MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomtr Structured version   Visualization version   GIF version

Theorem wdomtr 9334
Description: Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomtr ((𝑋* 𝑌𝑌* 𝑍) → 𝑋* 𝑍)

Proof of Theorem wdomtr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relwdom 9325 . . . . 5 Rel ≼*
21brrelex2i 5644 . . . 4 (𝑌* 𝑍𝑍 ∈ V)
32adantl 482 . . 3 ((𝑋* 𝑌𝑌* 𝑍) → 𝑍 ∈ V)
4 0wdom 9329 . . . 4 (𝑍 ∈ V → ∅ ≼* 𝑍)
5 breq1 5077 . . . 4 (𝑋 = ∅ → (𝑋* 𝑍 ↔ ∅ ≼* 𝑍))
64, 5syl5ibrcom 246 . . 3 (𝑍 ∈ V → (𝑋 = ∅ → 𝑋* 𝑍))
73, 6syl 17 . 2 ((𝑋* 𝑌𝑌* 𝑍) → (𝑋 = ∅ → 𝑋* 𝑍))
8 simpll 764 . . . . 5 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → 𝑋* 𝑌)
9 brwdomn0 9328 . . . . . 6 (𝑋 ≠ ∅ → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
109adantl 482 . . . . 5 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → (𝑋* 𝑌 ↔ ∃𝑧 𝑧:𝑌onto𝑋))
118, 10mpbid 231 . . . 4 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → ∃𝑧 𝑧:𝑌onto𝑋)
12 simpllr 773 . . . . . 6 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑌* 𝑍)
13 simplr 766 . . . . . . . 8 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑋 ≠ ∅)
14 dm0rn0 5834 . . . . . . . . . . . 12 (dom 𝑧 = ∅ ↔ ran 𝑧 = ∅)
1514necon3bii 2996 . . . . . . . . . . 11 (dom 𝑧 ≠ ∅ ↔ ran 𝑧 ≠ ∅)
1615a1i 11 . . . . . . . . . 10 (𝑧:𝑌onto𝑋 → (dom 𝑧 ≠ ∅ ↔ ran 𝑧 ≠ ∅))
17 fof 6688 . . . . . . . . . . . 12 (𝑧:𝑌onto𝑋𝑧:𝑌𝑋)
1817fdmd 6611 . . . . . . . . . . 11 (𝑧:𝑌onto𝑋 → dom 𝑧 = 𝑌)
1918neeq1d 3003 . . . . . . . . . 10 (𝑧:𝑌onto𝑋 → (dom 𝑧 ≠ ∅ ↔ 𝑌 ≠ ∅))
20 forn 6691 . . . . . . . . . . 11 (𝑧:𝑌onto𝑋 → ran 𝑧 = 𝑋)
2120neeq1d 3003 . . . . . . . . . 10 (𝑧:𝑌onto𝑋 → (ran 𝑧 ≠ ∅ ↔ 𝑋 ≠ ∅))
2216, 19, 213bitr3rd 310 . . . . . . . . 9 (𝑧:𝑌onto𝑋 → (𝑋 ≠ ∅ ↔ 𝑌 ≠ ∅))
2322adantl 482 . . . . . . . 8 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (𝑋 ≠ ∅ ↔ 𝑌 ≠ ∅))
2413, 23mpbid 231 . . . . . . 7 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑌 ≠ ∅)
25 brwdomn0 9328 . . . . . . 7 (𝑌 ≠ ∅ → (𝑌* 𝑍 ↔ ∃𝑦 𝑦:𝑍onto𝑌))
2624, 25syl 17 . . . . . 6 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (𝑌* 𝑍 ↔ ∃𝑦 𝑦:𝑍onto𝑌))
2712, 26mpbid 231 . . . . 5 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → ∃𝑦 𝑦:𝑍onto𝑌)
28 vex 3436 . . . . . . . . . 10 𝑧 ∈ V
29 vex 3436 . . . . . . . . . 10 𝑦 ∈ V
3028, 29coex 7777 . . . . . . . . 9 (𝑧𝑦) ∈ V
31 foco 6702 . . . . . . . . 9 ((𝑧:𝑌onto𝑋𝑦:𝑍onto𝑌) → (𝑧𝑦):𝑍onto𝑋)
32 fowdom 9330 . . . . . . . . 9 (((𝑧𝑦) ∈ V ∧ (𝑧𝑦):𝑍onto𝑋) → 𝑋* 𝑍)
3330, 31, 32sylancr 587 . . . . . . . 8 ((𝑧:𝑌onto𝑋𝑦:𝑍onto𝑌) → 𝑋* 𝑍)
3433adantl 482 . . . . . . 7 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ (𝑧:𝑌onto𝑋𝑦:𝑍onto𝑌)) → 𝑋* 𝑍)
3534expr 457 . . . . . 6 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (𝑦:𝑍onto𝑌𝑋* 𝑍))
3635exlimdv 1936 . . . . 5 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → (∃𝑦 𝑦:𝑍onto𝑌𝑋* 𝑍))
3727, 36mpd 15 . . . 4 ((((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) ∧ 𝑧:𝑌onto𝑋) → 𝑋* 𝑍)
3811, 37exlimddv 1938 . . 3 (((𝑋* 𝑌𝑌* 𝑍) ∧ 𝑋 ≠ ∅) → 𝑋* 𝑍)
3938ex 413 . 2 ((𝑋* 𝑌𝑌* 𝑍) → (𝑋 ≠ ∅ → 𝑋* 𝑍))
407, 39pm2.61dne 3031 1 ((𝑋* 𝑌𝑌* 𝑍) → 𝑋* 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  Vcvv 3432  c0 4256   class class class wbr 5074  dom cdm 5589  ran crn 5590  ccom 5593  ontowfo 6431  * cwdom 9323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-wdom 9324
This theorem is referenced by:  wdomen1  9335  wdomen2  9336  wdom2d  9339  wdomima2g  9345  unxpwdom2  9347  unxpwdom  9348  harwdom  9350  pwdjudom  9972  hsmexlem1  10182  hsmexlem4  10185
  Copyright terms: Public domain W3C validator