Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpwrelmapffslem Structured version   Visualization version   GIF version

Theorem fpwrelmapffslem 30969
Description: Lemma for fpwrelmapffs 30971. For this theorem, the sets 𝐴 and 𝐵 could be infinite, but the relation 𝑅 itself is finite. (Contributed by Thierry Arnoux, 1-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fpwrelmapffslem.1 𝐴 ∈ V
fpwrelmapffslem.2 𝐵 ∈ V
fpwrelmapffslem.3 (𝜑𝐹:𝐴⟶𝒫 𝐵)
fpwrelmapffslem.4 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
Assertion
Ref Expression
fpwrelmapffslem (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem fpwrelmapffslem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwrelmapffslem.4 . . 3 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))})
2 relopabv 5720 . . . 4 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
3 releq 5677 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → (Rel 𝑅 ↔ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}))
42, 3mpbiri 257 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → Rel 𝑅)
5 relfi 30842 . . 3 (Rel 𝑅 → (𝑅 ∈ Fin ↔ (dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin)))
61, 4, 53syl 18 . 2 (𝜑 → (𝑅 ∈ Fin ↔ (dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin)))
7 rexcom4 3179 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)))
8 ancom 460 . . . . . . . . . . . . . . . 16 ((𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ (𝑤𝑧𝑧 = (𝐹𝑥)))
98exbii 1851 . . . . . . . . . . . . . . 15 (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ ∃𝑧(𝑤𝑧𝑧 = (𝐹𝑥)))
10 fvex 6769 . . . . . . . . . . . . . . . 16 (𝐹𝑥) ∈ V
11 eleq2 2827 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐹𝑥) → (𝑤𝑧𝑤 ∈ (𝐹𝑥)))
1210, 11ceqsexv 3469 . . . . . . . . . . . . . . 15 (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑤𝑧) ↔ 𝑤 ∈ (𝐹𝑥))
139, 12bitr3i 276 . . . . . . . . . . . . . 14 (∃𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ 𝑤 ∈ (𝐹𝑥))
1413rexbii 3177 . . . . . . . . . . . . 13 (∃𝑥𝐴𝑧(𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑥𝐴 𝑤 ∈ (𝐹𝑥))
15 r19.42v 3276 . . . . . . . . . . . . . 14 (∃𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)) ↔ (𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
1615exbii 1851 . . . . . . . . . . . . 13 (∃𝑧𝑥𝐴 (𝑤𝑧𝑧 = (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
177, 14, 163bitr3ri 301 . . . . . . . . . . . 12 (∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)) ↔ ∃𝑥𝐴 𝑤 ∈ (𝐹𝑥))
18 df-rex 3069 . . . . . . . . . . . 12 (∃𝑥𝐴 𝑤 ∈ (𝐹𝑥) ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)))
1917, 18bitr2i 275 . . . . . . . . . . 11 (∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
2019a1i 11 . . . . . . . . . 10 (𝜑 → (∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)) ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥))))
21 vex 3426 . . . . . . . . . . 11 𝑤 ∈ V
22 eleq1w 2821 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦 ∈ (𝐹𝑥) ↔ 𝑤 ∈ (𝐹𝑥)))
2322anbi2d 628 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴𝑤 ∈ (𝐹𝑥))))
2423exbidv 1925 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥))))
2521, 24elab 3602 . . . . . . . . . 10 (𝑤 ∈ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ ∃𝑥(𝑥𝐴𝑤 ∈ (𝐹𝑥)))
26 eluniab 4851 . . . . . . . . . 10 (𝑤 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ↔ ∃𝑧(𝑤𝑧 ∧ ∃𝑥𝐴 𝑧 = (𝐹𝑥)))
2720, 25, 263bitr4g 313 . . . . . . . . 9 (𝜑 → (𝑤 ∈ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↔ 𝑤 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)}))
2827eqrdv 2736 . . . . . . . 8 (𝜑 → {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
2928eleq1d 2823 . . . . . . 7 (𝜑 → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
3029adantr 480 . . . . . 6 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
31 fpwrelmapffslem.3 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶𝒫 𝐵)
32 ffn 6584 . . . . . . . . . . 11 (𝐹:𝐴⟶𝒫 𝐵𝐹 Fn 𝐴)
33 fnrnfv 6811 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
3431, 32, 333syl 18 . . . . . . . . . 10 (𝜑 → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
3534adantr 480 . . . . . . . . 9 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)})
36 0ex 5226 . . . . . . . . . . 11 ∅ ∈ V
3736a1i 11 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ∅ ∈ V)
38 fpwrelmapffslem.1 . . . . . . . . . . . 12 𝐴 ∈ V
39 fex 7084 . . . . . . . . . . . 12 ((𝐹:𝐴⟶𝒫 𝐵𝐴 ∈ V) → 𝐹 ∈ V)
4031, 38, 39sylancl 585 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → 𝐹 ∈ V)
4231ffund 6588 . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
4342adantr 480 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → Fun 𝐹)
44 opabdm 30852 . . . . . . . . . . . . . 14 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → dom 𝑅 = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
451, 44syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝑅 = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
4638, 39mpan2 687 . . . . . . . . . . . . . . . . 17 (𝐹:𝐴⟶𝒫 𝐵𝐹 ∈ V)
47 suppimacnv 7961 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ V ∧ ∅ ∈ V) → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
4836, 47mpan2 687 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ V → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
