![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relnonrel | Structured version Visualization version GIF version |
Description: The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
relnonrel | ⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 6220 | . . 3 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
2 | eqss 4024 | . . 3 ⊢ (◡◡𝐴 = 𝐴 ↔ (◡◡𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡◡𝐴)) | |
3 | 1, 2 | bitri 275 | . 2 ⊢ (Rel 𝐴 ↔ (◡◡𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡◡𝐴)) |
4 | cnvcnvss 6225 | . . 3 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
5 | 4 | biantrur 530 | . 2 ⊢ (𝐴 ⊆ ◡◡𝐴 ↔ (◡◡𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡◡𝐴)) |
6 | ssdif0 4389 | . 2 ⊢ (𝐴 ⊆ ◡◡𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) | |
7 | 3, 5, 6 | 3bitr2i 299 | 1 ⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 ◡ccnv 5699 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: cnvnonrel 43550 |
Copyright terms: Public domain | W3C validator |