MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpwdomg Structured version   Visualization version   GIF version

Theorem xpwdomg 9545
Description: Weak dominance of a Cartesian product. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
xpwdomg ((𝐴* 𝐵𝐶* 𝐷) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))

Proof of Theorem xpwdomg
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑥 𝑦 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brwdom3i 9543 . . 3 (𝐴* 𝐵 → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
21adantr 480 . 2 ((𝐴* 𝐵𝐶* 𝐷) → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
3 brwdom3i 9543 . . 3 (𝐶* 𝐷 → ∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))
43adantl 481 . 2 ((𝐴* 𝐵𝐶* 𝐷) → ∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))
5 relwdom 9526 . . . . . . . . . 10 Rel ≼*
65brrelex1i 5697 . . . . . . . . 9 (𝐴* 𝐵𝐴 ∈ V)
75brrelex1i 5697 . . . . . . . . 9 (𝐶* 𝐷𝐶 ∈ V)
8 xpexg 7729 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 × 𝐶) ∈ V)
96, 7, 8syl2an 596 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐴 × 𝐶) ∈ V)
109adantr 480 . . . . . . 7 (((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) → (𝐴 × 𝐶) ∈ V)
115brrelex2i 5698 . . . . . . . . 9 (𝐴* 𝐵𝐵 ∈ V)
125brrelex2i 5698 . . . . . . . . 9 (𝐶* 𝐷𝐷 ∈ V)
13 xpexg 7729 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵 × 𝐷) ∈ V)
1411, 12, 13syl2an 596 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐵 × 𝐷) ∈ V)
1514adantr 480 . . . . . . 7 (((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) → (𝐵 × 𝐷) ∈ V)
16 pm3.2 469 . . . . . . . . . . . . . . . 16 (∃𝑏𝐵 𝑎 = (𝑓𝑏) → (∃𝑑𝐷 𝑐 = (𝑔𝑑) → (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
1716ralimdv 3148 . . . . . . . . . . . . . . 15 (∃𝑏𝐵 𝑎 = (𝑓𝑏) → (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → ∀𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
1817com12 32 . . . . . . . . . . . . . 14 (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (∃𝑏𝐵 𝑎 = (𝑓𝑏) → ∀𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
1918ralimdv 3148 . . . . . . . . . . . . 13 (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) → ∀𝑎𝐴𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
2019impcom 407 . . . . . . . . . . . 12 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑎𝐴𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑)))
21 pm3.2 469 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑓𝑏) → (𝑐 = (𝑔𝑑) → (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2221reximdv 3149 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑓𝑏) → (∃𝑑𝐷 𝑐 = (𝑔𝑑) → ∃𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2322com12 32 . . . . . . . . . . . . . . 15 (∃𝑑𝐷 𝑐 = (𝑔𝑑) → (𝑎 = (𝑓𝑏) → ∃𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2423reximdv 3149 . . . . . . . . . . . . . 14 (∃𝑑𝐷 𝑐 = (𝑔𝑑) → (∃𝑏𝐵 𝑎 = (𝑓𝑏) → ∃𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2524impcom 407 . . . . . . . . . . . . 13 ((∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑)) → ∃𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
26252ralimi 3104 . . . . . . . . . . . 12 (∀𝑎𝐴𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑎𝐴𝑐𝐶𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
2720, 26syl 17 . . . . . . . . . . 11 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑎𝐴𝑐𝐶𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
28 eqeq1 2734 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑎, 𝑐⟩ → (𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ ⟨𝑎, 𝑐⟩ = ⟨(𝑓𝑏), (𝑔𝑑)⟩))
29 vex 3454 . . . . . . . . . . . . . . 15 𝑎 ∈ V
30 vex 3454 . . . . . . . . . . . . . . 15 𝑐 ∈ V
3129, 30opth 5439 . . . . . . . . . . . . . 14 (⟨𝑎, 𝑐⟩ = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
3228, 31bitrdi 287 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑎, 𝑐⟩ → (𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
33322rexbidv 3203 . . . . . . . . . . . 12 (𝑥 = ⟨𝑎, 𝑐⟩ → (∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ ∃𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
3433ralxp 5808 . . . . . . . . . . 11 (∀𝑥 ∈ (𝐴 × 𝐶)∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ ∀𝑎𝐴𝑐𝐶𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
3527, 34sylibr 234 . . . . . . . . . 10 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑥 ∈ (𝐴 × 𝐶)∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
3635r19.21bi 3230 . . . . . . . . 9 (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) ∧ 𝑥 ∈ (𝐴 × 𝐶)) → ∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
37 vex 3454 . . . . . . . . . . . . . 14 𝑏 ∈ V
38 vex 3454 . . . . . . . . . . . . . 14 𝑑 ∈ V
3937, 38op1std 7981 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑏, 𝑑⟩ → (1st𝑦) = 𝑏)
4039fveq2d 6865 . . . . . . . . . . . 12 (𝑦 = ⟨𝑏, 𝑑⟩ → (𝑓‘(1st𝑦)) = (𝑓𝑏))
4137, 38op2ndd 7982 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑏, 𝑑⟩ → (2nd𝑦) = 𝑑)
4241fveq2d 6865 . . . . . . . . . . . 12 (𝑦 = ⟨𝑏, 𝑑⟩ → (𝑔‘(2nd𝑦)) = (𝑔𝑑))
4340, 42opeq12d 4848 . . . . . . . . . . 11 (𝑦 = ⟨𝑏, 𝑑⟩ → ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩ = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
4443eqeq2d 2741 . . . . . . . . . 10 (𝑦 = ⟨𝑏, 𝑑⟩ → (𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩ ↔ 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩))
4544rexxp 5809 . . . . . . . . 9 (∃𝑦 ∈ (𝐵 × 𝐷)𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩ ↔ ∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
4636, 45sylibr 234 . . . . . . . 8 (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) ∧ 𝑥 ∈ (𝐴 × 𝐶)) → ∃𝑦 ∈ (𝐵 × 𝐷)𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩)
4746adantll 714 . . . . . . 7 ((((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) ∧ 𝑥 ∈ (𝐴 × 𝐶)) → ∃𝑦 ∈ (𝐵 × 𝐷)𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩)
4810, 15, 47wdom2d 9540 . . . . . 6 (((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))
4948expr 456 . . . . 5 (((𝐴* 𝐵𝐶* 𝐷) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷)))
5049exlimdv 1933 . . . 4 (((𝐴* 𝐵𝐶* 𝐷) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷)))
5150ex 412 . . 3 ((𝐴* 𝐵𝐶* 𝐷) → (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) → (∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))))
5251exlimdv 1933 . 2 ((𝐴* 𝐵𝐶* 𝐷) → (∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) → (∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))))
532, 4, 52mp2d 49 1 ((𝐴* 𝐵𝐶* 𝐷) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cop 4598   class class class wbr 5110   × cxp 5639  cfv 6514  1st c1st 7969  2nd c2nd 7970  * cwdom 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1st 7971  df-2nd 7972  df-en 8922  df-dom 8923  df-sdom 8924  df-wdom 9525
This theorem is referenced by:  hsmexlem3  10388
  Copyright terms: Public domain W3C validator