MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpwdomg Structured version   Visualization version   GIF version

Theorem xpwdomg 8732
Description: Weak dominance of a Cartesian product. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
xpwdomg ((𝐴* 𝐵𝐶* 𝐷) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))

Proof of Theorem xpwdomg
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑥 𝑦 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brwdom3i 8730 . . 3 (𝐴* 𝐵 → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
21adantr 473 . 2 ((𝐴* 𝐵𝐶* 𝐷) → ∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏))
3 brwdom3i 8730 . . 3 (𝐶* 𝐷 → ∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))
43adantl 474 . 2 ((𝐴* 𝐵𝐶* 𝐷) → ∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))
5 relwdom 8713 . . . . . . . . . 10 Rel ≼*
65brrelex1i 5363 . . . . . . . . 9 (𝐴* 𝐵𝐴 ∈ V)
75brrelex1i 5363 . . . . . . . . 9 (𝐶* 𝐷𝐶 ∈ V)
8 xpexg 7194 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 × 𝐶) ∈ V)
96, 7, 8syl2an 590 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐴 × 𝐶) ∈ V)
109adantr 473 . . . . . . 7 (((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) → (𝐴 × 𝐶) ∈ V)
115brrelex2i 5364 . . . . . . . . 9 (𝐴* 𝐵𝐵 ∈ V)
125brrelex2i 5364 . . . . . . . . 9 (𝐶* 𝐷𝐷 ∈ V)
13 xpexg 7194 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵 × 𝐷) ∈ V)
1411, 12, 13syl2an 590 . . . . . . . 8 ((𝐴* 𝐵𝐶* 𝐷) → (𝐵 × 𝐷) ∈ V)
1514adantr 473 . . . . . . 7 (((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) → (𝐵 × 𝐷) ∈ V)
16 pm3.2 462 . . . . . . . . . . . . . . . 16 (∃𝑏𝐵 𝑎 = (𝑓𝑏) → (∃𝑑𝐷 𝑐 = (𝑔𝑑) → (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
1716ralimdv 3144 . . . . . . . . . . . . . . 15 (∃𝑏𝐵 𝑎 = (𝑓𝑏) → (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → ∀𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
1817com12 32 . . . . . . . . . . . . . 14 (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (∃𝑏𝐵 𝑎 = (𝑓𝑏) → ∀𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
1918ralimdv 3144 . . . . . . . . . . . . 13 (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) → ∀𝑎𝐴𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑))))
2019impcom 397 . . . . . . . . . . . 12 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑎𝐴𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑)))
21 pm3.2 462 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑓𝑏) → (𝑐 = (𝑔𝑑) → (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2221reximdv 3196 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑓𝑏) → (∃𝑑𝐷 𝑐 = (𝑔𝑑) → ∃𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2322com12 32 . . . . . . . . . . . . . . 15 (∃𝑑𝐷 𝑐 = (𝑔𝑑) → (𝑎 = (𝑓𝑏) → ∃𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2423reximdv 3196 . . . . . . . . . . . . . 14 (∃𝑑𝐷 𝑐 = (𝑔𝑑) → (∃𝑏𝐵 𝑎 = (𝑓𝑏) → ∃𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
2524impcom 397 . . . . . . . . . . . . 13 ((∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑)) → ∃𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
26252ralimi 3134 . . . . . . . . . . . 12 (∀𝑎𝐴𝑐𝐶 (∃𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∃𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑎𝐴𝑐𝐶𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
2720, 26syl 17 . . . . . . . . . . 11 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑎𝐴𝑐𝐶𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
28 eqeq1 2803 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑎, 𝑐⟩ → (𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ ⟨𝑎, 𝑐⟩ = ⟨(𝑓𝑏), (𝑔𝑑)⟩))
