![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relssinxpdmrn | Structured version Visualization version GIF version |
Description: Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023.) |
Ref | Expression |
---|---|
relssinxpdmrn | ⊢ (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssdmrn 6289 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
2 | 1 | biantrud 531 | . 2 ⊢ (Rel 𝑅 → (𝑅 ⊆ 𝑆 ↔ (𝑅 ⊆ 𝑆 ∧ 𝑅 ⊆ (dom 𝑅 × ran 𝑅)))) |
3 | ssin 4246 | . 2 ⊢ ((𝑅 ⊆ 𝑆 ∧ 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅))) | |
4 | 2, 3 | bitr2di 288 | 1 ⊢ (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∩ cin 3961 ⊆ wss 3962 × cxp 5686 dom cdm 5688 ran crn 5689 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-dm 5698 df-rn 5699 |
This theorem is referenced by: cnvref4 38331 |
Copyright terms: Public domain | W3C validator |