| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnvss | Structured version Visualization version GIF version | ||
| Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| cnvcnvss | ⊢ ◡◡𝐴 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6153 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
| 2 | inss1 4196 | . 2 ⊢ (𝐴 ∩ (V × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3990 | 1 ⊢ ◡◡𝐴 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 × cxp 5629 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 |
| This theorem is referenced by: funcnvcnv 6567 foimacnv 6799 cnvct 8982 cnvfiALT 9266 structcnvcnv 17099 mvdco 19359 fcoinver 32583 fcnvgreu 32647 cnvssb 43568 relnonrel 43569 clcnvlem 43605 cnvtrrel 43652 relexpaddss 43700 tposres3 48862 |
| Copyright terms: Public domain | W3C validator |