![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvresrn | Structured version Visualization version GIF version |
Description: Converse restricted to range is converse. (Contributed by Peter Mazsa, 3-Sep-2021.) |
Ref | Expression |
---|---|
cnvresrn | ⊢ (◡𝑅 ↾ ran 𝑅) = ◡𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5446 | . . 3 ⊢ ran 𝑅 = dom ◡𝑅 | |
2 | 1 | reseq2i 5723 | . 2 ⊢ (◡𝑅 ↾ ran 𝑅) = (◡𝑅 ↾ dom ◡𝑅) |
3 | relcnv 5835 | . . 3 ⊢ Rel ◡𝑅 | |
4 | dfrel5 35085 | . . 3 ⊢ (Rel ◡𝑅 ↔ (◡𝑅 ↾ dom ◡𝑅) = ◡𝑅) | |
5 | 3, 4 | mpbi 231 | . 2 ⊢ (◡𝑅 ↾ dom ◡𝑅) = ◡𝑅 |
6 | 2, 5 | eqtri 2817 | 1 ⊢ (◡𝑅 ↾ ran 𝑅) = ◡𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1520 ◡ccnv 5434 dom cdm 5435 ran crn 5436 ↾ cres 5437 Rel wrel 5440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pr 5214 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-br 4957 df-opab 5019 df-xp 5441 df-rel 5442 df-cnv 5443 df-dm 5445 df-rn 5446 df-res 5447 |
This theorem is referenced by: alrmomorn 35094 |
Copyright terms: Public domain | W3C validator |