![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brwdomn0 | Structured version Visualization version GIF version |
Description: Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
brwdomn0 | ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwdom 9635 | . . . 4 ⊢ Rel ≼* | |
2 | 1 | brrelex2i 5757 | . . 3 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
3 | 2 | a1i 11 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 → 𝑌 ∈ V)) |
4 | fof 6834 | . . . . . 6 ⊢ (𝑧:𝑌–onto→𝑋 → 𝑧:𝑌⟶𝑋) | |
5 | 4 | fdmd 6757 | . . . . 5 ⊢ (𝑧:𝑌–onto→𝑋 → dom 𝑧 = 𝑌) |
6 | vex 3492 | . . . . . 6 ⊢ 𝑧 ∈ V | |
7 | 6 | dmex 7949 | . . . . 5 ⊢ dom 𝑧 ∈ V |
8 | 5, 7 | eqeltrrdi 2853 | . . . 4 ⊢ (𝑧:𝑌–onto→𝑋 → 𝑌 ∈ V) |
9 | 8 | exlimiv 1929 | . . 3 ⊢ (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝑌 ∈ V) |
10 | 9 | a1i 11 | . 2 ⊢ (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌–onto→𝑋 → 𝑌 ∈ V)) |
11 | brwdom 9636 | . . . 4 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | |
12 | df-ne 2947 | . . . . . 6 ⊢ (𝑋 ≠ ∅ ↔ ¬ 𝑋 = ∅) | |
13 | biorf 935 | . . . . . 6 ⊢ (¬ 𝑋 = ∅ → (∃𝑧 𝑧:𝑌–onto→𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | |
14 | 12, 13 | sylbi 217 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (∃𝑧 𝑧:𝑌–onto→𝑋 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) |
15 | 14 | bicomd 223 | . . . 4 ⊢ (𝑋 ≠ ∅ → ((𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋) ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
16 | 11, 15 | sylan9bbr 510 | . . 3 ⊢ ((𝑋 ≠ ∅ ∧ 𝑌 ∈ V) → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
17 | 16 | ex 412 | . 2 ⊢ (𝑋 ≠ ∅ → (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋))) |
18 | 3, 10, 17 | pm5.21ndd 379 | 1 ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 846 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 class class class wbr 5166 dom cdm 5700 –onto→wfo 6571 ≼* cwdom 9633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-fn 6576 df-f 6577 df-fo 6579 df-wdom 9634 |
This theorem is referenced by: brwdom2 9642 wdomtr 9644 wdompwdom 9647 canthwdom 9648 wdomfil 10130 fin1a2lem7 10475 |
Copyright terms: Public domain | W3C validator |