Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvresrn Structured version   Visualization version   GIF version

Theorem cnvresrn 36483
Description: Converse restricted to range is converse. (Contributed by Peter Mazsa, 3-Sep-2021.)
Assertion
Ref Expression
cnvresrn (𝑅 ↾ ran 𝑅) = 𝑅

Proof of Theorem cnvresrn
StepHypRef Expression
1 df-rn 5600 . . 3 ran 𝑅 = dom 𝑅
21reseq2i 5888 . 2 (𝑅 ↾ ran 𝑅) = (𝑅 ↾ dom 𝑅)
3 relcnv 6012 . . 3 Rel 𝑅
4 dfrel5 36481 . . 3 (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅)
53, 4mpbi 229 . 2 (𝑅 ↾ dom 𝑅) = 𝑅
62, 5eqtri 2766 1 (𝑅 ↾ ran 𝑅) = 𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601
This theorem is referenced by:  alrmomorn  36490
  Copyright terms: Public domain W3C validator