MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdomn0 Structured version   Visualization version   GIF version

Theorem brwdomn0 9498
Description: Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
brwdomn0 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑌

Proof of Theorem brwdomn0
StepHypRef Expression
1 relwdom 9495 . . . 4 Rel ≼*
21brrelex2i 5688 . . 3 (𝑋* 𝑌𝑌 ∈ V)
32a1i 11 . 2 (𝑋 ≠ ∅ → (𝑋* 𝑌𝑌 ∈ V))
4 fof 6754 . . . . . 6 (𝑧:𝑌onto𝑋𝑧:𝑌𝑋)
54fdmd 6680 . . . . 5 (𝑧:𝑌onto𝑋 → dom 𝑧 = 𝑌)
6 vex 3448 . . . . . 6 𝑧 ∈ V
76dmex 7865 . . . . 5 dom 𝑧 ∈ V
85, 7eqeltrrdi 2837 . . . 4 (𝑧:𝑌onto𝑋𝑌 ∈ V)
98exlimiv 1930 . . 3 (∃𝑧 𝑧:𝑌onto𝑋𝑌 ∈ V)
109a1i 11 . 2 (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌onto𝑋𝑌 ∈ V))
11 brwdom 9496 . . . 4 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
12 df-ne 2926 . . . . . 6 (𝑋 ≠ ∅ ↔ ¬ 𝑋 = ∅)
13 biorf 936 . . . . . 6 𝑋 = ∅ → (∃𝑧 𝑧:𝑌onto𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
1412, 13sylbi 217 . . . . 5 (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌onto𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
1514bicomd 223 . . . 4 (𝑋 ≠ ∅ → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋) ↔ ∃𝑧 𝑧:𝑌onto𝑋))
1611, 15sylan9bbr 510 . . 3 ((𝑋 ≠ ∅ ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
1716ex 412 . 2 (𝑋 ≠ ∅ → (𝑌 ∈ V → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋)))
183, 10, 17pm5.21ndd 379 1 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3444  c0 4292   class class class wbr 5102  dom cdm 5631  ontowfo 6497  * cwdom 9493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-fn 6502  df-f 6503  df-fo 6505  df-wdom 9494
This theorem is referenced by:  brwdom2  9502  wdomtr  9504  wdompwdom  9507  canthwdom  9508  wdomfil  9990  fin1a2lem7  10335
  Copyright terms: Public domain W3C validator