MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvss Structured version   Visualization version   GIF version

Theorem cnvcnvss 6086
Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
cnvcnvss 𝐴𝐴

Proof of Theorem cnvcnvss
StepHypRef Expression
1 cnvcnv 6084 . 2 𝐴 = (𝐴 ∩ (V × V))
2 inss1 4159 . 2 (𝐴 ∩ (V × V)) ⊆ 𝐴
31, 2eqsstri 3951 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3422  cin 3882  wss 3883   × cxp 5578  ccnv 5579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by:  funcnvcnv  6485  foimacnv  6717  cnvct  8778  cnvfiALT  9031  structcnvcnv  16782  mvdco  18968  fcoinver  30847  fcnvgreu  30912  cnvssb  41083  relnonrel  41084  clcnvlem  41120  cnvtrrel  41167  relexpaddss  41215
  Copyright terms: Public domain W3C validator