MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvss Structured version   Visualization version   GIF version

Theorem cnvcnvss 6097
Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
cnvcnvss 𝐴𝐴

Proof of Theorem cnvcnvss
StepHypRef Expression
1 cnvcnv 6095 . 2 𝐴 = (𝐴 ∩ (V × V))
2 inss1 4162 . 2 (𝐴 ∩ (V × V)) ⊆ 𝐴
31, 2eqsstri 3955 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3432  cin 3886  wss 3887   × cxp 5587  ccnv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597
This theorem is referenced by:  funcnvcnv  6501  foimacnv  6733  cnvct  8824  cnvfiALT  9101  structcnvcnv  16854  mvdco  19053  fcoinver  30946  fcnvgreu  31010  cnvssb  41194  relnonrel  41195  clcnvlem  41231  cnvtrrel  41278  relexpaddss  41326
  Copyright terms: Public domain W3C validator