| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnvss | Structured version Visualization version GIF version | ||
| Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| cnvcnvss | ⊢ ◡◡𝐴 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6168 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
| 2 | inss1 4203 | . 2 ⊢ (𝐴 ∩ (V × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3996 | 1 ⊢ ◡◡𝐴 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 × cxp 5639 ◡ccnv 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 |
| This theorem is referenced by: funcnvcnv 6586 foimacnv 6820 cnvct 9008 cnvfiALT 9297 structcnvcnv 17130 mvdco 19382 fcoinver 32540 fcnvgreu 32604 cnvssb 43582 relnonrel 43583 clcnvlem 43619 cnvtrrel 43666 relexpaddss 43714 tposres3 48873 |
| Copyright terms: Public domain | W3C validator |