| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hsmexlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for hsmex 10472. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| hsmexlem.f | ⊢ 𝐹 = OrdIso( E , 𝐵) |
| hsmexlem.g | ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) |
| Ref | Expression |
|---|---|
| hsmexlem3 | ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wdomref 9612 | . . . . 5 ⊢ (𝐶 ∈ On → 𝐶 ≼* 𝐶) | |
| 2 | xpwdomg 9625 | . . . . 5 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ≼* 𝐶) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶)) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶)) |
| 4 | wdompwdom 9618 | . . . 4 ⊢ ((𝐴 × 𝐶) ≼* (𝐷 × 𝐶) → 𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶)) | |
| 5 | harword 9603 | . . . 4 ⊢ (𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) |
| 7 | 6 | adantr 480 | . 2 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) |
| 8 | relwdom 9606 | . . . . . 6 ⊢ Rel ≼* | |
| 9 | 8 | brrelex1i 5741 | . . . . 5 ⊢ (𝐴 ≼* 𝐷 → 𝐴 ∈ V) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → 𝐴 ∈ V) |
| 11 | 10 | adantr 480 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → 𝐴 ∈ V) |
| 12 | simplr 769 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → 𝐶 ∈ On) | |
| 13 | simpr 484 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) | |
| 14 | hsmexlem.f | . . . 4 ⊢ 𝐹 = OrdIso( E , 𝐵) | |
| 15 | hsmexlem.g | . . . 4 ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) | |
| 16 | 14, 15 | hsmexlem2 10467 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
| 17 | 11, 12, 13, 16 | syl3anc 1373 | . 2 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
| 18 | 7, 17 | sseldd 3984 | 1 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ⊆ wss 3951 𝒫 cpw 4600 ∪ ciun 4991 class class class wbr 5143 E cep 5583 × cxp 5683 dom cdm 5685 Oncon0 6384 ‘cfv 6561 ≼ cdom 8983 OrdIsocoi 9549 harchar 9596 ≼* cwdom 9604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-smo 8386 df-recs 8411 df-en 8986 df-dom 8987 df-sdom 8988 df-oi 9550 df-har 9597 df-wdom 9605 |
| This theorem is referenced by: hsmexlem4 10469 hsmexlem5 10470 |
| Copyright terms: Public domain | W3C validator |