MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdomi Structured version   Visualization version   GIF version

Theorem brwdomi 9615
Description: Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
brwdomi (𝑋* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋))
Distinct variable groups:   𝑧,𝑋   𝑧,𝑌

Proof of Theorem brwdomi
StepHypRef Expression
1 relwdom 9613 . . . 4 Rel ≼*
21brrelex2i 5750 . . 3 (𝑋* 𝑌𝑌 ∈ V)
3 brwdom 9614 . . 3 (𝑌 ∈ V → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
42, 3syl 17 . 2 (𝑋* 𝑌 → (𝑋* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋)))
54ibi 267 1 (𝑋* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌onto𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 848   = wceq 1539  wex 1778  wcel 2108  Vcvv 3481  c0 4342   class class class wbr 5151  ontowfo 6567  * cwdom 9611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-cnv 5701  df-dm 5703  df-rn 5704  df-fn 6572  df-fo 6575  df-wdom 9612
This theorem is referenced by:  numwdom  10106
  Copyright terms: Public domain W3C validator