MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvss Structured version   Visualization version   GIF version

Theorem cnvcnvss 6143
Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
cnvcnvss 𝐴𝐴

Proof of Theorem cnvcnvss
StepHypRef Expression
1 cnvcnv 6141 . 2 𝐴 = (𝐴 ∩ (V × V))
2 inss1 4188 . 2 (𝐴 ∩ (V × V)) ⊆ 𝐴
31, 2eqsstri 3982 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3436  cin 3902  wss 3903   × cxp 5617  ccnv 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627
This theorem is referenced by:  funcnvcnv  6549  foimacnv  6781  cnvct  8959  cnvfiALT  9229  structcnvcnv  17064  mvdco  19324  fcoinver  32548  fcnvgreu  32617  cnvssb  43569  relnonrel  43570  clcnvlem  43606  cnvtrrel  43653  relexpaddss  43701  tposres3  48875
  Copyright terms: Public domain W3C validator