Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdomn0 Structured version   Visualization version   GIF version

Theorem brwdomn0 9024
 Description: Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
brwdomn0 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑌

Proof of Theorem brwdomn0
StepHypRef Expression
1 relwdom 9021 . . . 4 Rel ≼*
21brrelex2i 5574 . . 3 (𝑋* 𝑌𝑌 ∈ V)
32a1i 11 . 2 (𝑋 ≠ ∅ → (𝑋* 𝑌𝑌 ∈ V))
4 fof 6568 . . . . . 6 (𝑧:𝑌onto𝑋𝑧:𝑌𝑋)
54fdmd 6500 . . . . 5 (𝑧:𝑌onto𝑋 → dom 𝑧 = 𝑌)
6 vex 3444 . . . . . 6 𝑧 ∈ V
76dmex 7605 . . . . 5 dom 𝑧 ∈ V
85, 7eqeltrrdi 2899 . . . 4 (𝑧:𝑌onto𝑋𝑌 ∈ V)
98exlimiv 1931 . . 3 (∃𝑧 𝑧:𝑌onto𝑋𝑌 ∈ V)
109a1i 11 . 2 (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌onto𝑋𝑌 ∈ V))
11 brwdom 9022 . . . 4 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
12 df-ne 2988 . . . . . 6 (𝑋 ≠ ∅ ↔ ¬ 𝑋 = ∅)
13 biorf 934 . . . . . 6 𝑋 = ∅ → (∃𝑧 𝑧:𝑌onto𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
1412, 13sylbi 220 . . . . 5 (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌onto𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
1514bicomd 226 . . . 4 (𝑋 ≠ ∅ → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋) ↔ ∃𝑧 𝑧:𝑌onto𝑋))
1611, 15sylan9bbr 514 . . 3 ((𝑋 ≠ ∅ ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
1716ex 416 . 2 (𝑋 ≠ ∅ → (𝑌 ∈ V → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋)))
183, 10, 17pm5.21ndd 384 1 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∨ wo 844   = wceq 1538  ∃wex 1781   ∈ wcel 2111   ≠ wne 2987  Vcvv 3441  ∅c0 4243   class class class wbr 5031  dom cdm 5520  –onto→wfo 6325   ≼* cwdom 9019 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296  ax-un 7448 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-xp 5526  df-rel 5527  df-cnv 5528  df-dm 5530  df-rn 5531  df-fn 6330  df-f 6331  df-fo 6333  df-wdom 9020 This theorem is referenced by:  brwdom2  9028  wdomtr  9030  wdompwdom  9033  canthwdom  9034  wdomfil  9479  fin1a2lem7  9824
 Copyright terms: Public domain W3C validator