MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem3 Structured version   Visualization version   GIF version

Theorem hsmexlem3 10184
Description: Lemma for hsmex 10188. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
hsmexlem.f 𝐹 = OrdIso( E , 𝐵)
hsmexlem.g 𝐺 = OrdIso( E , 𝑎𝐴 𝐵)
Assertion
Ref Expression
hsmexlem3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶)))
Distinct variable groups:   𝐴,𝑎   𝐶,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝐷(𝑎)   𝐹(𝑎)   𝐺(𝑎)

Proof of Theorem hsmexlem3
StepHypRef Expression
1 wdomref 9331 . . . . 5 (𝐶 ∈ On → 𝐶* 𝐶)
2 xpwdomg 9344 . . . . 5 ((𝐴* 𝐷𝐶* 𝐶) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶))
31, 2sylan2 593 . . . 4 ((𝐴* 𝐷𝐶 ∈ On) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶))
4 wdompwdom 9337 . . . 4 ((𝐴 × 𝐶) ≼* (𝐷 × 𝐶) → 𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶))
5 harword 9322 . . . 4 (𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
63, 4, 53syl 18 . . 3 ((𝐴* 𝐷𝐶 ∈ On) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
76adantr 481 . 2 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶)))
8 relwdom 9325 . . . . . 6 Rel ≼*
98brrelex1i 5643 . . . . 5 (𝐴* 𝐷𝐴 ∈ V)
109adantr 481 . . . 4 ((𝐴* 𝐷𝐶 ∈ On) → 𝐴 ∈ V)
1110adantr 481 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝐴 ∈ V)
12 simplr 766 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝐶 ∈ On)
13 simpr 485 . . 3 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶))
14 hsmexlem.f . . . 4 𝐹 = OrdIso( E , 𝐵)
15 hsmexlem.g . . . 4 𝐺 = OrdIso( E , 𝑎𝐴 𝐵)
1614, 15hsmexlem2 10183 . . 3 ((𝐴 ∈ V ∧ 𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
1711, 12, 13, 16syl3anc 1370 . 2 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
187, 17sseldd 3922 1 (((𝐴* 𝐷𝐶 ∈ On) ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  𝒫 cpw 4533   ciun 4924   class class class wbr 5074   E cep 5494   × cxp 5587  dom cdm 5589  Oncon0 6266  cfv 6433  cdom 8731  OrdIsocoi 9268  harchar 9315  * cwdom 9323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-smo 8177  df-recs 8202  df-en 8734  df-dom 8735  df-sdom 8736  df-oi 9269  df-har 9316  df-wdom 9324
This theorem is referenced by:  hsmexlem4  10185  hsmexlem5  10186
  Copyright terms: Public domain W3C validator