MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvss Structured version   Visualization version   GIF version

Theorem cnvcnvss 6214
Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
cnvcnvss 𝐴𝐴

Proof of Theorem cnvcnvss
StepHypRef Expression
1 cnvcnv 6212 . 2 𝐴 = (𝐴 ∩ (V × V))
2 inss1 4237 . 2 (𝐴 ∩ (V × V)) ⊆ 𝐴
31, 2eqsstri 4030 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3480  cin 3950  wss 3951   × cxp 5683  ccnv 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693
This theorem is referenced by:  funcnvcnv  6633  foimacnv  6865  cnvct  9074  cnvfiALT  9379  structcnvcnv  17190  mvdco  19463  fcoinver  32617  fcnvgreu  32683  cnvssb  43599  relnonrel  43600  clcnvlem  43636  cnvtrrel  43683  relexpaddss  43731  tposres3  48781
  Copyright terms: Public domain W3C validator