Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvcnvss | Structured version Visualization version GIF version |
Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
cnvcnvss | ⊢ ◡◡𝐴 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 6095 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
2 | inss1 4162 | . 2 ⊢ (𝐴 ∩ (V × V)) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3955 | 1 ⊢ ◡◡𝐴 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 × cxp 5587 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 |
This theorem is referenced by: funcnvcnv 6501 foimacnv 6733 cnvct 8824 cnvfiALT 9101 structcnvcnv 16854 mvdco 19053 fcoinver 30946 fcnvgreu 31010 cnvssb 41194 relnonrel 41195 clcnvlem 41231 cnvtrrel 41278 relexpaddss 41326 |
Copyright terms: Public domain | W3C validator |