| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relssinxpdmrn | Structured version Visualization version GIF version | ||
| Description: Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023.) |
| Ref | Expression |
|---|---|
| relssinxpdmrn | ⊢ (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssdmrn 6255 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 2 | 1 | biantrud 531 | . 2 ⊢ (Rel 𝑅 → (𝑅 ⊆ 𝑆 ↔ (𝑅 ⊆ 𝑆 ∧ 𝑅 ⊆ (dom 𝑅 × ran 𝑅)))) |
| 3 | ssin 4212 | . 2 ⊢ ((𝑅 ⊆ 𝑆 ∧ 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅))) | |
| 4 | 2, 3 | bitr2di 288 | 1 ⊢ (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∩ cin 3923 ⊆ wss 3924 × cxp 5650 dom cdm 5652 ran crn 5653 Rel wrel 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-xp 5658 df-rel 5659 df-cnv 5660 df-dm 5662 df-rn 5663 |
| This theorem is referenced by: cnvref4 38297 |
| Copyright terms: Public domain | W3C validator |