![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvcnvss | Structured version Visualization version GIF version |
Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
cnvcnvss | ⊢ ◡◡𝐴 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 5804 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
2 | inss1 4029 | . 2 ⊢ (𝐴 ∩ (V × V)) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3832 | 1 ⊢ ◡◡𝐴 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3386 ∩ cin 3769 ⊆ wss 3770 × cxp 5311 ◡ccnv 5312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-br 4845 df-opab 4907 df-xp 5319 df-rel 5320 df-cnv 5321 |
This theorem is referenced by: funcnvcnv 6168 foimacnv 6374 cnvct 8273 cnvfi 8491 structcnvcnv 16197 mvdco 18176 fcoinver 29934 fcnvgreu 29989 cnvssb 38670 relnonrel 38671 clcnvlem 38708 cnvtrrel 38740 relexpaddss 38788 |
Copyright terms: Public domain | W3C validator |