MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomac Structured version   Visualization version   GIF version

Theorem wdomac 10561
Description: When assuming AC, weak and usual dominance coincide. It is not known if this is an AC equivalent. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomac (𝑋* 𝑌𝑋𝑌)

Proof of Theorem wdomac
StepHypRef Expression
1 relwdom 9602 . . 3 Rel ≼*
21brrelex2i 5731 . 2 (𝑋* 𝑌𝑌 ∈ V)
3 reldom 8972 . . 3 Rel ≼
43brrelex2i 5731 . 2 (𝑋𝑌𝑌 ∈ V)
5 numth3 10504 . . 3 (𝑌 ∈ V → 𝑌 ∈ dom card)
6 wdomnumr 10100 . . 3 (𝑌 ∈ dom card → (𝑋* 𝑌𝑋𝑌))
75, 6syl 17 . 2 (𝑌 ∈ V → (𝑋* 𝑌𝑋𝑌))
82, 4, 7pm5.21nii 377 1 (𝑋* 𝑌𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2099  Vcvv 3462   class class class wbr 5145  dom cdm 5674  cdom 8964  * cwdom 9600  cardccrd 9971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-ac2 10497
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-wdom 9601  df-card 9975  df-acn 9978  df-ac 10152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator