MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdomn0 Structured version   Visualization version   GIF version

Theorem brwdomn0 9529
Description: Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
brwdomn0 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑌

Proof of Theorem brwdomn0
StepHypRef Expression
1 relwdom 9526 . . . 4 Rel ≼*
21brrelex2i 5698 . . 3 (𝑋* 𝑌𝑌 ∈ V)
32a1i 11 . 2 (𝑋 ≠ ∅ → (𝑋* 𝑌𝑌 ∈ V))
4 fof 6775 . . . . . 6 (𝑧:𝑌onto𝑋𝑧:𝑌𝑋)
54fdmd 6701 . . . . 5 (𝑧:𝑌onto𝑋 → dom 𝑧 = 𝑌)
6 vex 3454 . . . . . 6 𝑧 ∈ V
76dmex 7888 . . . . 5 dom 𝑧 ∈ V
85, 7eqeltrrdi 2838 . . . 4 (𝑧:𝑌onto𝑋𝑌 ∈ V)
98exlimiv 1930 . . 3 (∃𝑧 𝑧:𝑌onto𝑋𝑌 ∈ V)
109a1i 11 . 2 (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌onto𝑋𝑌 ∈ V))
11 brwdom 9527 . . . 4 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
12 df-ne 2927 . . . . . 6 (𝑋 ≠ ∅ ↔ ¬ 𝑋 = ∅)
13 biorf 936 . . . . . 6 𝑋 = ∅ → (∃𝑧 𝑧:𝑌onto𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
1412, 13sylbi 217 . . . . 5 (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌onto𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
1514bicomd 223 . . . 4 (𝑋 ≠ ∅ → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋) ↔ ∃𝑧 𝑧:𝑌onto𝑋))
1611, 15sylan9bbr 510 . . 3 ((𝑋 ≠ ∅ ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
1716ex 412 . 2 (𝑋 ≠ ∅ → (𝑌 ∈ V → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋)))
183, 10, 17pm5.21ndd 379 1 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2926  Vcvv 3450  c0 4299   class class class wbr 5110  dom cdm 5641  ontowfo 6512  * cwdom 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-fn 6517  df-f 6518  df-fo 6520  df-wdom 9525
This theorem is referenced by:  brwdom2  9533  wdomtr  9535  wdompwdom  9538  canthwdom  9539  wdomfil  10021  fin1a2lem7  10366
  Copyright terms: Public domain W3C validator