MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvss Structured version   Visualization version   GIF version

Theorem cnvcnvss 6225
Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
cnvcnvss 𝐴𝐴

Proof of Theorem cnvcnvss
StepHypRef Expression
1 cnvcnv 6223 . 2 𝐴 = (𝐴 ∩ (V × V))
2 inss1 4258 . 2 (𝐴 ∩ (V × V)) ⊆ 𝐴
31, 2eqsstri 4043 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3488  cin 3975  wss 3976   × cxp 5698  ccnv 5699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  funcnvcnv  6645  foimacnv  6879  cnvct  9099  cnvfiALT  9407  structcnvcnv  17200  mvdco  19487  fcoinver  32626  fcnvgreu  32691  cnvssb  43548  relnonrel  43549  clcnvlem  43585  cnvtrrel  43632  relexpaddss  43680
  Copyright terms: Public domain W3C validator