![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmexlem3 | Structured version Visualization version GIF version |
Description: Lemma for hsmex 10414. Clear 𝐼 hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
hsmexlem.f | ⊢ 𝐹 = OrdIso( E , 𝐵) |
hsmexlem.g | ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
hsmexlem3 | ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wdomref 9554 | . . . . 5 ⊢ (𝐶 ∈ On → 𝐶 ≼* 𝐶) | |
2 | xpwdomg 9567 | . . . . 5 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ≼* 𝐶) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶)) | |
3 | 1, 2 | sylan2 594 | . . . 4 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → (𝐴 × 𝐶) ≼* (𝐷 × 𝐶)) |
4 | wdompwdom 9560 | . . . 4 ⊢ ((𝐴 × 𝐶) ≼* (𝐷 × 𝐶) → 𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶)) | |
5 | harword 9545 | . . . 4 ⊢ (𝒫 (𝐴 × 𝐶) ≼ 𝒫 (𝐷 × 𝐶) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) |
7 | 6 | adantr 482 | . 2 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (har‘𝒫 (𝐴 × 𝐶)) ⊆ (har‘𝒫 (𝐷 × 𝐶))) |
8 | relwdom 9548 | . . . . . 6 ⊢ Rel ≼* | |
9 | 8 | brrelex1i 5727 | . . . . 5 ⊢ (𝐴 ≼* 𝐷 → 𝐴 ∈ V) |
10 | 9 | adantr 482 | . . . 4 ⊢ ((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) → 𝐴 ∈ V) |
11 | 10 | adantr 482 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → 𝐴 ∈ V) |
12 | simplr 768 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → 𝐶 ∈ On) | |
13 | simpr 486 | . . 3 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) | |
14 | hsmexlem.f | . . . 4 ⊢ 𝐹 = OrdIso( E , 𝐵) | |
15 | hsmexlem.g | . . . 4 ⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) | |
16 | 14, 15 | hsmexlem2 10409 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
17 | 11, 12, 13, 16 | syl3anc 1372 | . 2 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
18 | 7, 17 | sseldd 3981 | 1 ⊢ (((𝐴 ≼* 𝐷 ∧ 𝐶 ∈ On) ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐷 × 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ⊆ wss 3946 𝒫 cpw 4598 ∪ ciun 4993 class class class wbr 5144 E cep 5575 × cxp 5670 dom cdm 5672 Oncon0 6356 ‘cfv 6535 ≼ cdom 8925 OrdIsocoi 9491 harchar 9538 ≼* cwdom 9546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-isom 6544 df-riota 7352 df-ov 7399 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-smo 8333 df-recs 8358 df-en 8928 df-dom 8929 df-sdom 8930 df-oi 9492 df-har 9539 df-wdom 9547 |
This theorem is referenced by: hsmexlem4 10411 hsmexlem5 10412 |
Copyright terms: Public domain | W3C validator |