃𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
1615exbii 1849 . . . . . . . . . . . . 13 (∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
177, 14, 163bitr3ri 305 . . . . . . . . . . . 12 (∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)) ↔ ∃𝑥𝐴 𝑤 ∈ (𝐹𝑥))
18 df-rex 3112 . . . . . . . . . . . 12 (∃𝑥𝐴 𝑤 ∈ (𝐹𝑥) ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)))
1917, 18bitr2i 279 . . . . . . . . . . 11 (∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
2019a1i 11 . . . . . . . . . 10 (𝜑 → (∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥))))
21 vex 3444 . . . . . . . . . . 11 𝑤 ∈ V
22 eleq1w 2872 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦 ∈ (𝐹𝑥) ↔ 𝑤 ∈ (𝐹𝑥)))
2322anbi2d 631 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴𝑤 ∈ (𝐹𝑥))))
2423exbidv 1922 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥))))
2521, 24elab 3615 . . . . . . . . . 10 (𝑤 ∈ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)))
26 eluniab 4815 . . . . . . . . . 10 (𝑤 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
2720, 25, 263bitr4g 317 . . . . . . . . 9 (𝜑 → (𝑤 ∈ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ 𝑤 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)}))
2827eqrdv 2796 . . . . . . . 8 (𝜑 → {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
2928eleq1d 2874 . . . . . . 7 (𝜑 → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
3029adantr 484 . . . . . 6 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
31 fpwrelmapffslem.3 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶𝒫 𝐵)
32 ffn 6487 . . . . . . . . . . 11 (𝐹:𝐴⟶𝒫 𝐵𝐹 Fn 𝐴)
33 fnrnfv 6700 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
3431, 32, 333syl 18 . . . . . . . . . 10 (𝜑 → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
3534adantr 484 . . . . . . . . 9 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
36 0ex 5175 . . . . . . . . . . 11 ∅ ∈ V
3736a1i 11 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ∅ ∈ V)
38 fpwrelmapffslem.1 . . . . . . . . . . . 12 𝐴 ∈ V
39 fex 6966 . . . . . . . . . . . 12 ((𝐹:𝐴⟶𝒫 𝐵𝐴 ∈ V) → 𝐹 ∈ V)
4031, 38, 39sylancl 589 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
4140adantr 484 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → 𝐹 ∈ V)
4231ffund 6491 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
4342adantr 484 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → Fun 𝐹)
44 opabdm 30375 . . . . . . . . . . . . . 14 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → dom 𝑅 = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
451, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝑅 = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
4638, 39mpan2 690 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴⟶𝒫 𝐵𝐹 ∈ V)
47 suppimacnv 7824 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ V ∧ ∅ ∈ V) → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
4836, 47mpan2 690 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ V → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
4931, 46, 483syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
5031feqmptd 6708 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5150cnveqd 5710 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5251imaeq1d 5895 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ (V ∖ {∅})) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})))
5349, 52eqtrd 2833 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})))
54 eqid 2798 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
5554mptpreima 6059 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})}
5653, 55eqtrdi 2849 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})})
57 suppvalfn 7820 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ ∅ ∈ V) → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
5838, 36, 57mp3an23 1450 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐴 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
5931, 32, 583syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
60 n0 4260 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹𝑥))
6160rabbii 3420 . . . . . . . . . . . . . . . 16 {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)}
6261a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
6359, 56, 623eqtr3d 2841 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
64 df-rab 3115 . . . . . . . . . . . . . . . 16 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
65 19.42v 1954 . . . . . . . . . . . . . . . . 17 (∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥)))
6665abbii 2863 . . . . . . . . . . . . . . . 16 {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
6764, 66eqtr4i 2824 . . . . . . . . . . . . . . 15 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))}
6867a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
6956, 63, 683eqtrd 2837 . . . . . . . . . . . . 13 (𝜑 → (𝐹 supp ∅) = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
7045, 69eqtr4d 2836 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = (𝐹 supp ∅))
7170eleq1d 2874 . . . . . . . . . . 11 (𝜑 → (dom 𝑅 ∈ Fin ↔ (𝐹 supp ∅) ∈ Fin))
7271biimpa 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (𝐹 supp ∅) ∈ Fin)
7337, 41, 43, 72ffsrn 30491 . . . . . . . . 9 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ran 𝐹 ∈ Fin)
7435, 73eqeltrrd 2891 . . . . . . . 8 ((𝜑 ∧ dom 𝑅 ∈ Fin) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin)
75 unifi 8797 . . . . . . . . 9 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin)
7675ex 416 . . . . . . . 8 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
7774, 76syl 17 . . . . . . 7 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
78 unifi3 30474 . . . . . . 7 ( {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin)
7977, 78impbid1 228 . . . . . 6 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
8030, 79bitr4d 285 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin))
81 opabrn 30376 . . . . . . . 8 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
821, 81syl 17 . . . . . . 7 (𝜑 → ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
8382eleq1d 2874 . . . . . 6 (𝜑 → (ran 𝑅 ∈ Fin ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin))
8483adantr 484 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝑅 ∈ Fin ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin))
8535sseq1d 3946 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝐹 ⊆ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin))
8680, 84, 853bitr4d 314 . . . 4 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝑅 ∈ Fin ↔ ran 𝐹 ⊆ Fin))
8786pm5.32da 582 . . 3 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin) ↔ (dom 𝑅 ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
8871anbi1d 632 . . 3 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ ((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
8987, 88bitrd 282 . 2 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin) ↔ ((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
90 ancom 464 . . 3 (((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin))
9190a1i 11 . 2 (𝜑 → (((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
926, 89, 913bitrd 308 1 (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wne 2987  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525   cuni 4800  {copab 5092  cmpt 5110  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  Rel wrel 5524  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135   supp csupp 7813  Fincfn 8492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-ac2 9874
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-fin 8496  df-card 9352  df-acn 9355  df-ac 9527
This theorem is referenced by:  fpwrelmapffs  30496
  Copyright terms: Public domain W3C validator