| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hsmexlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for hsmex 10323. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| hsmexlem.f | ⊢ 𝐹 = OrdIso( E , 𝐵) |
| hsmexlem.g | ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| hsmexlem3 | ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wdomref 9458 | . . . . 5 ⊢ (𝐶 ∈ On → 𝐶 ≼* 𝐶) | |
| 2 | xpwdomg 9471 | . . . . 5 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ≼* 𝐶) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶)) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶)) |
| 4 | wdompwdom 9464 | . . . 4 ⊢ ((𝐴 × 𝐶) ≼* (𝐷 × 𝐶) → 𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶)) | |
| 5 | harword 9449 | . . . 4 ⊢ (𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) |
| 8 | relwdom 9452 | . . . . . 6 ⊢ Rel ≼* | |
| 9 | 8 | brrelex1i 5670 | . . . . 5 ⊢ (𝐴 ≼* 𝐷 → 𝐴 ∈ V) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → 𝐴 ∈ V) |
| 11 | 10 | adantr 480 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → 𝐴 ∈ V) |
| 12 | simplr 768 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → 𝐶 ∈ On) | |
| 13 | simpr 484 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) | |
| 14 | hsmexlem.f | . . . 4 ⊢ 𝐹 = OrdIso( E , 𝐵) | |
| 15 | hsmexlem.g | . . . 4 ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) | |
| 16 | 14, 15 | hsmexlem2 10318 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
| 17 | 11, 12, 13, 16 | syl3anc 1373 | . 2 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
| 18 | 7, 17 | sseldd 3930 | 1 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 ∪ ciun 4939 class class class wbr 5089 E cep 5513 × cxp 5612 dom cdm 5614 Oncon0 6306 ‘cfv 6481 ≼ cdom 8867 OrdIsocoi 9395 harchar 9442 ≼* cwdom 9450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-smo 8266 df-recs 8291 df-en 8870 df-dom 8871 df-sdom 8872 df-oi 9396 df-har 9443 df-wdom 9451 |
| This theorem is referenced by: hsmexlem4 10320 hsmexlem5 10321 |
| Copyright terms: Public domain | W3C validator |