![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brwdomn0 | Structured version Visualization version GIF version |
Description: Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
brwdomn0 | ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwdom 9589 | . . . 4 ⊢ Rel ≼* | |
2 | 1 | brrelex2i 5735 | . . 3 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
3 | 2 | a1i 11 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 → 𝑌 ∈ V)) |
4 | fof 6811 | . . . . . 6 ⊢ (𝑧:𝑌–onto→𝑋 → 𝑧:𝑌⟶𝑋) | |
5 | 4 | fdmd 6733 | . . . . 5 ⊢ (𝑧:𝑌–onto→𝑋 → dom 𝑧 = 𝑌) |
6 | vex 3475 | . . . . . 6 ⊢ 𝑧 ∈ V | |
7 | 6 | dmex 7917 | . . . . 5 ⊢ dom 𝑧 ∈ V |
8 | 5, 7 | eqeltrrdi 2838 | . . . 4 ⊢ (𝑧:𝑌–onto→𝑋 → 𝑌 ∈ V) |
9 | 8 | exlimiv 1926 | . . 3 ⊢ (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝑌 ∈ V) |
10 | 9 | a1i 11 | . 2 ⊢ (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝑌 ∈ V)) |
11 | brwdom 9590 | . . . 4 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | |
12 | df-ne 2938 | . . . . . 6 ⊢ (𝑋 ≠ ∅ ↔ ¬ 𝑋 = ∅) | |
13 | biorf 935 | . . . . . 6 ⊢ (¬ 𝑋 = ∅ → (∃𝑧 𝑧:𝑌–onto→𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | |
14 | 12, 13 | sylbi 216 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌–onto→𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) |
15 | 14 | bicomd 222 | . . . 4 ⊢ (𝑋 ≠ ∅ → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋) ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
16 | 11, 15 | sylan9bbr 510 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝑌 ∈ V) → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
17 | 16 | ex 412 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋))) |
18 | 3, 10, 17 | pm5.21ndd 379 | 1 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 846 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2937 Vcvv 3471 ∅c0 4323 class class class wbr 5148 dom cdm 5678 –onto→wfo 6546 ≼* cwdom 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-fn 6551 df-f 6552 df-fo 6554 df-wdom 9588 |
This theorem is referenced by: brwdom2 9596 wdomtr 9598 wdompwdom 9601 canthwdom 9602 wdomfil 10084 fin1a2lem7 10429 |
Copyright terms: Public domain | W3C validator |