MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem3 Structured version   Visualization version   GIF version

Theorem hsmexlem3 10468
Description: Lemma for hsmex 10472. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
hsmexlem.f 𝐹 = OrdIso( E , 𝐵)
hsmexlem.g 𝐺 = OrdIso( E , 𝑎𝐴 𝐵)
Assertion
Ref Expression
hsmexlem3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶)))
Distinct variable groups:   𝐴,𝑎   𝐶,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝐷(𝑎)   𝐹(𝑎)   𝐺(𝑎)

Proof of Theorem hsmexlem3
StepHypRef Expression
1 wdomref 9612 . . . . 5 (𝐶 ∈ On → 𝐶* 𝐶)
2 xpwdomg 9625 . . . . 5 ((𝐴* 𝐷𝐶* 𝐶) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶))
31, 2sylan2 593 . . . 4 ((𝐴* 𝐷𝐶 ∈ On) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶))
4 wdompwdom 9618 . . . 4 ((𝐴 × 𝐶) ≼* (𝐷 × 𝐶) → 𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶))
5 harword 9603 . . . 4 (𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
63, 4, 53syl 18 . . 3 ((𝐴* 𝐷𝐶 ∈ On) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
76adantr 480 . 2 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
8 relwdom 9606 . . . . . 6 Rel ≼*
98brrelex1i 5741 . . . . 5 (𝐴* 𝐷𝐴 ∈ V)
109adantr 480 . . . 4 ((𝐴* 𝐷𝐶 ∈ On) → 𝐴 ∈ V)
1110adantr 480 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝐴 ∈ V)
12 simplr 769 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝐶 ∈ On)
13 simpr 484 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶))
14 hsmexlem.f . . . 4 𝐹 = OrdIso( E , 𝐵)
15 hsmexlem.g . . . 4 𝐺 = OrdIso( E , 𝑎𝐴 𝐵)
1614, 15hsmexlem2 10467 . . 3 ((𝐴 ∈ V ∧ 𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
1711, 12, 13, 16syl3anc 1373 . 2 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
187, 17sseldd 3984 1 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  wss 3951  𝒫 cpw 4600   ciun 4991   class class class wbr 5143   E cep 5583   × cxp 5683  dom cdm 5685  Oncon0 6384  cfv 6561  cdom 8983  OrdIsocoi 9549  harchar 9596  * cwdom 9604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-smo 8386  df-recs 8411  df-en 8986  df-dom 8987  df-sdom 8988  df-oi 9550  df-har 9597  df-wdom 9605
This theorem is referenced by:  hsmexlem4  10469  hsmexlem5  10470
  Copyright terms: Public domain W3C validator