| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brwdomi | Structured version Visualization version GIF version | ||
| Description: Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015.) |
| Ref | Expression |
|---|---|
| brwdomi | ⊢ (𝑋 ≼* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom 9519 | . . . 4 ⊢ Rel ≼* | |
| 2 | 1 | brrelex2i 5695 | . . 3 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
| 3 | brwdom 9520 | . . 3 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝑋 ≼* 𝑌 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) |
| 5 | 4 | ibi 267 | 1 ⊢ (𝑋 ≼* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 class class class wbr 5107 –onto→wfo 6509 ≼* cwdom 9517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-fn 6514 df-fo 6517 df-wdom 9518 |
| This theorem is referenced by: numwdom 10012 |
| Copyright terms: Public domain | W3C validator |