4931, 46, 483syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 supp ∅) = (𝐹 “ (V ∖ {∅})))
5031feqmptd 6819 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5150cnveqd 5773 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
5251imaeq1d 5957 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 “ (V ∖ {∅})) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})))
5349, 52eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) = ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})))
54 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
5554mptpreima 6130 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ↦ (𝐹𝑥)) “ (V ∖ {∅})) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})}
5653, 55eqtrdi 2795 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})})
57 suppvalfn 7956 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ ∅ ∈ V) → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
5838, 36, 57mp3an23 1451 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐴 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
5931, 32, 583syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 supp ∅) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅})
60 n0 4277 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹𝑥))
6160rabbii 3397 . . . . . . . . . . . . . . . 16 {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)}
6261a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ≠ ∅} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
6359, 56, 623eqtr3d 2786 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (V ∖ {∅})} = {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)})
64 df-rab 3072 . . . . . . . . . . . . . . . 16 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
65 19.42v 1958 . . . . . . . . . . . . . . . . 17 (∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥)) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥)))
6665abbii 2809 . . . . . . . . . . . . . . . 16 {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 ∈ (𝐹𝑥))}
6764, 66eqtr4i 2769 . . . . . . . . . . . . . . 15 {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))}
6867a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝑥𝐴 ∣ ∃𝑦 𝑦 ∈ (𝐹𝑥)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
6956, 63, 683eqtrd 2782 . . . . . . . . . . . . 13 (𝜑 → (𝐹 supp ∅) = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
7045, 69eqtr4d 2781 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = (𝐹 supp ∅))
7170eleq1d 2823 . . . . . . . . . . 11 (𝜑 → (dom 𝑅 ∈ Fin ↔ (𝐹 supp ∅) ∈ Fin))
7271biimpa 476 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (𝐹 supp ∅) ∈ Fin)
7337, 41, 43, 72ffsrn 30966 . . . . . . . . 9 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ran 𝐹 ∈ Fin)
7435, 73eqeltrrd 2840 . . . . . . . 8 ((𝜑 ∧ dom 𝑅 ∈ Fin) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin)
75 unifi 9038 . . . . . . . . 9 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin)
7675ex 412 . . . . . . . 8 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
7774, 76syl 17 . . . . . . 7 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
78 unifi3 30949 . . . . . . 7 ( {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin)
7977, 78impbid1 224 . . . . . 6 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ∈ Fin))
8030, 79bitr4d 281 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → ({𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin))
81 opabrn 30853 . . . . . . . 8 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} → ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
821, 81syl 17 . . . . . . 7 (𝜑 → ran 𝑅 = {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))})
8382eleq1d 2823 . . . . . 6 (𝜑 → (ran 𝑅 ∈ Fin ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin))
8483adantr 480 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝑅 ∈ Fin ↔ {𝑦 ∣ ∃𝑥(𝑥𝐴𝑦 ∈ (𝐹𝑥))} ∈ Fin))
8535sseq1d 3948 . . . . 5 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝐹 ⊆ Fin ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹𝑥)} ⊆ Fin))
8680, 84, 853bitr4d 310 . . . 4 ((𝜑 ∧ dom 𝑅 ∈ Fin) → (ran 𝑅 ∈ Fin ↔ ran 𝐹 ⊆ Fin))
8786pm5.32da 578 . . 3 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin) ↔ (dom 𝑅 ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
8871anbi1d 629 . . 3 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ ((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
8987, 88bitrd 278 . 2 (𝜑 → ((dom 𝑅 ∈ Fin ∧ ran 𝑅 ∈ Fin) ↔ ((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin)))
90 ancom 460 . . 3 (((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin))
9190a1i 11 . 2 (𝜑 → (((𝐹 supp ∅) ∈ Fin ∧ ran 𝐹 ⊆ Fin) ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
926, 89, 913bitrd 304 1 (𝜑 → (𝑅 ∈ Fin ↔ (ran 𝐹 ⊆ Fin ∧ (𝐹 supp ∅) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  {copab 5132  cmpt 5153  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  Rel wrel 5585  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255   supp csupp 7948  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-fin 8695  df-card 9628  df-acn 9631  df-ac 9803
This theorem is referenced by:  fpwrelmapffs  30971
  Copyright terms: Public domain W3C validator