Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relssinxpdmrn Structured version   Visualization version   GIF version

Theorem relssinxpdmrn 38296
Description: Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023.)
Assertion
Ref Expression
relssinxpdmrn (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))

Proof of Theorem relssinxpdmrn
StepHypRef Expression
1 relssdmrn 6255 . . 3 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
21biantrud 531 . 2 (Rel 𝑅 → (𝑅𝑆 ↔ (𝑅𝑆𝑅 ⊆ (dom 𝑅 × ran 𝑅))))
3 ssin 4212 . 2 ((𝑅𝑆𝑅 ⊆ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)))
42, 3bitr2di 288 1 (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  cin 3923  wss 3924   × cxp 5650  dom cdm 5652  ran crn 5653  Rel wrel 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-xp 5658  df-rel 5659  df-cnv 5660  df-dm 5662  df-rn 5663
This theorem is referenced by:  cnvref4  38297
  Copyright terms: Public domain W3C validator