MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomtr Structured version   Visualization version   GIF version

Theorem wdomtr 9031
Description: Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomtr ((𝑋* 𝑌𝑌* 𝑍) → 𝑋* 𝑍)

Proof of Theorem wdomtr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relwdom 9022 . . . . 5 Rel ≼*
21brrelex2i 5607 . . . 4 (𝑌* 𝑍𝑍 ∈ V)
32adantl 482 . . 3 ((𝑋* 𝑌𝑌* 𝑍) → 𝑍 ∈ V)
4 0wdom 9026 . . . 4 (𝑍 ∈ V → ∅ ≼* 𝑍)
5 breq1 5065 . . . 4 (𝑋 = ∅ → (𝑋* 𝑍 ↔ ∅ ≼* 𝑍))
64, 5syl5ibrcom 248 . . 3 (𝑍 ∈ V → (𝑋 = ∅ → 𝑋* 𝑍))
73, 6syl 17 . 2 ((𝑋* 𝑌𝑌* 𝑍) → (𝑋 = ∅ → 𝑋* 𝑍))
8 simpll 763 . . . . 5 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → 𝑋* 𝑌)
9 brwdomn0 9025 . . . . . 6 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
109adantl 482 . . . . 5 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
118, 10mpbid 233 . . . 4 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → ∃𝑧 𝑧:𝑌onto𝑋)
12 simpllr 772 . . . . . 6 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑌* 𝑍)
13 simplr 765 . . . . . . . 8 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑋 ≠ ∅)
14 dm0rn0 5793 . . . . . . . . . . . 12 (dom 𝑧 = ∅ ↔ ran 𝑧 = ∅)
1514necon3bii 3072 . . . . . . . . . . 11 (dom 𝑧 ≠ ∅ ↔ ran 𝑧 ≠ ∅)
1615a1i 11 . . . . . . . . . 10 (𝑧:𝑌onto𝑋 → (dom 𝑧 ≠ ∅ ↔ ran 𝑧 ≠ ∅))
17 fof 6586 . . . . . . . . . . . 12 (𝑧:𝑌onto𝑋𝑧:𝑌𝑋)
1817fdmd 6519 . . . . . . . . . . 11 (𝑧:𝑌onto𝑋 → dom 𝑧 = 𝑌)
1918neeq1d 3079 . . . . . . . . . 10 (𝑧:𝑌onto𝑋 → (dom 𝑧 ≠ ∅ ↔ 𝑌 ≠ ∅))
20 forn 6589 . . . . . . . . . . 11 (𝑧:𝑌onto𝑋 → ran 𝑧 = 𝑋)
2120neeq1d 3079 . . . . . . . . . 10 (𝑧:𝑌onto𝑋 → (ran 𝑧 ≠ ∅ ↔ 𝑋 ≠ ∅))
2216, 19, 213bitr3rd 311 . . . . . . . . 9 (𝑧:𝑌onto𝑋 → (𝑋 ≠ ∅ ↔ 𝑌 ≠ ∅))
2322adantl 482 . . . . . . . 8 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (𝑋 ≠ ∅ ↔ 𝑌 ≠ ∅))
2413, 23mpbid 233 . . . . . . 7 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑌 ≠ ∅)
25 brwdomn0 9025 . . . . . . 7 (𝑌 ≠ ∅ → (𝑌* 𝑍 ↔ ∃𝑦 𝑦:𝑍onto𝑌))
2624, 25syl 17 . . . . . 6 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (𝑌* 𝑍 ↔ ∃𝑦 𝑦:𝑍onto𝑌))
2712, 26mpbid 233 . . . . 5 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → ∃𝑦 𝑦:𝑍onto𝑌)
28 vex 3502 . . . . . . . . . 10 𝑧 ∈ V
29 vex 3502 . . . . . . . . . 10 𝑦 ∈ V
3028, 29coex 7626 . . . . . . . . 9 (𝑧𝑦) ∈ V
31 foco 6598 . . . . . . . . 9 ((𝑧:𝑌onto𝑋𝑦:𝑍onto𝑌) → (𝑧𝑦):𝑍onto𝑋)
32 fowdom 9027 . . . . . . . . 9 (((𝑧𝑦) ∈ V ∧ (𝑧𝑦):𝑍onto𝑋) → 𝑋* 𝑍)
3330, 31, 32sylancr 587 . . . . . . . 8 ((𝑧:𝑌onto𝑋𝑦:𝑍onto𝑌) → 𝑋* 𝑍)
3433adantl 482 . . . . . . 7 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ (𝑧:𝑌onto𝑋𝑦:𝑍onto𝑌)) → 𝑋* 𝑍)
3534expr 457 . . . . . 6 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (𝑦:𝑍onto𝑌𝑋* 𝑍))
3635exlimdv 1927 . . . . 5 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (∃𝑦 𝑦:𝑍onto𝑌𝑋* 𝑍))
3727, 36mpd 15 . . . 4 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑋* 𝑍)
3811, 37exlimddv 1929 . . 3 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → 𝑋* 𝑍)
3938ex 413 . 2 ((𝑋* 𝑌𝑌* 𝑍) → (𝑋 ≠ ∅ → 𝑋* 𝑍))
407, 39pm2.61dne 3107 1 ((𝑋* 𝑌𝑌* 𝑍) → 𝑋* 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2107  wne 3020  Vcvv 3499  c0 4294   class class class wbr 5062  dom cdm 5553  ran crn 5554  ccom 5557  ontowfo 6349  * cwdom 9013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-fun 6353  df-fn 6354  df-f 6355  df-fo 6357  df-wdom 9015
This theorem is referenced by:  wdomen1  9032  wdomen2  9033  wdom2d  9036  wdomima2g  9042  unxpwdom2  9044  unxpwdom  9045  harwdom  9046  pwdjudom  9630  hsmexlem1  9840  hsmexlem4  9843
  Copyright terms: Public domain W3C validator