Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relnonrel Structured version   Visualization version   GIF version

Theorem relnonrel 42338
Description: The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
relnonrel (Rel 𝐴 ↔ (𝐴𝐴) = ∅)

Proof of Theorem relnonrel
StepHypRef Expression
1 dfrel2 6189 . . 3 (Rel 𝐴𝐴 = 𝐴)
2 eqss 3998 . . 3 (𝐴 = 𝐴 ↔ (𝐴𝐴𝐴𝐴))
31, 2bitri 275 . 2 (Rel 𝐴 ↔ (𝐴𝐴𝐴𝐴))
4 cnvcnvss 6194 . . 3 𝐴𝐴
54biantrur 532 . 2 (𝐴𝐴 ↔ (𝐴𝐴𝐴𝐴))
6 ssdif0 4364 . 2 (𝐴𝐴 ↔ (𝐴𝐴) = ∅)
73, 5, 63bitr2i 299 1 (Rel 𝐴 ↔ (𝐴𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  cdif 3946  wss 3949  c0 4323  ccnv 5676  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685
This theorem is referenced by:  cnvnonrel  42339
  Copyright terms: Public domain W3C validator