MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvss Structured version   Visualization version   GIF version

Theorem cnvcnvss 6170
Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
cnvcnvss 𝐴𝐴

Proof of Theorem cnvcnvss
StepHypRef Expression
1 cnvcnv 6168 . 2 𝐴 = (𝐴 ∩ (V × V))
2 inss1 4203 . 2 (𝐴 ∩ (V × V)) ⊆ 𝐴
31, 2eqsstri 3996 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3450  cin 3916  wss 3917   × cxp 5639  ccnv 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649
This theorem is referenced by:  funcnvcnv  6586  foimacnv  6820  cnvct  9008  cnvfiALT  9297  structcnvcnv  17130  mvdco  19382  fcoinver  32540  fcnvgreu  32604  cnvssb  43582  relnonrel  43583  clcnvlem  43619  cnvtrrel  43666  relexpaddss  43714  tposres3  48873
  Copyright terms: Public domain W3C validator