| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnvss | Structured version Visualization version GIF version | ||
| Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| cnvcnvss | ⊢ ◡◡𝐴 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6181 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
| 2 | inss1 4212 | . 2 ⊢ (𝐴 ∩ (V × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 4005 | 1 ⊢ ◡◡𝐴 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 × cxp 5652 ◡ccnv 5653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 |
| This theorem is referenced by: funcnvcnv 6603 foimacnv 6835 cnvct 9048 cnvfiALT 9351 structcnvcnv 17172 mvdco 19426 fcoinver 32585 fcnvgreu 32651 cnvssb 43610 relnonrel 43611 clcnvlem 43647 cnvtrrel 43694 relexpaddss 43742 tposres3 48856 |
| Copyright terms: Public domain | W3C validator |