MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvss Structured version   Visualization version   GIF version

Theorem cnvcnvss 6216
Description: The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
cnvcnvss 𝐴𝐴

Proof of Theorem cnvcnvss
StepHypRef Expression
1 cnvcnv 6214 . 2 𝐴 = (𝐴 ∩ (V × V))
2 inss1 4245 . 2 (𝐴 ∩ (V × V)) ⊆ 𝐴
31, 2eqsstri 4030 1 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3478  cin 3962  wss 3963   × cxp 5687  ccnv 5688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697
This theorem is referenced by:  funcnvcnv  6635  foimacnv  6866  cnvct  9073  cnvfiALT  9377  structcnvcnv  17187  mvdco  19478  fcoinver  32624  fcnvgreu  32690  cnvssb  43576  relnonrel  43577  clcnvlem  43613  cnvtrrel  43660  relexpaddss  43708
  Copyright terms: Public domain W3C validator