Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvresrn Structured version   Visualization version   GIF version

Theorem cnvresrn 35087
Description: Converse restricted to range is converse. (Contributed by Peter Mazsa, 3-Sep-2021.)
Assertion
Ref Expression
cnvresrn (𝑅 ↾ ran 𝑅) = 𝑅

Proof of Theorem cnvresrn
StepHypRef Expression
1 df-rn 5446 . . 3 ran 𝑅 = dom 𝑅
21reseq2i 5723 . 2 (𝑅 ↾ ran 𝑅) = (𝑅 ↾ dom 𝑅)
3 relcnv 5835 . . 3 Rel 𝑅
4 dfrel5 35085 . . 3 (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅)
53, 4mpbi 231 . 2 (𝑅 ↾ dom 𝑅) = 𝑅
62, 5eqtri 2817 1 (𝑅 ↾ ran 𝑅) = 𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1520  ccnv 5434  dom cdm 5435  ran crn 5436  cres 5437  Rel wrel 5440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-br 4957  df-opab 5019  df-xp 5441  df-rel 5442  df-cnv 5443  df-dm 5445  df-rn 5446  df-res 5447
This theorem is referenced by:  alrmomorn  35094
  Copyright terms: Public domain W3C validator