Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brwdomi | Structured version Visualization version GIF version |
Description: Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
brwdomi | ⊢ (𝑋 ≼* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwdom 9255 | . . . 4 ⊢ Rel ≼* | |
2 | 1 | brrelex2i 5635 | . . 3 ⊢ (𝑋 ≼* 𝑌 → 𝑌 ∈ V) |
3 | brwdom 9256 | . . 3 ⊢ (𝑌 ∈ V → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑋 ≼* 𝑌 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) |
5 | 4 | ibi 266 | 1 ⊢ (𝑋 ≼* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 class class class wbr 5070 –onto→wfo 6416 ≼* cwdom 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-fn 6421 df-fo 6424 df-wdom 9254 |
This theorem is referenced by: numwdom 9746 |
Copyright terms: Public domain | W3C validator |