MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwdom3i Structured version   Visualization version   GIF version

Theorem brwdom3i 9536
Description: Weak dominance implies existence of a covering function. (Contributed by Stefan O'Rear, 13-Feb-2015.)
Assertion
Ref Expression
brwdom3i (𝑋* 𝑌 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦))
Distinct variable groups:   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦

Proof of Theorem brwdom3i
StepHypRef Expression
1 relwdom 9519 . . . 4 Rel ≼*
21brrelex1i 5694 . . 3 (𝑋* 𝑌𝑋 ∈ V)
31brrelex2i 5695 . . 3 (𝑋* 𝑌𝑌 ∈ V)
4 brwdom3 9535 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
52, 3, 4syl2anc 584 . 2 (𝑋* 𝑌 → (𝑋* 𝑌 ↔ ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦)))
65ibi 267 1 (𝑋* 𝑌 → ∃𝑓𝑥𝑋𝑦𝑌 𝑥 = (𝑓𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447   class class class wbr 5107  cfv 6511  * cwdom 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-en 8919  df-dom 8920  df-sdom 8921  df-wdom 9518
This theorem is referenced by:  unwdomg  9537  xpwdomg  9538
  Copyright terms: Public domain W3C validator