Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relnonrel Structured version   Visualization version   GIF version

Theorem relnonrel 43578
Description: The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
relnonrel (Rel 𝐴 ↔ (𝐴𝐴) = ∅)

Proof of Theorem relnonrel
StepHypRef Expression
1 dfrel2 6183 . . 3 (Rel 𝐴𝐴 = 𝐴)
2 eqss 3979 . . 3 (𝐴 = 𝐴 ↔ (𝐴𝐴𝐴𝐴))
31, 2bitri 275 . 2 (Rel 𝐴 ↔ (𝐴𝐴𝐴𝐴))
4 cnvcnvss 6188 . . 3 𝐴𝐴
54biantrur 530 . 2 (𝐴𝐴 ↔ (𝐴𝐴𝐴𝐴))
6 ssdif0 4346 . 2 (𝐴𝐴 ↔ (𝐴𝐴) = ∅)
73, 5, 63bitr2i 299 1 (Rel 𝐴 ↔ (𝐴𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  cdif 3928  wss 3931  c0 4313  ccnv 5658  Rel wrel 5664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667
This theorem is referenced by:  cnvnonrel  43579
  Copyright terms: Public domain W3C validator