| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnvss | Structured version Visualization version GIF version | ||
| Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| cnvcnvss | ⊢ ◡◡𝐴 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6141 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
| 2 | inss1 4188 | . 2 ⊢ (𝐴 ∩ (V × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3982 | 1 ⊢ ◡◡𝐴 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 × cxp 5617 ◡ccnv 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 |
| This theorem is referenced by: funcnvcnv 6549 foimacnv 6781 cnvct 8959 cnvfiALT 9229 structcnvcnv 17064 mvdco 19324 fcoinver 32548 fcnvgreu 32617 cnvssb 43569 relnonrel 43570 clcnvlem 43606 cnvtrrel 43653 relexpaddss 43701 tposres3 48875 |
| Copyright terms: Public domain | W3C validator |