MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem1 Structured version   Visualization version   GIF version

Theorem hsmexlem1 9842
Description: Lemma for hsmex 9848. Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
hsmexlem.o 𝑂 = OrdIso( E , 𝐴)
Assertion
Ref Expression
hsmexlem1 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ (har‘𝒫 𝐵))

Proof of Theorem hsmexlem1
StepHypRef Expression
1 hsmexlem.o . . . 4 𝑂 = OrdIso( E , 𝐴)
21oicl 8987 . . 3 Ord dom 𝑂
3 relwdom 9024 . . . . . . . 8 Rel ≼*
43brrelex1i 5603 . . . . . . 7 (𝐴* 𝐵𝐴 ∈ V)
54adantl 484 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝐴 ∈ V)
6 uniexg 7460 . . . . . 6 (𝐴 ∈ V → 𝐴 ∈ V)
7 sucexg 7519 . . . . . 6 ( 𝐴 ∈ V → suc 𝐴 ∈ V)
85, 6, 73syl 18 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → suc 𝐴 ∈ V)
91oif 8988 . . . . . . 7 𝑂:dom 𝑂𝐴
10 onsucuni 7537 . . . . . . . 8 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
1110adantr 483 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝐴 ⊆ suc 𝐴)
12 fss 6522 . . . . . . 7 ((𝑂:dom 𝑂𝐴𝐴 ⊆ suc 𝐴) → 𝑂:dom 𝑂⟶suc 𝐴)
139, 11, 12sylancr 589 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂:dom 𝑂⟶suc 𝐴)
141oismo 8998 . . . . . . . 8 (𝐴 ⊆ On → (Smo 𝑂 ∧ ran 𝑂 = 𝐴))
1514adantr 483 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → (Smo 𝑂 ∧ ran 𝑂 = 𝐴))
1615simpld 497 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → Smo 𝑂)
17 ssorduni 7494 . . . . . . . 8 (𝐴 ⊆ On → Ord 𝐴)
1817adantr 483 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → Ord 𝐴)
19 ordsuc 7523 . . . . . . 7 (Ord 𝐴 ↔ Ord suc 𝐴)
2018, 19sylib 220 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → Ord suc 𝐴)
21 smorndom 7999 . . . . . 6 ((𝑂:dom 𝑂⟶suc 𝐴 ∧ Smo 𝑂 ∧ Ord suc 𝐴) → dom 𝑂 ⊆ suc 𝐴)
2213, 16, 20, 21syl3anc 1367 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ⊆ suc 𝐴)
238, 22ssexd 5221 . . . 4 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ V)
24 elong 6194 . . . 4 (dom 𝑂 ∈ V → (dom 𝑂 ∈ On ↔ Ord dom 𝑂))
2523, 24syl 17 . . 3 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → (dom 𝑂 ∈ On ↔ Ord dom 𝑂))
262, 25mpbiri 260 . 2 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ On)
27 canth2g 8665 . . . 4 (dom 𝑂 ∈ V → dom 𝑂 ≺ 𝒫 dom 𝑂)
28 sdomdom 8531 . . . 4 (dom 𝑂 ≺ 𝒫 dom 𝑂 → dom 𝑂 ≼ 𝒫 dom 𝑂)
2923, 27, 283syl 18 . . 3 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ≼ 𝒫 dom 𝑂)
30 simpl 485 . . . . . . . . . . 11 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝐴 ⊆ On)
31 epweon 7491 . . . . . . . . . . 11 E We On
32 wess 5537 . . . . . . . . . . 11 (𝐴 ⊆ On → ( E We On → E We 𝐴))
3330, 31, 32mpisyl 21 . . . . . . . . . 10 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → E We 𝐴)
34 epse 5533 . . . . . . . . . 10 E Se 𝐴
351oiiso2 8989 . . . . . . . . . 10 (( E We 𝐴 ∧ E Se 𝐴) → 𝑂 Isom E , E (dom 𝑂, ran 𝑂))
3633, 34, 35sylancl 588 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂 Isom E , E (dom 𝑂, ran 𝑂))
37 isof1o 7070 . . . . . . . . 9 (𝑂 Isom E , E (dom 𝑂, ran 𝑂) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
3836, 37syl 17 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂:dom 𝑂1-1-onto→ran 𝑂)
3915simprd 498 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → ran 𝑂 = 𝐴)
4039f1oeq3d 6607 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → (𝑂:dom 𝑂1-1-onto→ran 𝑂𝑂:dom 𝑂1-1-onto𝐴))
4138, 40mpbid 234 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝑂:dom 𝑂1-1-onto𝐴)
42 f1oen2g 8520 . . . . . . 7 ((dom 𝑂 ∈ On ∧ 𝐴 ∈ V ∧ 𝑂:dom 𝑂1-1-onto𝐴) → dom 𝑂𝐴)
4326, 5, 41, 42syl3anc 1367 . . . . . 6 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂𝐴)
44 endom 8530 . . . . . 6 (dom 𝑂𝐴 → dom 𝑂𝐴)
45 domwdom 9032 . . . . . 6 (dom 𝑂𝐴 → dom 𝑂* 𝐴)
4643, 44, 453syl 18 . . . . 5 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂* 𝐴)
47 wdomtr 9033 . . . . 5 ((dom 𝑂* 𝐴𝐴* 𝐵) → dom 𝑂* 𝐵)
4846, 47sylancom 590 . . . 4 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂* 𝐵)
49 wdompwdom 9036 . . . 4 (dom 𝑂* 𝐵 → 𝒫 dom 𝑂 ≼ 𝒫 𝐵)
5048, 49syl 17 . . 3 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → 𝒫 dom 𝑂 ≼ 𝒫 𝐵)
51 domtr 8556 . . 3 ((dom 𝑂 ≼ 𝒫 dom 𝑂 ∧ 𝒫 dom 𝑂 ≼ 𝒫 𝐵) → dom 𝑂 ≼ 𝒫 𝐵)
5229, 50, 51syl2anc 586 . 2 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ≼ 𝒫 𝐵)
53 elharval 9021 . 2 (dom 𝑂 ∈ (har‘𝒫 𝐵) ↔ (dom 𝑂 ∈ On ∧ dom 𝑂 ≼ 𝒫 𝐵))
5426, 52, 53sylanbrc 585 1 ((𝐴 ⊆ On ∧ 𝐴* 𝐵) → dom 𝑂 ∈ (har‘𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  Vcvv 3495  wss 3936  𝒫 cpw 4539   cuni 4832   class class class wbr 5059   E cep 5459   Se wse 5507   We wwe 5508  dom cdm 5550  ran crn 5551  Ord word 6185  Oncon0 6186  suc csuc 6188  wf 6346  1-1-ontowf1o 6349  cfv 6350   Isom wiso 6351  Smo wsmo 7976  cen 8500  cdom 8501  csdm 8502  OrdIsocoi 8967  harchar 9014  * cwdom 9015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-wrecs 7941  df-smo 7977  df-recs 8002  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-oi 8968  df-har 9016  df-wdom 9017
This theorem is referenced by:  hsmexlem2  9843  hsmexlem4  9845
  Copyright terms: Public domain W3C validator