MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdomi Structured version   Visualization version   GIF version

Theorem brwdomi 9639
Description: Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
brwdomi (𝑋* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑌

Proof of Theorem brwdomi
StepHypRef Expression
1 relwdom 9637 . . . 4 Rel ≼*
21brrelex2i 5757 . . 3 (𝑋* 𝑌𝑌 ∈ V)
3 brwdom 9638 . . 3 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
42, 3syl 17 . 2 (𝑋* 𝑌 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
54ibi 267 1 (𝑋* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 846   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  c0 4352   class class class wbr 5166  ontowfo 6573  * cwdom 9635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-fn 6578  df-fo 6581  df-wdom 9636
This theorem is referenced by:  numwdom  10130
  Copyright terms: Public domain W3C validator