| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnvss | Structured version Visualization version GIF version | ||
| Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| cnvcnvss | ⊢ ◡◡𝐴 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6139 | . 2 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) | |
| 2 | inss1 4184 | . 2 ⊢ (𝐴 ∩ (V × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3976 | 1 ⊢ ◡◡𝐴 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 × cxp 5612 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 |
| This theorem is referenced by: funcnvcnv 6548 foimacnv 6780 cnvct 8956 cnvfiALT 9223 structcnvcnv 17064 mvdco 19357 fcoinver 32584 fcnvgreu 32655 cnvssb 43678 relnonrel 43679 clcnvlem 43715 cnvtrrel 43762 relexpaddss 43810 tposres3 48980 |
| Copyright terms: Public domain | W3C validator |