![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brwdomn0 | Structured version Visualization version GIF version |
Description: Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
brwdomn0 | ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwdom 9510 | . . . 4 ⊢ Rel ≼* | |
2 | 1 | brrelex2i 5693 | . . 3 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
3 | 2 | a1i 11 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 → 𝑌 ∈ V)) |
4 | fof 6760 | . . . . . 6 ⊢ (𝑧:𝑌–onto→𝑋 → 𝑧:𝑌⟶𝑋) | |
5 | 4 | fdmd 6683 | . . . . 5 ⊢ (𝑧:𝑌–onto→𝑋 → dom 𝑧 = 𝑌) |
6 | vex 3451 | . . . . . 6 ⊢ 𝑧 ∈ V | |
7 | 6 | dmex 7852 | . . . . 5 ⊢ dom 𝑧 ∈ V |
8 | 5, 7 | eqeltrrdi 2843 | . . . 4 ⊢ (𝑧:𝑌–onto→𝑋 → 𝑌 ∈ V) |
9 | 8 | exlimiv 1934 | . . 3 ⊢ (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝑌 ∈ V) |
10 | 9 | a1i 11 | . 2 ⊢ (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝑌 ∈ V)) |
11 | brwdom 9511 | . . . 4 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | |
12 | df-ne 2941 | . . . . . 6 ⊢ (𝑋 ≠ ∅ ↔ ¬ 𝑋 = ∅) | |
13 | biorf 936 | . . . . . 6 ⊢ (¬ 𝑋 = ∅ → (∃𝑧 𝑧:𝑌–onto→𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | |
14 | 12, 13 | sylbi 216 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌–onto→𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) |
15 | 14 | bicomd 222 | . . . 4 ⊢ (𝑋 ≠ ∅ → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋) ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
16 | 11, 15 | sylan9bbr 512 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝑌 ∈ V) → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
17 | 16 | ex 414 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋))) |
18 | 3, 10, 17 | pm5.21ndd 381 | 1 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 846 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2940 Vcvv 3447 ∅c0 4286 class class class wbr 5109 dom cdm 5637 –onto→wfo 6498 ≼* cwdom 9508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-xp 5643 df-rel 5644 df-cnv 5645 df-dm 5647 df-rn 5648 df-fn 6503 df-f 6504 df-fo 6506 df-wdom 9509 |
This theorem is referenced by: brwdom2 9517 wdomtr 9519 wdompwdom 9522 canthwdom 9523 wdomfil 10005 fin1a2lem7 10350 |
Copyright terms: Public domain | W3C validator |