MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem3 Structured version   Visualization version   GIF version

Theorem hsmexlem3 9842
Description: Lemma for hsmex 9846. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
hsmexlem.f 𝐹 = OrdIso( E , 𝐵)
hsmexlem.g 𝐺 = OrdIso( E , 𝑎𝐴 𝐵)
Assertion
Ref Expression
hsmexlem3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶)))
Distinct variable groups:   𝐴,𝑎   𝐶,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝐷(𝑎)   𝐹(𝑎)   𝐺(𝑎)

Proof of Theorem hsmexlem3
StepHypRef Expression
1 wdomref 9028 . . . . 5 (𝐶 ∈ On → 𝐶* 𝐶)
2 xpwdomg 9041 . . . . 5 ((𝐴* 𝐷𝐶* 𝐶) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶))
31, 2sylan2 594 . . . 4 ((𝐴* 𝐷𝐶 ∈ On) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶))
4 wdompwdom 9034 . . . 4 ((𝐴 × 𝐶) ≼* (𝐷 × 𝐶) → 𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶))
5 harword 9021 . . . 4 (𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
63, 4, 53syl 18 . . 3 ((𝐴* 𝐷𝐶 ∈ On) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
76adantr 483 . 2 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
8 relwdom 9022 . . . . . 6 Rel ≼*
98brrelex1i 5601 . . . . 5 (𝐴* 𝐷𝐴 ∈ V)
109adantr 483 . . . 4 ((𝐴* 𝐷𝐶 ∈ On) → 𝐴 ∈ V)
1110adantr 483 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝐴 ∈ V)
12 simplr 767 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝐶 ∈ On)
13 simpr 487 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶))
14 hsmexlem.f . . . 4 𝐹 = OrdIso( E , 𝐵)
15 hsmexlem.g . . . 4 𝐺 = OrdIso( E , 𝑎𝐴 𝐵)
1614, 15hsmexlem2 9841 . . 3 ((𝐴 ∈ V ∧ 𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
1711, 12, 13, 16syl3anc 1366 . 2 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
187, 17sseldd 3966 1 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wral 3136  Vcvv 3493  wss 3934  𝒫 cpw 4537   ciun 4910   class class class wbr 5057   E cep 5457   × cxp 5546  dom cdm 5548  Oncon0 6184  cfv 6348  cdom 8499  OrdIsocoi 8965  harchar 9012  * cwdom 9013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-smo 7975  df-recs 8000  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-oi 8966  df-har 9014  df-wdom 9015
This theorem is referenced by:  hsmexlem4  9843  hsmexlem5  9844
  Copyright terms: Public domain W3C validator