| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relnonrel | Structured version Visualization version GIF version | ||
| Description: The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020.) |
| Ref | Expression |
|---|---|
| relnonrel | ⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 6178 | . . 3 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
| 2 | eqss 3974 | . . 3 ⊢ (◡◡𝐴 = 𝐴 ↔ (◡◡𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡◡𝐴)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (Rel 𝐴 ↔ (◡◡𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡◡𝐴)) |
| 4 | cnvcnvss 6183 | . . 3 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
| 5 | 4 | biantrur 530 | . 2 ⊢ (𝐴 ⊆ ◡◡𝐴 ↔ (◡◡𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡◡𝐴)) |
| 6 | ssdif0 4341 | . 2 ⊢ (𝐴 ⊆ ◡◡𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) | |
| 7 | 3, 5, 6 | 3bitr2i 299 | 1 ⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 ◡ccnv 5653 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 |
| This theorem is referenced by: cnvnonrel 43559 |
| Copyright terms: Public domain | W3C validator |