| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hsmexlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for hsmex 10392. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| hsmexlem.f | ⊢ 𝐹 = OrdIso( E , 𝐵) |
| hsmexlem.g | ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| hsmexlem3 | ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wdomref 9532 | . . . . 5 ⊢ (𝐶 ∈ On → 𝐶 ≼* 𝐶) | |
| 2 | xpwdomg 9545 | . . . . 5 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ≼* 𝐶) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶)) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶)) |
| 4 | wdompwdom 9538 | . . . 4 ⊢ ((𝐴 × 𝐶) ≼* (𝐷 × 𝐶) → 𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶)) | |
| 5 | harword 9523 | . . . 4 ⊢ (𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) |
| 8 | relwdom 9526 | . . . . . 6 ⊢ Rel ≼* | |
| 9 | 8 | brrelex1i 5697 | . . . . 5 ⊢ (𝐴 ≼* 𝐷 → 𝐴 ∈ V) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → 𝐴 ∈ V) |
| 11 | 10 | adantr 480 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → 𝐴 ∈ V) |
| 12 | simplr 768 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → 𝐶 ∈ On) | |
| 13 | simpr 484 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) | |
| 14 | hsmexlem.f | . . . 4 ⊢ 𝐹 = OrdIso( E , 𝐵) | |
| 15 | hsmexlem.g | . . . 4 ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) | |
| 16 | 14, 15 | hsmexlem2 10387 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
| 17 | 11, 12, 13, 16 | syl3anc 1373 | . 2 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
| 18 | 7, 17 | sseldd 3950 | 1 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 ∪ ciun 4958 class class class wbr 5110 E cep 5540 × cxp 5639 dom cdm 5641 Oncon0 6335 ‘cfv 6514 ≼ cdom 8919 OrdIsocoi 9469 harchar 9516 ≼* cwdom 9524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-smo 8318 df-recs 8343 df-en 8922 df-dom 8923 df-sdom 8924 df-oi 9470 df-har 9517 df-wdom 9525 |
| This theorem is referenced by: hsmexlem4 10389 hsmexlem5 10390 |
| Copyright terms: Public domain | W3C validator |