Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relssinxpdmrn Structured version   Visualization version   GIF version

Theorem relssinxpdmrn 38304
Description: Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023.)
Assertion
Ref Expression
relssinxpdmrn (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))

Proof of Theorem relssinxpdmrn
StepHypRef Expression
1 relssdmrn 6229 . . 3 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
21biantrud 531 . 2 (Rel 𝑅 → (𝑅𝑆 ↔ (𝑅𝑆𝑅 ⊆ (dom 𝑅 × ran 𝑅))))
3 ssin 4198 . 2 ((𝑅𝑆𝑅 ⊆ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)))
42, 3bitr2di 288 1 (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  cin 3910  wss 3911   × cxp 5629  dom cdm 5631  ran crn 5632  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642
This theorem is referenced by:  cnvref4  38305
  Copyright terms: Public domain W3C validator