MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdomn0 Structured version   Visualization version   GIF version

Theorem brwdomn0 9328
Description: Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
brwdomn0 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑌

Proof of Theorem brwdomn0
StepHypRef Expression
1 relwdom 9325 . . . 4 Rel ≼*
21brrelex2i 5644 . . 3 (𝑋* 𝑌𝑌 ∈ V)
32a1i 11 . 2 (𝑋 ≠ ∅ → (𝑋* 𝑌𝑌 ∈ V))
4 fof 6688 . . . . . 6 (𝑧:𝑌onto𝑋𝑧:𝑌𝑋)
54fdmd 6611 . . . . 5 (𝑧:𝑌onto𝑋 → dom 𝑧 = 𝑌)
6 vex 3436 . . . . . 6 𝑧 ∈ V
76dmex 7758 . . . . 5 dom 𝑧 ∈ V
85, 7eqeltrrdi 2848 . . . 4 (𝑧:𝑌onto𝑋𝑌 ∈ V)
98exlimiv 1933 . . 3 (∃𝑧 𝑧:𝑌onto𝑋𝑌 ∈ V)
109a1i 11 . 2 (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌onto𝑋𝑌 ∈ V))
11 brwdom 9326 . . . 4 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
12 df-ne 2944 . . . . . 6 (𝑋 ≠ ∅ ↔ ¬ 𝑋 = ∅)
13 biorf 934 . . . . . 6 𝑋 = ∅ → (∃𝑧 𝑧:𝑌onto𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
1412, 13sylbi 216 . . . . 5 (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌onto𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
1514bicomd 222 . . . 4 (𝑋 ≠ ∅ → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋) ↔ ∃𝑧 𝑧:𝑌onto𝑋))
1611, 15sylan9bbr 511 . . 3 ((𝑋 ≠ ∅ ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
1716ex 413 . 2 (𝑋 ≠ ∅ → (𝑌 ∈ V → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋)))
183, 10, 17pm5.21ndd 381 1 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844   = wceq 1539  wex 1782  wcel 2106  wne 2943  Vcvv 3432  c0 4256   class class class wbr 5074  dom cdm 5589  ontowfo 6431  * cwdom 9323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-fn 6436  df-f 6437  df-fo 6439  df-wdom 9324
This theorem is referenced by:  brwdom2  9332  wdomtr  9334  wdompwdom  9337  canthwdom  9338  wdomfil  9817  fin1a2lem7  10162
  Copyright terms: Public domain W3C validator