MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdomi Structured version   Visualization version   GIF version

Theorem brwdomi 9454
Description: Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
brwdomi (𝑋* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑌

Proof of Theorem brwdomi
StepHypRef Expression
1 relwdom 9452 . . . 4 Rel ≼*
21brrelex2i 5671 . . 3 (𝑋* 𝑌𝑌 ∈ V)
3 brwdom 9453 . . 3 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
42, 3syl 17 . 2 (𝑋* 𝑌 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
54ibi 267 1 (𝑋* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  c0 4280   class class class wbr 5089  ontowfo 6479  * cwdom 9450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-fn 6484  df-fo 6487  df-wdom 9451
This theorem is referenced by:  numwdom  9950
  Copyright terms: Public domain W3C validator