29 vex 3388 . . . . . . . . . . . . . . 15 𝑎 ∈ V
30 vex 3388 . . . . . . . . . . . . . . 15 𝑐 ∈ V
3129, 30opth 5135 . . . . . . . . . . . . . 14 (⟨𝑎, 𝑐⟩ = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
3228, 31syl6bb 279 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑎, 𝑐⟩ → (𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
33322rexbidv 3238 . . . . . . . . . . . 12 (𝑥 = ⟨𝑎, 𝑐⟩ → (∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ ∃𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑))))
3433ralxp 5467 . . . . . . . . . . 11 (∀𝑥 ∈ (𝐴 × 𝐶)∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩ ↔ ∀𝑎𝐴𝑐𝐶𝑏𝐵𝑑𝐷 (𝑎 = (𝑓𝑏) ∧ 𝑐 = (𝑔𝑑)))
3527, 34sylibr 226 . . . . . . . . . 10 ((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) → ∀𝑥 ∈ (𝐴 × 𝐶)∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
3635r19.21bi 3113 . . . . . . . . 9 (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) ∧ 𝑥 ∈ (𝐴 × 𝐶)) → ∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
37 vex 3388 . . . . . . . . . . . . . 14 𝑏 ∈ V
38 vex 3388 . . . . . . . . . . . . . 14 𝑑 ∈ V
3937, 38op1std 7411 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑏, 𝑑⟩ → (1st𝑦) = 𝑏)
4039fveq2d 6415 . . . . . . . . . . . 12 (𝑦 = ⟨𝑏, 𝑑⟩ → (𝑓‘(1st𝑦)) = (𝑓𝑏))
4137, 38op2ndd 7412 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑏, 𝑑⟩ → (2nd𝑦) = 𝑑)
4241fveq2d 6415 . . . . . . . . . . . 12 (𝑦 = ⟨𝑏, 𝑑⟩ → (𝑔‘(2nd𝑦)) = (𝑔𝑑))
4340, 42opeq12d 4601 . . . . . . . . . . 11 (𝑦 = ⟨𝑏, 𝑑⟩ → ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩ = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
4443eqeq2d 2809 . . . . . . . . . 10 (𝑦 = ⟨𝑏, 𝑑⟩ → (𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩ ↔ 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩))
4544rexxp 5468 . . . . . . . . 9 (∃𝑦 ∈ (𝐵 × 𝐷)𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩ ↔ ∃𝑏𝐵𝑑𝐷 𝑥 = ⟨(𝑓𝑏), (𝑔𝑑)⟩)
4636, 45sylibr 226 . . . . . . . 8 (((∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑)) ∧ 𝑥 ∈ (𝐴 × 𝐶)) → ∃𝑦 ∈ (𝐵 × 𝐷)𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩)
4746adantll 706 . . . . . . 7 ((((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) ∧ 𝑥 ∈ (𝐴 × 𝐶)) → ∃𝑦 ∈ (𝐵 × 𝐷)𝑥 = ⟨(𝑓‘(1st𝑦)), (𝑔‘(2nd𝑦))⟩)
4810, 15, 47wdom2d 8727 . . . . . 6 (((𝐴* 𝐵𝐶* 𝐷) ∧ (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) ∧ ∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑))) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))
4948expr 449 . . . . 5 (((𝐴* 𝐵𝐶* 𝐷) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∀𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷)))
5049exlimdv 2029 . . . 4 (((𝐴* 𝐵𝐶* 𝐷) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏)) → (∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷)))
5150ex 402 . . 3 ((𝐴* 𝐵𝐶* 𝐷) → (∀𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) → (∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))))
5251exlimdv 2029 . 2 ((𝐴* 𝐵𝐶* 𝐷) → (∃𝑓𝑎𝐴𝑏𝐵 𝑎 = (𝑓𝑏) → (∃𝑔𝑐𝐶𝑑𝐷 𝑐 = (𝑔𝑑) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))))
532, 4, 52mp2d 49 1 ((𝐴* 𝐵𝐶* 𝐷) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wex 1875  wcel 2157  wral 3089  wrex 3090  Vcvv 3385  cop 4374   class class class wbr 4843   × cxp 5310  cfv 6101  1st c1st 7399  2nd c2nd 7400  * cwdom 8704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-1st 7401  df-2nd 7402  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-wdom 8706
This theorem is referenced by:  hsmexlem3  9538
  Copyright terms: Public domain W3C validator