MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomtr Structured version   Visualization version   GIF version

Theorem wdomtr 9535
Description: Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomtr ((𝑋* 𝑌𝑌* 𝑍) → 𝑋* 𝑍)

Proof of Theorem wdomtr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relwdom 9526 . . . . 5 Rel ≼*
21brrelex2i 5698 . . . 4 (𝑌* 𝑍𝑍 ∈ V)
32adantl 481 . . 3 ((𝑋* 𝑌𝑌* 𝑍) → 𝑍 ∈ V)
4 0wdom 9530 . . . 4 (𝑍 ∈ V → ∅ ≼* 𝑍)
5 breq1 5113 . . . 4 (𝑋 = ∅ → (𝑋* 𝑍 ↔ ∅ ≼* 𝑍))
64, 5syl5ibrcom 247 . . 3 (𝑍 ∈ V → (𝑋 = ∅ → 𝑋* 𝑍))
73, 6syl 17 . 2 ((𝑋* 𝑌𝑌* 𝑍) → (𝑋 = ∅ → 𝑋* 𝑍))
8 simpll 766 . . . . 5 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → 𝑋* 𝑌)
9 brwdomn0 9529 . . . . . 6 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
109adantl 481 . . . . 5 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
118, 10mpbid 232 . . . 4 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → ∃𝑧 𝑧:𝑌onto𝑋)
12 simpllr 775 . . . . . 6 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑌* 𝑍)
13 simplr 768 . . . . . . . 8 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑋 ≠ ∅)
14 dm0rn0 5891 . . . . . . . . . . . 12 (dom 𝑧 = ∅ ↔ ran 𝑧 = ∅)
1514necon3bii 2978 . . . . . . . . . . 11 (dom 𝑧 ≠ ∅ ↔ ran 𝑧 ≠ ∅)
1615a1i 11 . . . . . . . . . 10 (𝑧:𝑌onto𝑋 → (dom 𝑧 ≠ ∅ ↔ ran 𝑧 ≠ ∅))
17 fof 6775 . . . . . . . . . . . 12 (𝑧:𝑌onto𝑋𝑧:𝑌𝑋)
1817fdmd 6701 . . . . . . . . . . 11 (𝑧:𝑌onto𝑋 → dom 𝑧 = 𝑌)
1918neeq1d 2985 . . . . . . . . . 10 (𝑧:𝑌onto𝑋 → (dom 𝑧 ≠ ∅ ↔ 𝑌 ≠ ∅))
20 forn 6778 . . . . . . . . . . 11 (𝑧:𝑌onto𝑋 → ran 𝑧 = 𝑋)
2120neeq1d 2985 . . . . . . . . . 10 (𝑧:𝑌onto𝑋 → (ran 𝑧 ≠ ∅ ↔ 𝑋 ≠ ∅))
2216, 19, 213bitr3rd 310 . . . . . . . . 9 (𝑧:𝑌onto𝑋 → (𝑋 ≠ ∅ ↔ 𝑌 ≠ ∅))
2322adantl 481 . . . . . . . 8 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (𝑋 ≠ ∅ ↔ 𝑌 ≠ ∅))
2413, 23mpbid 232 . . . . . . 7 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑌 ≠ ∅)
25 brwdomn0 9529 . . . . . . 7 (𝑌 ≠ ∅ → (𝑌* 𝑍 ↔ ∃𝑦 𝑦:𝑍onto𝑌))
2624, 25syl 17 . . . . . 6 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (𝑌* 𝑍 ↔ ∃𝑦 𝑦:𝑍onto𝑌))
2712, 26mpbid 232 . . . . 5 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → ∃𝑦 𝑦:𝑍onto𝑌)
28 vex 3454 . . . . . . . . . 10 𝑧 ∈ V
29 vex 3454 . . . . . . . . . 10 𝑦 ∈ V
3028, 29coex 7909 . . . . . . . . 9 (𝑧𝑦) ∈ V
31 foco 6789 . . . . . . . . 9 ((𝑧:𝑌onto𝑋𝑦:𝑍onto𝑌) → (𝑧𝑦):𝑍onto𝑋)
32 fowdom 9531 . . . . . . . . 9 (((𝑧𝑦) ∈ V ∧ (𝑧𝑦):𝑍onto𝑋) → 𝑋* 𝑍)
3330, 31, 32sylancr 587 . . . . . . . 8 ((𝑧:𝑌onto𝑋𝑦:𝑍onto𝑌) → 𝑋* 𝑍)
3433adantl 481 . . . . . . 7 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ (𝑧:𝑌onto𝑋𝑦:𝑍onto𝑌)) → 𝑋* 𝑍)
3534expr 456 . . . . . 6 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (𝑦:𝑍onto𝑌𝑋* 𝑍))
3635exlimdv 1933 . . . . 5 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (∃𝑦 𝑦:𝑍onto𝑌𝑋* 𝑍))
3727, 36mpd 15 . . . 4 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑋* 𝑍)
3811, 37exlimddv 1935 . . 3 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → 𝑋* 𝑍)
3938ex 412 . 2 ((𝑋* 𝑌𝑌* 𝑍) → (𝑋 ≠ ∅ → 𝑋* 𝑍))
407, 39pm2.61dne 3012 1 ((𝑋* 𝑌𝑌* 𝑍) → 𝑋* 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  Vcvv 3450  c0 4299   class class class wbr 5110  dom cdm 5641  ran crn 5642  ccom 5645  ontowfo 6512  * cwdom 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-wdom 9525
This theorem is referenced by:  wdomen1  9536  wdomen2  9537  wdom2d  9540  wdomima2g  9546  unxpwdom2  9548  unxpwdom  9549  harwdom  9551  pwdjudom  10175  hsmexlem1  10386  hsmexlem4  10389
  Copyright terms: Public domain W3C validator