Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relssinxpdmrn Structured version   Visualization version   GIF version

Theorem relssinxpdmrn 38305
Description: Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023.)
Assertion
Ref Expression
relssinxpdmrn (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))

Proof of Theorem relssinxpdmrn
StepHypRef Expression
1 relssdmrn 6299 . . 3 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
21biantrud 531 . 2 (Rel 𝑅 → (𝑅𝑆 ↔ (𝑅𝑆𝑅 ⊆ (dom 𝑅 × ran 𝑅))))
3 ssin 4260 . 2 ((𝑅𝑆𝑅 ⊆ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)))
42, 3bitr2di 288 1 (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  cin 3975  wss 3976   × cxp 5698  dom cdm 5700  ran crn 5701  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  cnvref4  38306
  Copyright terms: Public domain W3C validator